silicon-based lithium-ion capacitor for high …...silicon-based lithium-ion capacitor for high...

Post on 10-Jun-2020

9 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Silicon-BasedLithium-IonCapacitorforHighEnergyandHighPowerApplication

JamesJ.Wu, BrianneDeMattia,PatriciaLoyselle,ConchaReid,LisaKohoutNASAGlennResearchCenter

13th AnnualLithiumBatteryMaterialsandChemistriesHyattCentric,Virginia,October31- November1,2017

https://ntrs.nasa.gov/search.jsp?R=20180000357 2020-06-17T15:18:09+00:00Z

Outline

• Introduction/NASAEnergyRequirements

• ChallengesandOpportunities

• Approaches

• ResultSummary

• NextStepsandFutureDirections

EnergyStorage:ImportantforNASAMissions

– Batteryandcapacitor:versatile,reliable,safeandportableenergysources

– ElectricalenergystorageoptionsforNASAspacemission,suchas• powersourceduringspacecrafteclipses• peakingpowerforhighpowerneeds

– anessentialcomponentofthepowersystemofvirtuallyallNASAmissions

DesiredPropertiesofEnergySourceforNASAMissions

• Safe• Highinspecificenergy• Lightinweight• Compactinvolume• Longinshelflife• Durableinwidetemperaturerangeandatharshenvironment

• Reliableinmeetingmissionrequirements

State-of-Art(SOA)Li-IonBattery(LIB)

• TypicalLIBSpecs:– Specificenergy:180-200Wh/kg– Specificpower:300W/kg– Cycles:1000s– Temprange:-20oCto60oC

• Limitations:–Maximumofenergydensity<250Wh/kg– Electrolyteflammableandfirehazards

NASADemandsVeryHighEnergyDensity

ElectricAviation500– 750Wh/kg

•Greenaviation– Lessnoise,loweremissions,highefficiency

•Hybrid/All-electricaircraft–Limitedbymassofenergystoragesystem

•Commercialaviation– Safe,reliable,lightweighton-boardelectricauxiliarypowerunit

ExtravehicularActivities(Spacesuitpower)

>400Wh/kgRequiredtoenableuntetheredEVAmissionslasting8hourswithinstrictmassandvolumelimitations.

•Astronautlifesupport•Safetyandreliabilityarecritical•100cycles

LandersandRovers,Roboticmissions,In-

spacehabitats>500Wh/kg

Batteriesareexpectedtoprovidesufficientpowerforlifesupportandcommunicationssystems,andtoolsincludingvideoandlighting•>100cycles

NASAfuturemissionrequirementsfarexceedthecapabilitiesofSOALi-ionchemistries

Ø requiresadvancesinsafe,veryhighenergybatteriesdevelopment

NASAAdvancedSpacePowerSystems(ASPS)Program(2008-2014)

• Advancedsafe,highenergy/ultra-highenergyLi-ionbatteries• Advancedelectrodematerials

• Advancedanodeactivematerials(i.e.Sianode,w/GeorgiaTech,PhysicalScience,inc.)

• Advancedcathodeactivematerials(i.e.highcapacityNMC,w/UniversityofTexasatAustin)

• Advancedelectrolytetoimprovesafety• Non-flammableadditivestoreducetheflammability(w/NASA/JPL)

• Industrialmanufacturers• Saft America,Yardney etc

NASAAdvancedEnergyStorageSystem(AESS)ProjectunderGameChangeProgram(2014-2017)

• PhaseI:8month,4awardsweregiven:• 1award(CategoryI)onSiAnodebasedLi-ionbattery(Amprius)• 3awards(CategoryII)onLi/Sbatterydevelopment(JPL/CIT,IUPIU,

UniversityofMaryland (UMD)• PhaseII:12month,2awardweregiven:

• Amprius:SiliconAnodeBasedCellsforHighSpecificEnergySystems(CORBrianneDemattia)• CommercialstandardcathodepairedwithAmprius’siliconanode• PhaseI:Deliverableswith>300Wh/kgafter225cycles(pouchcell)• PhaseII:Scale-upcells(2XsizeinphaseI)with>300Wh/kgover200cycles

•Additionaltemperature&safetyevaluationsatcell&batterylevels•Batterypackbrassboard delivering>250Wh/kg

• UniversityofMaryland:GarnetElectrolyte-BasedSafeLithium-SulfurEnergyStorage(COR:JamesWu)• Allsolidstatebatterywithuniqueandscalabletrilayer (porous-dense-porous)

solidstateelectrolyte(SSE)structure.• PhaseI:demonstratedthefeasibilityinlabcells(coincell)• PhaseII:optimizetheparametersandscaleupto5cmx6cmsizeswithtargeted

energydensity~500Wh/kg

POC:DonPalac,ProjectManager(GRC)

NASASBIR/STTRProgramPOC:LisaKohout,BatterySubtopicManager(GRC)

• NASASBIRtopicsarealignedwithoneoffourMissionDirectorates• Solicitationsfocusonspecifictechnologygaps

• SubtopicsinFY17solicitationwithfocusonelectrochemicaltechnologiesledbyNASAGlennResearchCenter•Funding

• PhaseI:$125K(6months)forSBIR,or12monthforSBIR/STTR• PhaseII:$750K(24month)

• Current/previousSBIRPhaseIIaward:2017:CornerstoneResearchGroup,AdvancedLithiumSulfurBattery2014

•SolidPower,Inc.UltraHighEnergySolid-StateBatteriesforNextGenerationSpacePower•Nohms Technologies-LiMetalProtectionforHighEnergySpaceBatteries

2012•Storagenergy Technologies – AdvancedLi/SBatteriesBasedonNovelCompositeCathodeandElectrolyteSystem

HighEnergyandHighPowerEnergySource

• Twomajortypesofelectrochemical-basedenergystoragedevices

• Battery: Faradic/exothermalredoxreaction(manydifferentvarieties)HighenergydensityElectrodedegradationLimitedcyclelife

• Capacitor: Electrostatic/capacitiveinteractionHighpowerdensityElectrodestructuralintegrationLongcyclelife

HowtoImproveBothPowerDensityandEnergyDensityofBattery

• Newmaterialswithhighspecificcapacity

• Novelarchitectures:3Ddesignofelectrode• Thinnerelectrode(fastionictransport)• Highelectronicconductivity(faste-transport)• Highelectrode/electrolyteinterfacialarea(fastchargetransferacrosstheinterface)

HowtoImproveBothEnergyDensityandPowerDensityofCapacitor

• Oneapproachistohybridthecapacitorelectrodewithonebatteryelectrodei.e.asymmetricsupercapacitor

• Oneelectrode(ascathode)fromcapacitor(i.e.activecarbonw/highporosityandhighsurfacearea)undergoeselectrostaticinteraction

• Theotherelectrode(asanode)frombattery(i.e.siliconwithhighspecificcapacity)undergoeselectrochemicalredoxreaction

Si:aPromisingLi-IonAnodeMaterial

• AttractiveFeatures• Hightheoreticalspecificcapacity(4200mAh/g)• Lowpotential0.4Vvs.Li/Li+• Nontoxicity• AbundanceelementonEarthcrust

• Challenges• Lowelectronicconductivity• Largevolumeexpansion(3005-400%)• UnstableSEI – fastcapacityfade

• Approaches• Carbon/Sicomposite,w/nanosized ornanostructuredSi• EnablerforSEIformation

Si-BasedLi-ionCapacitor

Li+

Li+

Li+

Actived carbon(AC)cathodeLi-ionanode,suchasSi

Charge

DischargeAnion- (i.g.PF6-)

Separator

Electrolyte:1MLiPF6inEC:DEC:DME(2:1:2)w/10%FEC

CyclicVoltammetryofIndividualElectrodeinHalf-Cell

SiAnode ACCathode

ImpedanceofIndividualElectrodeinHalf-Cell

Sianode

AC Cathode

BeforeCVcycle

BeforeCVcycle

Lithiation state

Delithiation state

Delithiation stateLithiation state

InitialCyclingofIndividualElectrodeinHalf_Cell

SiAnode ACCathode

0.01V– 1V 2V– 4.5V

RateCapabilityCyclingofIndividualElectrodeinHalf-Cell

SiAnode ACCathode

5A/g

1A/g

0.5A/g0.25A/g

0.1A/g0.25A/g

0.1A/g

1A/g0.5A/g

0.25A/g 0.1A/g0.25A/g

CyclicVoltammetryofSi-ACFullCellCapacitor

ImpedanceofSi-ACFullCellCapacitor

BeforeCVcycling

CVcyclingto2.0V

CVcyclingto4.5V

InitialCyclingofSi-ACCapacitor

RateCapabilityCyclingofSi-ACCapacitor

PowerDensity EnergyDensity

VoltageProfileofIndividualElectrodeinSi-ACCapacitorusingReferenceElectrode

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time(Hrs)

Volta

ge(V

)

Sivs.ref.

Cellvoltage

ACvs.ref.

Results Summary• Si-basedLi-ioncapacitorhasbeendevelopedanddemonstrated•Theresultsshowitisfeasibletoimprovebothpowerdensityandenergydensityinthisconfiguration• Theapplid currentdensityimpactsthepowerandenergydensity:lowcurrentfavorsenergydensitywhilehighcurrentfavorspowerdensity

• ActivecarbonhasabetterratecapabilitythanSi

NextSteps/FutureDirections•Sielectrodeneedstobefurtherimproved•FurtheroptimizationofSi/ACratioandevaluationofitsimpactonenergydensityandpowerdensity

Acknowledgement

• ConvergentAeronauticsSolutionProject–MultifunctionalStructurewithHighEnergyLightweightLoadbearingStorage

• FormerAdvancedSpacePowerSystemProject

Thankyou!

top related