some typical control loops

Post on 06-Dec-2021

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Prof. Cesar de Prada, ISA, UVA 1

Some typical control loops

Prof. Cesar de Prada Dpt. Systems Engineering and Automatic Control

Univ. of Valladolid

Prof. Cesar de Prada, ISA, UVA 2

Outline

• Flow control • Level Control • Pressure control • Temperature control

Prof. Cesar de Prada, ISA, UVA 3

q a

Flow control

FC w u

Centrifugal pump

Flowmeter Control Valve

Pump, valve: sizing, placement

Flowmeter: Type, range

Right order: Pump, flowmeter, valve

Important element: valve selection

Prof. Cesar de Prada, ISA, UVA 4

Sizing From a design point of view, control valves with a large Cv should be chosen, as they present a lower pressure drops, allowing the use of smaller pumps. Nevertheless, the use of smaller control valves gives wider flow changes making the process more controllable.

q

∆pv

a

∆p0 ∆pb

u

Prof. Cesar de Prada, ISA, UVA 5

Example Design specifications

Flow: qs = 100 gpm Pressure drop in the line ∆pL = 40 psi Total Pressure difference ∆p0 = -150 psi density = 1 desired valve opening = 50%

Case 1: ∆pv = 20 psi Case 2: ∆pv = 80 psi

q

∆pv

a

∆p0 ∆pb

u Lvb0 pppp ∆+∆=∆+∆

Higher pressure in the line end

Prof. Cesar de Prada, ISA, UVA 6

Example Case 1: ∆pv = 20 psi Case 2: ∆pv = 80 psi ∆pb = 150+40+20= 210 ∆pb = 150+40+80= 270

q

∆pv

a

∆p0 ∆pb

u 36.22C 72.44C

80C5.0100 20C5.0100

paCq

2v1v

2v1v

vvs

====

ρ∆

=

Lvb0 pppp ∆+∆=∆+∆

Prof. Cesar de Prada, ISA, UVA 7

Range of operation Assuming that ∆pb is constant Case 1: a=1 , a=0.1 Case 2: a=1, a=0.1

gpm2.24q gpm3.33q

100q40120C1.0q

100q4060C1.0q

gpm141q 115gpmq

100

q40120C1q 100q4060C1q

120150270pp 60150210pp

paCq pppp

min21min

22min

2v2min

21min

1v1min

max21max

22max

2v2max

21max

1v1max

0b0b

vvLb0v

==

−=

−=

==

−=

−=

=−=∆+∆=−=∆+∆ρ

∆=∆−∆+∆=∆

The smaller valve provides a wider range of operation in q

Prof. Cesar de Prada, ISA, UVA 8

Design

q

qpppCaq

q

qpppC1q

2

s

minLsb0vminmin

2

s

maxLsb0vmax

∆−∆+∆=

∆−∆+∆=

Size the pump (∆pb) and valve Cv as a function of the maximum and minimum flows required for the operation of the process, taking into account the design flow qs and pressures ∆p0, ∆pLs solving:

Prof. Cesar de Prada, ISA, UVA 9

Design

1q

qa if equations for this existssolution Amin

maxmin <

Otherwise, use a split range control structure

q

Prof. Cesar de Prada, ISA, UVA 10

q

∆pv

a h

∆p0 ∆pb

]ghq)AfL

Ca1(p[

LA

tdqd

)q(p Avq ALm qCa1p

gAhvAfLpA)pp(Atd

mvd

222

v2

20

22b

22v

2v

2vb0

−++β−αω+ρ

∆=

β−αωρ=∆=ρ=ρ=∆

ρ−ρ−∆−∆+∆=

Flow control

u

Prof. Cesar de Prada, ISA, UVA 11

Linearized model

aK)p(Kqtdqd

]aqCa2)p([

q2)AfL

Ca1(

1

qtdqd

q2)AfL

Ca1(

LA

1

]aqCa2qq2)

AfL

Ca1()p([

LA

tdqd

]ghq)AfL

Ca1(p[

LA

tdqd

201

0

22v

30

022

v2

022

v2

0

22v

30

22v

20

222

v2

20

∆+∆∆=∆+∆

τ

ρ+∆∆

++βρ=

=∆+∆

++β

+∆

++β−ρ∆∆

=∆

−++β−αω+ρ

∆=

Prof. Cesar de Prada, ISA, UVA 12

Changes in the operating point

02

2v

22v

22

022

v2

201

)A

CfLa1Ca(a

qK q2)

AfL

Ca1(

LA

1

aK)p(Kqtdqd

++β=

++β=τ

∆+∆∆=∆+∆

τ

q

t

τ grows when the opening of the valve increases K2 decreases when the opening of the valve increases

Prof. Cesar de Prada, ISA, UVA 13

Linearized model

K2 decreases when the opening of the valve increases

a

u 100 %

A equal percentage valve compensates the change in gain

1

0

0 % uKa

tdad

vv ∆=∆+∆

τ

Valve dynamics must be taken into account very often. Let’s assume that it is approximated by:

q a

u

Prof. Cesar de Prada, ISA, UVA 14

Block diagram

u %

+ -

W ( ) ( )1s

K1s

K 2

v

v

+τ+τ

Q

( )1sK1

∆P0

+ ( )sT

1sTK

i

ip +

Kp Ing /%

The transmitter dynamic can be neglected Choose the transmitter gain according to the maximum admissible flow

Prof. Cesar de Prada, ISA, UVA 15

Field installation

q

The use of the manual valves allows to remove the control valve for repair without stopping the flow to the process

q

A A

A

C

C C

Prof. Cesar de Prada, ISA, UVA 16

q a

Flow control

FC w u

PI Fast and noisy process Low Kp to decrease the noise effect (0.6 %/%) Low Ti to cancel soon the steady state error (0.1 min)

Prof. Cesar de Prada, ISA, UVA 17

Positive Displacement pumps Shaft,. Membrane,… Alternating compressors…

Prof. Cesar de Prada, ISA, UVA 18

q

FC w

u

Positive Displacement pumps Shaft,. Membrane,… Alternating compressors…

Prof. Cesar de Prada, ISA, UVA 19

Minimum flow in the pump

q a

FC

w

u

FT

FC Fmin

Sometimes, in order to guarantee a minimum flow through the pump, an extra flow loop is added. When w > Fmin the recirculation valve is closed, but if w < Fmin then the extra flow loop opens the recycle to maintain the required flow

Prof. Cesar de Prada, ISA, UVA 20

q

Flow control

FC w u

When the flow is high, instead of control valves, variable speed pumps are a sensible alternative that allows to save energy. A frequency converter (o similar device) connected to the pump asynchronous motor is required

M

Prof. Cesar de Prada, ISA, UVA 21

Flow control

FT

FC

Steam

Condensate

Reboiler

Destillation tower

Prof. Cesar de Prada, ISA, UVA 22

Level Control

q

LC

w

u LT

qi

h

Different alternatives for the level transmitter

Prof. Cesar de Prada, ISA, UVA 23

Level Control

q

LC w

u LT

qi

h

f0fat0

201

ii

i

phg)p( pghpp

aK)p(Kqtdqd

qqtdhdA qq

tdhdA

Ahm qqtdmd

∆−∆ρ=∆∆−ρ+=∆

∆+∆∆=∆+∆

τ

∆−∆=∆

−=

ρ=ρ−ρ=

uKatdad

vv ∆=∆+∆

τ

Prof. Cesar de Prada, ISA, UVA 24

Block diagram

u

% +

-

W ( ) ( )1s

K1s

K 2

v

v

+τ+τ Q

( )1sK1

-∆Pf

+

Kp Ing /%

R(s) +

+

As1 H

gρQi

-

Prof. Cesar de Prada, ISA, UVA 25

Block diagram

u

%

W ( ) ( )1s

K1s

K 2

v

v

+τ+τ

( )1sK1

∆Pf

+

Kp Ing /%

R(s) +

12 gKAssA

1sρ++τ

+τH

Qi

- + -

Prof. Cesar de Prada, ISA, UVA 26

Level Control

q

LC w

u LT

qi

h aKq

tdqd: K smallor f

aK)p(Kqtdqd

qqtdhdA qq

tdhdA

Ahm qqtd

md

21

201

ii

i

∆=∆+∆

τ

∆+∆∆=∆+∆

τ

∆−∆=∆

−=

ρ=ρ−ρ=

uKatdad

vv ∆=∆+∆

τ

Prof. Cesar de Prada, ISA, UVA 27

Block diagram

u

% +

-

W ( ) ( )1s

K1s

K 2

v

v

+τ+τ

Q

Kp Ing /%

R(s) +

As1 H Qi

-

In practice it behaves as a process with an integrator

Prof. Cesar de Prada, ISA, UVA 28

Tight /Average control

LC w

u LT h

LC w

u LT qi h

qi

The level must be maintained tightly: PI with “active” tuning

Store liquid + smooth changes in qi : P with “loose” tuning

Surge/Supply tank

Prof. Cesar de Prada, ISA, UVA 29

Average Control

q

LC

w

u LT

qi

h

Smooth disturbances

P control with low Kp: The level oscillates and there is steady state error but q changes smoothly

u = Kpe + bias

If w = 50%, Kp= 1 and bias = 50%, then u = 100 if h = 100%, u = 0 if h = 0

Prof. Cesar de Prada, ISA, UVA 30

Units in series

LC w

u LT h

qi

LC w

u LT h

All level control must be placed in the same direction

Prof. Cesar de Prada, ISA, UVA 31

Several streams

q

LC

w

u LT

qi

h

If possible, then choose the larger stream for control

Prof. Cesar de Prada, ISA, UVA 32

Pressure control

PC PT

Fi

F

u

a

w

Many different dynamics and aims

Fast process

PI with “tight” tuning

Prof. Cesar de Prada, ISA, UVA 33

Pressure control

{ }

aKFKptdpd

aap

ppFpaCppp

tdpd

pRTaCppVM

ppp

paCappCFtdpd

RTVM

ppaCFtdpd

RTVM

tankisothermal RTM

p Vm

ppaCFFFtdmd

2i1

0

2f

2

i

0v

2f

2

0v

2f

2

02f

2v02f

2vi

0

2f

2vi

2f

2vii

∆−∆=∆+∆

τ

−∆

=∆+∆

−−∆−−∆=

−−=

ρ=ρ=

−−=−=

Fi

F a

p

pf

uKatdad

vv ∆=∆+∆

τValve:

Prof. Cesar de Prada, ISA, UVA 34

Block diagram

u %

W ( ) ( )1s

K1s

K 2

v

v

+τ+τ

P

( )1sK1

∆Fi

( )sT

1sTK

i

ip +

Kp Ing /%

+ - + -

Prof. Cesar de Prada, ISA, UVA 35

Pressure control

PT PC

Steam

Condensate

Cooling water

w

Column

Condenser

Slow process, PI / PID

Prof. Cesar de Prada, ISA, UVA 36

Pressure control

PT PC

Steam

Condensate

Cooling water

w

Column

Condenser

Slow process, PI / PID

Prof. Cesar de Prada, ISA, UVA 37

Temperature Control

TT

u TC

w

q T

Many architectures / processes Slow process PID Transmitter dynamics can be significant Be careful with the placement of the transmitter in order to avoid transport delays

Prof. Cesar de Prada, ISA, UVA 38

Temperature Control

TT

u TC

w

q T

The product flow cannot be changed independently

Prof. Cesar de Prada, ISA, UVA 39

Temperature Control

TT

u TC w

q T

Product by-pass Fast dynamics, low range of control

Prof. Cesar de Prada, ISA, UVA 40

Temperature Control

TT

u TC

w

q T

The valves operate in opposition, one is air-open and the other one air-close The total product flow is not changed

u 100 %

100 %

B A

B

A

Prof. Cesar de Prada, ISA, UVA 41

Temperature Control

TT

u TC

w

q T

Three ways valve

Mixing valve at the output or splitting valve at the input

Prof. Cesar de Prada, ISA, UVA 42

Temperature Control

TT

u TC

w

q T

Heating fluid by-pass Slower dynamics

Configurations with two valves or one three ways valve

Prof. Cesar de Prada, ISA, UVA 43

Temperature Control

TT

TC

Steam

Condensate

top related