simsac - ceasiom simulating aircraft ... 1 launch ceasiom ... most of the fields are defined and...

Post on 29-Mar-2018

224 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

SimSACSimulating Aircraft Stability and Control

Characteristics for Use in Conceptual Design___

CEASIOM Tutorial

Prepared by: Dr Benoit REY (CFS Engineering)

Date: November 7, 2011

1 / 29www.ceasiom.com

Table of ContentsExample 1: Ranger 2000............................................................................................................................3

1 Launch CEASIOM..........................................................................................................................32 Start a new project...........................................................................................................................33 The aircraft builder module: AcBuilder..........................................................................................54 The Weights & Balances module...................................................................................................115 The Aerodynamic Model Builder module: AMB..........................................................................176 The Propulsion module: Propulsion..............................................................................................237 The Simulation and Dynamic Stability Analyser module: SDSA.................................................25

2 / 29www.ceasiom.com

Example 1: Ranger 2000

1 Launch CEASIOM

• run matlab

• set the current folder to the CEASIOM root folder

• Type “CEASIOM” in the matlab command window

2 Start a new project

• Choose “Start a new project”

• Select the default Project folder as the parent folder for your project

3 / 29www.ceasiom.com

• Give a project title and a version title to your project

• Select the baseline of the model: (ranger2000.xml for this tutorial)

• Once the window appears, click on menu:

4 / 29www.ceasiom.com

• Choose AcBuilder (Aircraft Builder) and click ok:

3 The aircraft builder module: AcBuilder

• After selecting AcBuilder, this module is automatically loaded with current project

By default, the project is called “model.xml” (project name is displayed in the window title).

You can import and export xml models in the project menu.

• Check the Components you want in the Components list (Fuselage is mandatory)

Green hightlight refers to parameters computed from other ones. These cannot be edited.

Blue hightlight refers to combined parameters, editable inside a GUI

5 / 29www.ceasiom.com

• Edit if needed the selected component (i.e. Engines1 for example) in the Parameters field.

Most of the fields are defined and described in the “CEASIOM-xmlFileDefinition.pdf” document, available in the Documentation folder

• Once the components are well selected and defined, select Geometry => Fuel

Here you can see and modify the fuel tank parameters and the wingbox parameters.

6 / 29www.ceasiom.com

• Now, select Geometry => Geometry (output)

The GEO module computation results are displayed for the different wings and tails. These results are not editable.

• Then, select Weights & Balance => Weights & Balance

Here you must define the cabin type.

The optional parameters will be automatically computed at the call of “Centers of gravity”

7 / 29www.ceasiom.com

• Here, select Weights & Balance => Centers of gravity

The centers of gravity of the aircraft components are displayed.

• At this point, select Technology => Technology

Here you can define the geometry parameters and others, needed in the Aeroelastic module NeoCASS.

8 / 29www.ceasiom.com

• Now, go back to Weights & Balance => Weights & Balance

Look at the System weights (optional 2) parameters. If the MTOW (Maximum Take Off Weight) equals 0 kg, run “Weights & Balance => Centers of gravity” once again. Once this field is computed, you can save your model and go on to the next module AMB.

• Save your project: Project => Export XML

9 / 29www.ceasiom.com

• Select a name for you xml file and save

• Select Project => Close window and click Yes

10 / 29www.ceasiom.com

4 The Weights & Balances module

• Click on Menu, select Weights & Balances and validate by clicking on “ok”

• Choose the xml file you want to open. The default choice is the last saved file (here: afterACBuilder.xml)

• The weights & balances module is loaded

11 / 29www.ceasiom.com

• Click on “Load xml file” and check in Matlab interface if it is done. The “Parameters” button becomes active

12 / 29www.ceasiom.com

• Click on “Parameters”, change the values if desired and validate by clicking on “OK”. The “Constants values” and “Pie charts” buttons will be activated

• Click on “Constants values”, change the values if desired and validate by clicking on “OK”

13 / 29www.ceasiom.com

• Click on “Pie charts” to view the repartition of the weights for each method and then close the window

• Select one of the five proposed methods (here “Howe”). The “Inertia moments” button becomes active

14 / 29www.ceasiom.com

• Click on “Inertia moments” to calculate them

• Click on “CoG graphics” to visualize the different centers of gravity

15 / 29www.ceasiom.com

You can click on “Back” to select another method and redo the calculation by clicking on “Inertia moments”

• Once you are satisfied with the results, save the results by clicking on “Save”, select a name for the XML file (for example “afterWeightsandBalances.xml”) and validate by clicking on “Save”

• Click on the “x” on the top right to close the Weights & Balances module

16 / 29www.ceasiom.com

5 The Aerodynamic Model Builder module: AMB

• Click on Menu, select AMB and validate by clicking on “ok”

• Choose the xml file you want to open. The default choice is the last saved file (here: afterWeightsandBalances.xml)

• The AMB GUI is loaded

17 / 29www.ceasiom.com

Verify the Ref. Data, coming from AcBuilder, in the right bottom.

• Then, click on “States”

Edit the minimum, maximum and the number of values you want in the aerodynamic database

18 / 29www.ceasiom.com

• Click on “Tables” to generate the table

• Click on “Model” and select the Flight Dynamic Model and the Geometry Symmetry Plane

19 / 29www.ceasiom.com

• Click on “Aerofoils” to list and edit the airfoils used in the model

• Click on “GEO LAYOUT” to update the layout at the top left side

• Click on “GEO DATCOM” to run datcom ac3view

20 / 29www.ceasiom.com

• Click on “GEO TORNADO” to run and display the Tornado geometry layout

At this point (8 green buttons at the top right side), you can generate an aerodynamic database, using datcom, tornado or edge. Datcom is selected in this tutorial.

• Click on “Datcom” solver

Select the Flap type of Elevator and Rudder, and click on “Run”

When the computation is over, the DATCOM button turns green:

21 / 29www.ceasiom.com

• Save your model and give it a new name (afterAMB.xml for example):

22 / 29www.ceasiom.com

• Close the AMB GUI

6 The Propulsion module: Propulsion

• Click on Menu, select Propulsion and validate by clicking on “ok”

• Choose the xml file you want to open. The default choice is the last saved file (here: afterAMB.xml)

• The Propulsion GUI is loaded

23 / 29www.ceasiom.com

• Edit the parameters if needed and click on “Run”: the propulsion database is generated

• Save your model and give it a new name (afterPropulsion.xml for example):

• Close the Propulsion GUI

24 / 29www.ceasiom.com

7 The Simulation and Dynamic Stability Analyser module: SDSA

An exhaustive presentation of SDSA is available in the Documentation/SDSA/

• Click on Menu, select SDSA and validate by clicking on “ok”

• Choose the xml file you want to open. The default choice is the last saved file (here: afterPropulsion.xml)

• Select AMB_SDSA to analyze a database generated with AMB

25 / 29www.ceasiom.com

• Select Datcom to analyze a database generated in AMB with Datcom

• The SDSA GUI is loaded:

26 / 29www.ceasiom.com

• Select Aircraft => Aerodynamic data

• An information box appears and the Aero data report is displayed

27 / 29www.ceasiom.com

• The aerodynamic data are listed and can be plotted

• Select Stabilty => Eigenvalues

28 / 29www.ceasiom.com

• Edit altitude and airspeed parameters if needed and click on START stability analysis

• Eigenvalues are displayed

29 / 29www.ceasiom.com

top related