some thoughts on predicting hydrologic futures: the role of model sensitivity

Post on 21-Jan-2016

39 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Some thoughts on predicting hydrologic futures: The role of model sensitivity. Dennis P. Lettenmaier Department of Civil and Environmental Engineering University of Washington. Berkekey Catchment Science Symposium 2008 UC Berkeley December 14, 2008. Outline of this talk. - PowerPoint PPT Presentation

TRANSCRIPT

Some thoughts on predicting hydrologic futures: The role of model sensitivity

Berkekey Catchment Science Symposium 2008UC Berkeley

December 14, 2008

Dennis P. LettenmaierDepartment of Civil and Environmental Engineering

University of Washington

Outline of this talk

• The role of hydrology in Earth system science• What are the grand challenges in hydrology?• Understanding hydrologic change examples:

– Land cover and land use change– Climate change– Water management

• Do we have a framework for evaluating our ability to predict change?

The role of hydrology in Earth system science

“Where is the water, where is it going and coming from and at what rate, and what controls its movement and that of the constituents that move with it?”

What are the “grand challenges” in hydrology?

• From Science (2006) 125th Anniversary issue (of eight in Environmental Sciences): Hydrologic forecasting – floods, droughts, and contamination

• From the CUAHSI Science and Implementation Plan (2007): … a more comprehensive and … systematic understanding of continental water dynamics …

• From the USGCRP Water Cycle Study Group, 2001 (Hornberger Report): [understanding] the causes of water cycle variations on global and regional scales, to what extent [they] are predictable, [and] how … water and nutrient cycles [are] linked?

Important problems all, but I will argue instead (in addition) that understanding hydrologic change should rise to the level of a grand challenge to the community.

Basic premise

• Humans have greatly affected the land surface water cycle through

– Land cover change

– Climate change

– Water management

• While climate change has received the most attention, other change agents may well be more significant

Landslides in Stillman Creek Drainage, upper Chehalis River Basin, WA, December, 2007

Visual courtesy Steve Ringman, The Seattle Times

1. Hydrologic effects of land use and land cover change

Background: Cropland expansion

Ramankutty and Foley, Global Biogeochem. Cycles, 1999

Percentage of global land area:

3

14

Clearcutting in the Pacfic Northwest

Visuals from Osborne (2001) and Sightline Institute

Source: Van Shaar et al, Hydrological Processes, 2002

How well do we predict the hydrologic signature of land cover change?

Source: Van Shaar et al, Hydrological Processes, 2002

Source: Van Shaar et al, Hydrological Processes, 2002

2. Hydrologic sensitivity to climate change

The role of changing climate, 1950-2000

source: Mote et al (2005)

Tmin at selected Puget Sound basin stations, 1916-2003

Tmax at selected Puget Sound basin stations, 1916-2003

from Seager et al, Science, 2007

Postmortem: Christensen and Lettenmaier (HESSD, 2007) – multimodel ensemble analysis with 11 IPCC

AR4 models (downscaled as in C&L, 2004)

Magnitude and Consistency of Model-Projected Changesin Annual Runoff by Water Resources Region, 2041-2060

Median change in annual runoff from 24 numerical experiments (color scale)and fraction of 24 experiments producing common direction of change (inset numerical values).

+25%

+10%

+5%

+2%

-2%

-5%

-10%

-25%

Dec

reas

eIn

crea

se

(After Milly, P.C.D., K.A. Dunne, A.V. Vecchia, Global pattern of trends in streamflow andwater availability in a changing climate, Nature, 438, 347-350, 2005.)

96%

75%67%

62%87%

87%

71%

67%62%

58%

67%

62%58%

67%100%

Dooge (1992; 1999):

For temperature, it’s more convenient to think in terms of sensitivity (v. elasticity)

where ΨP is elasticity of runoff with respect to precipitation

Inferred runoff elasticities wrt precipitation for major Colorado River tributaries, using method of Sankarasubramanian and Vogel (2001)

Visual courtesy Hugo Hidalgo, Scripps Institution of Oceanography

Model Precipitation-Elasticity

Temp-sensitivity (Tmin & Tmax ) %/ 0C

Temp-sensitivity ( Tmax) %/ 0C

Flow @ Lees Ferry(MACF)

VIC 1.9 -2.2 -3.3 15.43

NOAH 1.81 -2.85 -3.93 17.43

SAC

Hoerling

1.77

~2

-2.65 -4.10

~9

15.76

?

Summary of precipitation elasticities and temperatures sensitivities for Colorado River at Lees Ferry for VIC, NOAH, and SAC models

VIC Precipitation elasticity histograms, all grid cells and 25% of grid cells producing most (~73%) of runoff

Spatial distribution of precipitation elasticities

Censored spatial distribution of annual runoff

Composite seasonal water cycle, by quartile of the runoff elasticity distribution

Temperature sensitivity (Tmin fixed) histograms, all grid cells and 25% of grid cells producing most (~73%) of runoff

Censored spatial distribution of annual runoff

Spatial distribution of temperature sensitivities (Tmin fixed)

Composite seasonal water cycle, by quartile of the temperature sensitivity (fixed Tmin) distribution

Temperature sensitivity (equal change in Tmin and Tmax) histograms, all grid cells and 25% of grid cells producing most (~73%) of runoff

Spatial distribution of temperature sensitivities (equal changes in Tmin and Tmax)

Censored spatial distribution of annual runoff

Composite seasonal water cycle, by quartile of the temperature sensitivity (equal change in Tmin and Tmax) distribution

3. Hydrologic effects of water management structures

Global Reservoir DatabaseGlobal Reservoir DatabaseLocation (lat./lon.), Storage capacity, Area of water surface, Purpose of dam, Year of construction, …

13,382dams,

Visual courtesy of Kuni Takeuchi

Global Water System Project

IGBP – IHDP – WCRP - Diversitas

Human modificationof hydrological systems

Regulated Flow

Historic Naturalized Flow

Estimated Range of Naturalized FlowWith 2040’s Warming

Figure 1: mean seasonal hydrographs of the Columbia River prior to (blue) and after the completion of reservoirs that now have storage capacity equal to about one-third of the river’s mean annual flow (red), and the projected range of impacts on naturalized flows predicted to result from a range of global warming scenarios over the next century. Climate change scenarios IPCC Data and Distribution Center, hydrologic simulations courtesy of A. Hamlet, University of Washington.

Columbia River at the Dalles, OR

What protocols do we have to evaluate our ability to predict hydrologic change?

Klemes (Hyd Sci. J., 1986) argues for testing based on

a)split sample (SS), at the same siteb)Differential split sample (DSS), where model is calibrated to “pre” condition (e.g., pre-cutting), appropriate model characteristics (e.g., change in LAI) are adjusted, and model predictions are tested against “post” datac)Proxy basin test (PB), where model is transferred from one basin, and applied to the PB without direct calibation there (but using parameter transfer algorithms that may include other basins)d)Proxy basin differential split sample (PC-DSS), transfer from one (or more) basins and from pre to post period.

Refsgaard and Knudsen (WRR, 1996) apply this construct

Some challenges

The framework is a bit specific to streamflow prediction (and calibration protocols, etc.)

Signal to noise issues often preclude evaluation of model performance over the relatively short time periods for which data (especially DSS variations) exist, yet modest long-term changes can have substantial practical effects (e.g., the Lake Mead example)

Data problems (especially the case in the DSS variants), and confounding of nonstationarity with the SS protocol (can be addressed by sample design variations, e.g., “shuffled deck” rather than split sample

Where good DSS data sets are available (e.g., H.J. Andrews), there often is a mismatch in spatial scale, and the magnitude of the disturbance signature

Opportunistic DSS data sets often don’t include observations of key variables, observation periods too short, etc (e.g., Entiat Experimental Basins)

•We need to understand hydrologic sensitivities – to vegetation and climate change – better. There is a compelling motivation to do so both both on a scientific basis, and to address societal needs.

•The uncertainties in predicting sensitivities to processes driven by temperature and/or evaporative demand changes seem to be greater than those related to precipitation change, even though in the climate world, prediction of precipitaiton change is generally considered more difficult than temperature

•Although some hydrological consequences of water management are essentially deterministic, others are not, and we do not have a unified approach to addressing these issues – the history is much more one of case studies. Until and unless this can be done, development of unified approaches to predicting hydrologic change associated with water management will be impeded.

Conclusions

top related