silicon photonics: optical modulation in silicon platform · 2 laurent vivien the institute for...

Post on 20-Jul-2018

234 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Silicon Photonics Silicon-based micro and nanophotonic devices

http://silicon-photonics.ief.u-psud.fr/ 1

Silicon photonics:

Optical modulation in silicon platform

Laurent Vivien,

Institut d’Electronique Fondamentale, CNRS UMR 8622,

Université Paris Sud, 91405 Orsay Cedex, France

http://silicon-photonics.ief.u-psud.fr/

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 2

The Institute for Fundamental Electronics

135 CNRS researchers, professors and lecturers, technical staff

+100 PhD students, Post-Doc and visitors

~ 400 students undergoing

training within IEF's ground

University Technology Center

(CTU) MINERVE

IEF is a joint research unit between

CNRS and University of Paris Sud

Spintronics and Si-based Nano-electronics

Micro-Nano systems and systems

Photonics

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 3

University Technology Center

University Technology Centre (1000 m²):

Photolithography: 2-sided UV lithography with wafer bonding

Deep UV lithography (248 nm)

2 e-beams (Raith150 and 100keV nanobeam)

Laser

Etching: Wet etching (KOH, TMAH, …)

Dry etching :

fluoride gases RIE (2 systems)

ICP Si deep etching

IBE

02 plasma etching

Chloride gases RIE

IEF-MINERVE member of The French Network on

“Basic Technological Research” (RTB)

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Data centers

Optical

telecommunications

Environment

Interconnects

Chemical/Biological sensors

Free space

communications

FTTH

Military

Silicon photonics

4

i-Sicret

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Silicon photonic building blocks

On-chip III-V laser on Si

Laser Modulator Detector

Emitter Receiver

Input

waveguide

RF electrodes

10 µm

“Silicon” modulator

Germanium photodetector

Off-chip III-V laser

Optical coupler

Germanium-based laser

5

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 6

Passive photonic devices

Waveguides

90°-turns

Fiber coupler Beam splitter

WDM

Strip WG

Strip WG

Electric field

Slot WG

PC-Slot WG

Electric field

14 µm

8 µm

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Ge waveguide photodetector

7

Over 50GHz

@ 0V

40 Gbit/s @ -1V

Dark current: ~1nA

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 8

Optical modulation

Optical modulator t

Optical intensity

Electrical

driver

t

Modulated optical

intensity t

Electroabsorption

Phase modulation

Intensity modulation

interferometer

Intensity modulation

Electrorefraction

Absorption coefficient variation

under an electric field

Refractive index variation

under an electric field

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 9

Figure of merits

Distinction between Imin et Imax

MD : Modulation Depth - %

Extinction ratio (ER) - dB

Insertion loss - dB

max

minmax

I

IIMD

min

maxlog10I

IER

Output optical

intensity

t Imin

Imax

Input optical

intensity

t

I0

max

0log10I

IP

Figures of merit

VpLp Modulation efficiency IL Insertion loss fc -3dB bandwidth ER Extinction ratio

Voltage swing Power consumption

9

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 10

Modulator speed

Intrinsic speed

Physical phenomenon limitation

RC time constant

Electrical circuit limitation

RF signal propagation

impedance adaptation

Matching of electrical and optical velocities

What are the limitations of the modulator speed?

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 11

Optical modulation

Optical modulator t

Optical intensity

Electrical

driver

t

Modulated optical

intensity t

Electroabsorption

Phase modulation

Intensity modulation

interferometer

Intensity modulation

Electrorefraction

Absorption coefficient variation

under an electric field

Refractive index variation

under an electric field

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Thermo-optic effect

TdT

dnn

Demonstration of silicon optical modulator:

Bandwidth limited to few 100 kHz

Espinola et al IEEE PTL, 15, 1366 (2003).

Thermal effect can be a parasistic effect

for high speed optical modulators.

Thermo-optic coefficient

In silicon

2.10-4 K-1 at 1.55µm

12

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Electro-optic effect

13

Nonlinear Polarization:

Pockels effect:

Linear electro-optic effect

Wavelength conversion

Second Harmonic Generation (SHG)

Kerr effect:

Nonlinear electro-optic effect

Wavelength conversion

Four wave mixing (FWM)

>>

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Electro-optic effect

14

Nonlinear Polarization:

Pockels effect:

Linear electro-optic effect

Wavelength conversion

Second Harmonic Generation (SHG)

Break the symmetry

of silicon crystal

Strained silicon

photonics

Without straining

layer

With straining

layer

Jacobsen et al. Nature 441, 199-202 (11 May 2006)

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Mach-Zehnder modulator based on

Pockels effect

Pockel’s effect:

Conditions to achieve strain:

Bottom of waveguide fixed and top is strained

SiN induces strain all around the waveguide

Thermal annealing

15

Bartos Chmielak et al. (2011) Opt. Express

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Mach-Zehnder modulator based on

Pockels effect

Pockel’s effect:

16

Intrinsically high speed

Field effect – no capacitance

Low power consumption

Low bias swing

Low insertion loss

No doped regions

Still weak effect and high voltage BUT promising

for the development of low power consumption devices

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Electro-optic effect in silicon

Soref et al IEEE JQE QE-23 (1), (1987).

Free carrier density variation in silicon Refractive index and optical absorption are modified by free-

carrier concentration variations (Kramers-Krönig related) :

Plasma dispersion effect

Free electrons Free holes

Carr

ier

concentr

ation

17

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Electro-refraction vs intensity variation

Electro-refraction effect:

carrier density variation

Refractive index variation

Effective index variation of the guided

optical mode

Phase variation

Optical intensity

variation

Interferometers

1 µm

380 nm

70 nm1 µm

380 nm

70 nm

8.01822105.8108.8 PNn

18

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Free carrier variation effect

Carrier injection in pin diode under forward bias voltage

Carrier accumulation in metal-oxide-semiconductor

(MOS) capacitors

Carrier depletion in a pin diode under reverse bias

voltage

What are the possibilities to obtain a free carrier

concentration variation in silicon-based materials ?

19

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

PIN diode PIPIN diode

Optical modulators

based on carrier depletion

20

Phase shifters:

PN diode

Interleaved PN diode

PIN diode

PIPIN diode

MOS Capacitor

Interferometers

Ring resonator

Mach-Zehnder

Photonic crystals

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Carrier depletion optical modulator

Lateral pn diode

Interleaved pn diode

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien 22

Simulation of the diode

Optimization Figures of merite Optimized structure

Couplers Frequency and data transmission

10G

40G

Technology Layout Characterization

From the idea to the final device

Structure design

Structure definition

Electrical simulation

Optical simulation

Device model

DC, AC and Time

Effective index, loss

ISE DESSIS- Drift-diffusion

- SRH, Auger

Optim

ization

PN

PNn

1818

8,01822

10.0,610.5,8

10.5,810.8,8

10 parameters need for optimization

?

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Carrier depletion Si optical modulator

2004 2005

P-doped region N-doped region

PIPIN diode

Metal Metal

2008 2007 2011 2009 2006 2010

Europe: Univ. Paris Sud, CEA Leti, Univ. of Southampton…

Asia: A*Star, Petra, AIST, Chinese Academy of Sciences, Samsung

Electronics, Tokyo Institute of Technology …

North America: Intel, IBM, Cornell, Luxtera, Ligthwire, Kotura,

Oracle …

2012

23

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Silicon photonics on 300 mm platform

40Gbit/s

Interleaved pn diode

Optical modulators

VpLp = 2.4 V.cm

Insertion loss = 4 dB

-3dB cut-off frequency > 20 GHz

ER ~8 dB @ 40 Gbit/s

Mach-Zehnder Interferometer

Length = 950 µm

24

200mm wafer 300mm wafer

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

40Gbit/s optical link

25

External laser

RF driver

PRBS generator

Sampling oscilloscope

40Gbit/s Si modulator 40Gbit/s Ge photodetector

RF cable

RF cable

RF cable

Optical fiber

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Silicon modulators

Data-center

Short distance and high volume applications (electrical bottleneck)

Main challenges: Driving voltage of

modulator

Power consumption

ITRS Roadmap: Optical interconnect

(…) A large variety of CMOS compatible modulators have been proposed in the

literature (…)

“The primary challenges for optical interconnects at the present time are producing

cost effective, low power components.”

Optical

interconnects

26

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Mach Zehnder modulators

3 pJ/bit

Ring resonator modulators

0.5 to 1 pJ/bit

Power consumption

For emitters and short optical links:

~100 fJ/bit down to fJ/bit

(D.A.B. Miller, Opt Exp. , 2012)

27

How do we reduce the power consumption ?

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Power consumption

Reduction of capacitance of device Slow-wave photonic crystals for reducing the length

Small radius Ring Modulators

Improvement of the modulation efficiency Improve efficiency of Si modulator

MZM or EAM Hybrid modulator (ie III-V modulator on Si)

Ge EAM modulators

28

Franz-Keldysh effect in bulk material

Quantum Confined Stark Effect in quantum wells

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Bulk vs Quantum Wells

E0=hc/l0

l

Bulk

material

QW structures

l0

Absorption edge in QW structures is more abrupt than in bulk material

E0 depends on the quantum well thickness

Adjustment of the wavelength is possible

l

E=0

E≠0

Ge/SiGe quantum well structures

29

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Growth of Ge/SiGe multiple quantum

wells

Low dislocation density

- Best possible device

performance

} Strain-compensated QW

stack repeated 20 times

Si(100)

Relaxed buffer

graded from Si to

Si0.1Ge0.9 buffer layer

15 nm Si0.15Ge0.85 barrier

10nm Ge QW

15nm Si0.15Ge0.85 barrier

500 nm Si0.1Ge0.9 p-type

100 nm Si0.1Ge0.9 n-type

Si0.1Ge0.9 spacer

Si0.1Ge0.çà spacer

L-NESS

Como, Italy

LEPECVD Low energy plasma enhanced chemical

vapor deposition

Low-rate growth

(~0.3 nm/s) for

optimum layer and

interface control

High-rate growth (5-

10 nm/s) for

maximum efficiency

Temperatures down

to 400°C

Epitaxial growth by LEPECVD

Ge QWGe QW

30

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

5. Deep Etch for waveguide characterization

Device processing

31

1. Mesa etching

2. Etching of P-type layer

3. SiO2/Si3N4 Deposition

and Patterning

4. Metallization: Lift off

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Electroabsorption modulator

3 µm

90 µm

Light

P. Chaisakul et al., Optics Express (2012).

1 µm

20 Ge/SiGe QW

32

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Static performance: optical transmission

~7.5x104V/cm

~6x104V/cm

~4.5x104V/cm

~3x104V/cm

Bias from 0 to 5V :

Extinction Ratio (ER) > 6 dB

for 20 nm range

Insertion Loss (IL) : 5 to 15 dB

33

1V swing 2V swing

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Frequency response

34

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Energy to charge the device

Energy/bit = 1/4 (CVpp)2

Energy dissipation of photocurrent

Energy/bit = 1/B (IphVbias)

Energy consumption

C ~ 62 fF Energy/bit = 70 fJ/bit (for a voltage swing of 1 V , 20 Gbps,

0.5 mW input power)

35

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Electro-refraction effect in Ge/SiGe QW

36

The absorption edge shifted to 0.8 eV

(quantum confinement + strain)

QCSE observed

Fabry-Perot (FP) fringes observed

at energy lower than the absorption

edge

TE polarization

One order of magnitude higher than carrier depletion effect in silicon

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

3 µm

1 µm

20 QWs

Overlap factor optimization

12% overlap factor

between the optical mode

and MQWs

30%

10%

ER IL

10 dB

10 dB

8dB

6.4dB

120µm

60µm

Length

20%

10 dB 40µm 5.9dB

Overlap

factor

37

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Si0.15Ge0.85

15 nm

Ge

10 nm

Si0.15Ge0.85

15 nm

2 µm Si0.1Ge0.9 relaxed buffer

doped-P Si0.1Ge0.9

doped-N Si0.1Ge0.9

Si0.1Ge0.9

Si0.1Ge0.9

QWs

Si

13 µm thick gradual buffer

from Si to Si0.1Ge0.9

Schematic description

Challenge: coupling the light from silicon to Ge/SiGe QW

Si

13 µm thick gradual buffer

from Si to Si0.1Ge0.9

The real scale

2 µm Si0.1Ge0.9 relaxed buffer

Integrated circuits based on

Ge/SiGe QW ?

38

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

1st option: waveguide in the relaxed SiGe layer (thanks to the graded

buffer )

Si0.15Ge0.85

15 nm

Ge

10 nm

Si0.15Ge0.85

15 nm

1.5 µm Si0.16Ge0.84 relaxed buffer

doped-N Si0.09Ge0.91

doped-N Si0.09Ge0.91

Si0.09Ge0.91

Si0.09Ge0.91

QWs

Si

8 µm thick gradual buffer

from Si to Si0.1Ge0.83

Ge concentration in the waveguide: trade-off between

• Strain compensation

• Optical loss

Optical loss of each device, including input/output

coupling with Si0.16Ge0.84waveguide < 5dB

P. Chaisakul et al, submitted

Integration on bulk silicon

39

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

2nd option: decrease the thickness of the buffer layer

Challenge: keeping homogeneous and high quality layers

Si

Thick gradual buffer from

Si to Si0.1Ge0.9

SiO2

Si Buffer Si0.1Ge0.9

Ge/SiGe modulator integrated with

SOI: estimated performance :

Extinction ratio = 7.7 dB, loss = 4 dB

Under fabrication

M-S. Rouifed et al, submitted

Integration on SOI

40

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Power consumption evolution

Carrier depletion modulator MZi

Ring resonator modulator

EA Ge/SiGe modulator

Ultra low power consumption modulator

Energy/bit ~ 5 pJ/bit

Energy/bit ~ 0.7 pJ/bit

energy/bit ~ 0.07 pJ/bit

energy/bit ~ few fJ/bit

Strained modulator

41

Silicon Photonics Silicon-based micro and nanophotonic devices

http://silicon-photonics.ief.u-psud.fr/ 42

Electronic – Photonic convergence

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Photonics Transistors

Photonics-electronics integration

Front-end fabrication

Very low parasitics

Custom SOI, specific libraries

process co-integration

43

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Photonics

Transistors Photonics Transistors

Photonics-electronics integration

Front-end fabrication

Very low parasitics

Custom SOI, specific libraries

process co-integration

Back-end fabrication On top of CMOS or in metal layers Serial process Compound yield Thermal budget < 400C

44

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

Photonics-electronics integration

Photonics

Transistors Photonics Transistors

Front-end fabrication

Very low parasitics

Custom SOI, specific libraries

process co-integration

Back-end fabrication On top of CMOS or in metal layers Serial process Compound yield Thermal budget < 400C

3D integration

Separate processes

No change in CMOS Front-End No thermal budget!  Other layers: MEMS, antennas

Higher (but reasonable) parasitics

Transistors

Photonics

45

http://silicon-photonics.ief.u-psud.fr/ Laurent Vivien

National Research Agency

SILVER, MICROS, GOSPEL, MASSTOR,

ULTIMATE, Ca-Re-Lase, POSISLOT

Plat4M

photonic libraries and technology for manufacturing

SASER

Safe and Secure European Routing

HELIOS

Photonics Electronics functional integration on CMOS

Silicon photonics group

Acknowledgements:

Funding and collaborations

46

CARTOON

Carbon nanotube photonic devices on silicon

Silicon Photonics Silicon-based micro and nanophotonic devices

http://silicon-photonics.ief.u-psud.fr/ 47

Silicon photonics:

Optical modulation and detection

L. Vivien,

D. Marris-Morini, G. Rasigade, L. Virot*, M. Ziebell, D. Perez-Galacho, P. Chaisakul,

M-S. Rouifed, P. Crozat, P. Damas, E. Cassan

D. Bouville, S. Edmond, X. Le Roux

Institut d’Electronique Fondamentale, CNRS UMR 8622,

Université Paris Sud, 91405 Orsay Cedex, France

http://silicon-photonics.ief.u-psud.fr/

J-M. Fédéli, S, Olivier, Jean Michel Hartmann

CEA-LETI, Minatec 17 rue des Martyrs, 38054 Grenoble cedex 9, France

G. Isella, D. Chrastina, J. Frigerio L-NESS, Politecnico di Milano, Polo di Como, Via Anzani 42, I-22100 Como, Italy

C. Baudot, F. Boeuf STMicroelectronics, Silicon Technology Development, Crolles, France

top related