search for di-higgs resonances decaying to 4 b-jets...

Post on 25-Aug-2018

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Search for di-Higgs resonances decaying to 4 b-jets onCMS at 13 TeV

F. Nechansky1, Supervisor Caterina Vernieri1;

Consultants: Silvio Donato3, Jacobo Konigsberg4;Additional members of analysis team: Souvik Das4, Andrea Rizzi2

1FNAL 2U Pisa & SNS 3U Zurich 4U Florida

9/22/2016

Final report presentation

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 1 / 45

Outline

I Motivation

I Trigger efficiency (data, tt)

I Preselection

I Signal Region

I Regression

I Background

I Limits

I Summary

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 2 / 45

Motivation

I 2012 Higgs discovery completes theStandard modelmH = 125.7± 0.4 GeV

I SM incomplete, does not explain e.g.:I Neutrino massI Dark matterI Dark energyI Gravity

I Necessary to go beyond standard model

I Many theories with various predictions and freeparameters - e.g. SuperSymmetry

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 3 / 45

Experimental Point of View

I New particle Higgs Boson- in which ways it can be produced?

I Many modern BSM theories- which one is true?

I Some theories predict particle (X )decaying to pair of Higgs bosons(Randall-Sundrum radion,massive KK graviton[1], 2HDM[2])

I Possible channels of Higgs decay, e.g.:I H → γγ, BR: 0.23%, high res. (1-2%)I H → bb, BR: 57.7%, low res. (≈ 10%)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 4 / 45

Current search

I This presentation reports on channel X → HH → bbbb:

I Best sensitivity for X mass mX > 400 GeV

I Done on CMS experiment at CERN for√

s = 13TeVusing data from 2016 (currently 9.3 fb−1)

I Similar study was done at 8 TeV ( arXiv:1503.04114 )and at 13 TeV ( 2015 data, CMS-PAS-HIG-16-002 )

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 5 / 45

Analysis work-flow

1. Four jet events dominated by e.g. multi-jet background, neccessary to selectonly events with b-jets =⇒ b-tagging

2. Triggers not modelled perfectly =⇒ study of trigger behaviour

3. After selection of four b-jets need to check if they originate from Higgs decay

4. Corrections for imperfection of detector on jet energy/momentum

5. Subtraction of 4b multi jet background

6. Estimation of cross-section for new processes

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 6 / 45

Compact Muon Solenoid (CMS)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 7 / 45

Identification of b-jets (b-tagging)

I b-quark hadronize to b-hadronswith relatively large lifetime

I Identification using secondary vertex(few mm from PV)

I Tracks often have none-zero andpositive impact parameter

I Multivariate discriminant exploitthis information to identify b-jets:e.g. CSV (online) and CMVA(offline)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 8 / 45

CMVA performance

I Performance of discriminants characterized by:I b-jet efficiency - fraction of b-jets correctly identifiedI misidentification prob. - probability of identifying non-b-jet as b-jet

I Performance of CMVA as function of jet pT :

I Medium working point used

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 9 / 45

Trigger efficiency

Triggers

I LHC produces large amount of collisions (≈MHz), impossible to record all

I Preference for interesting events =⇒ implementation of triggers

I Triggers decide based on portion event information to keep the event or not

I Search for 4b resonance =⇒ necessary reduction of background (multi jet)=⇒ online b-tagging

Quad Jet trigger (QJ):HLT BIT HLT QuadJet45 TripleBTagCSV p087 v

I L1 jet activity

I 4 jets |η| < 2.6, pT > 45 GeV(Calorimeter and Particle flow level)

I three b-tagged jets

Double Jet trigger (DJ):HLT BIT HLT DoubleJet90 Double30 TripleBTagCSV p087 v

I L1 jet activity

I 4 jets |η| < 2.6, pT > 30 GeV

I 2 jets |η| < 2.6, pT > 90 GeV(Calorimeter and Particle flow level)

I three b-tagged jets

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 11 / 45

Trigger efficiency

I Not all events detected by the trigger - necessary to derive correction

I Complicated triggers - usage of data driven technique

I Consider trigger, that requires event to pass specific selections A,B,C ,D...,then it can be shows that efficiency can be rewritten:

P(A&B&C &...) = P(A) · P(B|A) · P(C |A&B) · · · ·

I Trigger divided in stages, each studied as function of some relavant variable

I e.g. Quad Jet trigger:I L1 as function of sum of pT of four leading jets (

∑4 pT )I Four Calorimeter-jet selection as function of pT of the fourth jet (pT ,4)I Three b-tagged jets as function of discriminant of the third jet (CSV3)I Four Particle-flow-jets selection as function of pT of the fourth jet (pT ,4)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 12 / 45

I Efficiency of each step estimated from data (turn-on function)

I Trigger efficiency can be written as:

Eff (4∑

pT , pT ,4,CSV3) = Turn on L1(4∑

pT ) · Turn on Calo pt4(pT ,4)·

·Turn on btag(CSV3) · Turn on PF pt4(pT ,4)

I Preselection designed to resemble final selectionI Preselection (orthogoal) trigger HLT BIT HLT IsoMu24 vI diHiggs cut - two pairs of b-jets compatible with Higgs massI Only considering jets with |η| < 2.6, CMVA >0.185 and PUId >= 4

Turn-on:

Calot pt4:

4Tp

40 50 60 70 80 90 100 110

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

CSV3:

3CSV0.8 0.85 0.9 0.95 1

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 13 / 45

Validation

I It is necessary to validate derived efficiencies (closure tests)

I Done for events after preselection

I Compare distributions of events weighted by the efficiency and of eventswhich pass the studied trigger

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

200

220

QuadJet Trigger Closure

TriggeredWeightedInternal CMS

QuadJet Trigger Closure

3CSV0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rat

io

0.6

0.8

1

1.2

1.4

CSV3

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

100

120

140

160

QuadJet Trigger Closure

TriggeredWeightedInternal CMS

QuadJet Trigger Closure

4T

p0 20 40 60 80 100 120 140 160 180 200

Rat

io

0.6

0.8

1

1.2

1.4

pT ,4

4− 3− 2− 1− 0 1 2 3 40

20

40

60

80

100

120

QuadJet Trigger Closure

TriggeredWeightedInternal CMS

QuadJet Trigger Closure

1η4− 3− 2− 1− 0 1 2 3 4

Rat

io

0.6

0.8

1

1.2

1.4

η1

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 14 / 45

Comparison between data and signal MC efficiency

I Done for events after analysis preselection and diHiggs selection

I Comparison between events weighted by data driven efficiencyand event passing the triggers

Runs B-F

I Problem during data-taking for Runs B-F - tracking inefficiency not present in oursimulation

I Results consistent nevertheless (within stat. uncertainty)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 15 / 45

HbbHbb analysisof 2016 data

Event selection

I Trigger: Quad Jet OR Double Jet Trigger

I At least 4 jets with:I pT > 30 GeV, |η| < 2.5,I CMVAV2>0.185

|<2.5 (GeV)η Jet pT 4 for jets with |0 50 100 150 200 250

Eve

nts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 = 300 GeV

XSignal m

= 600 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

pT ,4

> 30 GeVT

|<2.5, pη Jet CMVA 4 for jets with |1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Eve

nts

0

0.1

0.2

0.3

0.4

0.5 = 300 GeVX

Signal m

= 600 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

B-tagging discriminant

> 30 GeV, CMVA > CMVAMT

|<2.5, pη #Jets with |0 1 2 3 4 5 6 7 8 9 10

Eve

nts

0

0.1

0.2

0.3

0.4

0.5 = 300 GeV

XSignal m

= 600 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

Number of selected jets

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 17 / 45

Higgs selection

I Four b-jets from two Higgs bosons - looking for two Higgs candidates (H1,H2)

I Several regions (based on invariant mass of the original particle X )due to different event topology:

I Low mass region (LMR): two dijets with mass compatible with Higgs bosonI Medium mass region (MMR): b-jets are more boosted → requirement on

distance between the b-jets (∆R < 1.5,∆R =√

∆η2 + ∆φ2)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 18 / 45

LMR: MMR (Gen):

}b R(b∆ 0 0.5 1 1.5 2 2.5 3 3.5 4

Eve

nts

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

= 300 GeVX

Signal m

= 600 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

left Comparison of dijet mass after Higgs selection for LMR

right Distance between two jets from Higgs decay (generated level)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 19 / 45

Signal selection

I χ2 = (mH1 − mH)2/σH2 + (mH2 − mH)2/σH

2

I Reconstruct two Higgs Boson candidates with lowest value of χ2

I Signal region (SR): χ < 1I Sideband region (SB): 1 < χ < 2, (mH1 − mH) · (mH2 − mH) < 0

MC mX = 350 GeV MC mX = 650 GeV

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 20 / 45

Regression

I Presence of neutrinos + imperfection of the detector=⇒ lower recorded energy of jets

I b-jet pT correction using regression: uses multivariate algorithm trained onsignal Monte Carlo

I e.g. LMR:

Improvement 10.06% Improvement 11.94%Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 21 / 45

Signal region optimization

I Signal region is optimized for both before and after the regressionI Regression reduces radius of the SR and leads to better signal significance

LMR MMR

center radius center radius

baseline 115 25 120 20after regression 120 20 125 20

LMR: MMR:

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 22 / 45

Kinematic fit

I We expect mbb = 125 GeV (Higgs mass)

I Correction of momentum to achieve theinvariant mass

I Modification based on resolution of jetvariables (pT , η, φ) to achieve the lowestpossible χ2

I Resolution measured in Monte Carlo

mx 300 600

baseline µ 276.3 572.8σ 23 32.2σ/µ 8.32 5.62

kinematic fit µ 300.6 604.3σ 7.6 17.7σ/µ 2.53 2.93

kinematic fit + regression µ 301.1 606.9σ 7.7 17.5σ/µ 2.56 2.88

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 23 / 45

Signal extraction

I Signal as a peak on smooth background

I Fit done for LMR/MMR, components:I Signal - fit shape determined from MCI Multi-jet background - determined

from data (poor modelling)I tt - negligible

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 24 / 45

Signal fits

I Low mass: Gaussian signal + Gaussian combinatoric backgroundI High mass: ExpGaussExp function

Signal 260 GeV (LMR): Signal 800 GeV (MMR):

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 25 / 45

Background modeling

I Signal region blinded- fit in Sideband (SB), using Gauss-Exp function

Example: SB+LMR

Without regression: With regression:

(GeV)X m260 280 300 320 340 360 380 400 420 440 460

Eve

nts

/ 5 G

eV

0

20

40

60

80

100

120

140

/n = 0.862χSB

Data in SB

(2016) (13 TeV)-19.2 fb

CMSPreliminary

(GeV)X m260 280 300 320 340 360 380 400 420 440 460

Pul

l

5−4−3−2−1−012345

(GeV)X m260 280 300 320 340 360 380 400 420 440 460

Eve

nts

/ 5 G

eV

0

20

40

60

80

100

120

140

160

180

200

220

/n = 1.142χSB

Data in SB

(2016) (13 TeV)-19.2 fb

CMSPreliminary

(GeV)X m260 280 300 320 340 360 380 400 420 440 460

Pul

l

5−4−3−2−1−012345

SB definition:(H1 vs H2)

I Regression does not sculpt the background

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 26 / 45

Expected upper limits

LMR: MMR:

I Expected upper limits on the signal cross sections at 95% confidence level(computed using Asymptotic CLS method)

I Already better exclusion with only 9 fb−1 than at 8 TeVI With regression improvement 3.3-4.1% for LMR and 9.4-19.0% for MMR

(mX > 400 GeV)Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 27 / 45

Summary

I This talk summarizes current status of the 2016 search for two Higgs bosonresonance decaying into four b quarks

I My contribution over the summer:I Bulk of work on trigger efficiencyI Optimization of Signal regionI Study of effects of regression

I Corrections already applied: regression of jet pT , kinematic fit on Higgs mass;improvement of mass resolution

I Optimization of signal region, background estimation and expected upperlimits finished

Thank you for your attention!

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 28 / 45

L. Randall and R. Sundrum, “A Large mass hierarchy from a small extradimension,” Phys. Rev. Lett. 83 (1999) 3370doi:10.1103/PhysRevLett.83.3370[hep-ph/9905221].

R. Barbieri, D. Buttazzo, K. Kannike, F. Sala and A. Tesi, “Exploring theHiggs sector of a most natural NMSSM,” Phys. Rev. D 87 (2013) no.11,115018 doi:10.1103/PhysRevD.87.115018[arXiv:1304.3670 [hep-ph]].

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 29 / 45

Backup slides

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 30 / 45

Turn-ons (e.g. Double Jet, data driven)

L1:

4T+p

3T+p

2T+p

1Tp

200 250 300 350 400 450 500 550 600

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

Calo pt4:

4Tp

40 50 60 70 80 90 100 110 120

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

Calo pt2:

2Tp

40 60 80 100 120 140 160 180 200 220

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

CSV3:

3CSV0.75 0.8 0.85 0.9 0.95 1

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

PF pt4:

4Tp

40 60 80 100 120

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

PF pt2:

2Tp

60 80 100 120 140 160 180 200

Effi

cien

cy

0

0.2

0.4

0.6

0.8

1

Bands visualize uncertainty of the fit

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 31 / 45

Closure test

Double Jet trigger (DJ):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

DoubleJet Trigger Closure

TriggeredWeightedInternal CMS

DoubleJet Trigger Closure

3CSV0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rat

io

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

80

90

DoubleJet Trigger Closure

TriggeredWeightedInternal CMS

DoubleJet Trigger Closure

4T

p0 20 40 60 80 100 120 140 160 180 200

Rat

io

0.6

0.8

1

1.2

1.4

4− 3− 2− 1− 0 1 2 3 40

10

20

30

40

50

60

DoubleJet Trigger Closure

TriggeredWeightedInternal CMS

DoubleJet Trigger Closure

1η4− 3− 2− 1− 0 1 2 3 4

Rat

io

0.6

0.8

1

1.2

1.4

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 32 / 45

Runs B-F Run G

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 33 / 45

Kinematic compatibility

I Comparison of tt sample and several signal masses:

0 50 100 150 200 250 300 350 400 450 5000

0.02

0.04

0.06

0.08

0.1

0.12

Jet_pt[0]+Jet_pt[1]+Jet_pt[2]+Jet_pt[3] {CMVAVsorted[3]>0.185 && diHiggs}

hEntries 7105Mean 316.7RMS 70.95

Signal (300 GeV)Signal (500 GeV)Signal (700 GeV)Signal (900 GeV)TTbar

Jet_pt[0]+Jet_pt[1]+Jet_pt[2]+Jet_pt[3] {CMVAVsorted[3]>0.185 && diHiggs}

0 20 40 60 80 100 120 140 160 180 2000

0.05

0.1

0.15

0.2

0.25

Jet_pt[3] {CMVAVsorted[3]>0.185 && diHiggs}h

Entries 7105Mean 64.9RMS 22.43

Signal (300 GeV)Signal (500 GeV)Signal (700 GeV)Signal (900 GeV)TTbar

Jet_pt[3] {CMVAVsorted[3]>0.185 && diHiggs}

∑4 JetpT JetpT ,4

I Low mass kinematically more similar than high mass= same behavior as in efficiency comparison

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 34 / 45

Regression (MMR)

I = bjet pT correction

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 35 / 45

Signal region

MC mX = 300 GeV< LMR

Data

MC mX = 900 GeV< MMR

DataFilip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 36 / 45

pt(1,2,3,4) before/after regression

|<2.5 (GeV)η Jet pT 1 for jets with |0 100 200 300 400 500 600 700 800

Eve

nts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24 = 300 GeVX

Signal m

= 450 GeVX

Signal m

= 600 GeVX

Signal m

= 750 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

|<2.5 (GeV)η Jet pT 2 for jets with |0 50 100 150 200 250 300 350 400 450 500

Eve

nts

0

0.05

0.1

0.15

0.2

0.25

= 300 GeVX

Signal m

= 450 GeVX

Signal m

= 600 GeVX

Signal m

= 750 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

|<2.5 (GeV)η Jet pT 3 for jets with |0 50 100 150 200 250 300 350

Eve

nts

0

0.05

0.1

0.15

0.2

0.25 = 300 GeV

XSignal m

= 450 GeVX

Signal m

= 600 GeVX

Signal m

= 750 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

|<2.5 (GeV)η Jet pT 4 for jets with |0 50 100 150 200 250

Eve

nts

0

0.05

0.1

0.15

0.2

0.25

= 300 GeVX

Signal m

= 450 GeVX

Signal m

= 600 GeVX

Signal m

= 750 GeVX

Signal m

= 900 GeVX

Signal m

13 TeV Data

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 37 / 45

Purity

Purity is equal to number of b-jets matched to generated b-quark. When two jetsare matched to one quark, the purity is -1.

(GeV)X m50 100 150 200 250 300 350 400 450 500 550

1

10

210

310Purity = 4Purity = 3Purity = 2Purity = 1Purity = 0Purity = -1

(GeV)X m250 300 350 400 450 500 550 600 650 700 750

1

10

210

Purity = 4Purity = 3Purity = 2Purity = 1Purity = 0Purity = -1

(GeV)X m500 550 600 650 700 750 800 850 900 950 1000

1

10

210

310Purity = 4Purity = 3Purity = 2Purity = 1Purity = 0Purity = -1

(GeV)X m650 700 750 800 850 900 950 1000 1050 1100 1150

1

10

210

310Purity = 4Purity = 3Purity = 2Purity = 1Purity = 0Purity = -1

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 38 / 45

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 39 / 45

Signal significance

I Study of signal significance to determine best signal regionI e.g. LMR: (TODO update or remove)

Before Reg.

mH [GeV] 115 110 120 115 115σH [GeV] 30 30 30 25 35

mX 260 46.82 48.40 42.91 45.17 48.14300 59.35 58.49 57.33 58.41 59.49350 97.18 93.48 96.47 97.02 93.20400 144.53 137.74 144.25 143.30 140.28450 74.28 73.94 72.57 76.10 70.49500 52.61 52.30 50.85 55.16 48.98550 147.56 144.60 142.90 155.50 137.96

After Reg.

mH [GeV] 120 125 120 120 120σH [GeV] 25 25 20 30 35

mX 260 49.89 47.30 46.44 51.50 53.43300 64.87 63.31 61.33 65.54 65.91350 112.73 112.73 107.80 113.06 109.79400 190.34 188.10 186.58 187.89 176.66450 91.47 87.40 91.64 88.06 82.30500 63.74 61.11 65.67 60.40 56.87550 178.99 170.77 184.70 168.21 152.47

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 40 / 45

mx fits and resolution

I Low mass: Gaussian signal + Gaussian combinatoric backgroundI High mass: ExpGaussExp function

Signal 260 GeV (LMR): Signal 800 GeV (MMR):

mx 260 300 350 450 600 700 800 900

baseline µ 243.4 276.3 318.5 425.3 572.8 673.5 771.9 870.6σ 18.4 23 28.7 25.2 32.2 35.5 38.9 42.1σ/µ 7.56 8.32 9.01 5.93 5.62 5.27 5.04 4.84

kinematic fit µ 260.7 300.6 350.4 452.4 604.3 706.6 807.9 908.3σ 4.1 7.6 10.4 12 17.7 21.5 27.3 31.1σ/µ 1.57 2.53 2.97 2.65 2.93 3.04 3.38 3.42

kinematic fit + regression µ 260.9 301.1 351.6 453.4 606.9 710 812.2 913.9σ 3.9 7.7 10 12.3 17.5 21.3 27.1 31.4σ/µ 1.49 2.56 2.84 2.71 2.88 3.00 3.34 3.44

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 41 / 45

mx fits and resolution - ExpGaussExp function

I High mass: ExpGaussExp function:

f (x ; x , σ, kL, kH) = exp

(k2H

2− kH(x − x)

σ

), for

x − x

σ> kH

= exp

(− (x − x)2

2σ2

), for kL ≤

x − x

σ≤ kH

= exp

(k2L

2+

kL(x − x)

σ

), for

x − x

σ< kL

(1)

I x : The mean of the Gaussian core,I σ: The standard deviation of the Gaussian core,I kL: The decay-coefficient of the lower exponential tail. This is also the number

of standard deviations, on the low side, beyond which the Gaussian inflectsinto the exponential.

I kH : The decay-coefficient of the higher exponential tail. This is also thenumber of standard deviations, on the high side, beyond which the Gaussianinflects into the exponential.

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 42 / 45

Background modeling - ExpGaus function description

I Signal region blinded - fit in Sideband, using Gauss-Exp function:I x : The mean of the Gaussian core,I σ: The standard deviation of the Gaussian core,I k: The decay-coefficient of the exponential tail. This is also the number of

standard deviations beyond which the Gaussian inflects into the exponential onthe high side.

f (mX ; x , σ, k) = exp

(−1

2(

x − x

σ)2

), for

x − x

σ≤ k (2)

= exp

(k2

2− k

x − x

σ

), for

x − x

σ> k

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 43 / 45

Background modeling: SB+MMR

Without regression: With regression:

(GeV)X m400 600 800 1000 1200 1400 1600 1800

Eve

nts

/ 20

GeV

0

10

20

30

40

50

/n = 0.442χSB

Data in SB

(2016) (13 TeV)-19.2 fb

CMSPreliminary

(GeV)X m400 600 800 1000 1200 1400 1600 1800

Pul

l

5−4−3−2−1−012345

(GeV)X m400 600 800 1000 1200 1400 1600 1800

Eve

nts

/ 20

GeV

0

5

10

15

20

25

30

35

40

/n = 0.442χSB

Data in SB

(2016) (13 TeV)-19.2 fb

CMSPreliminary

(GeV)X m400 600 800 1000 1200 1400 1600 1800

Pul

l

5−4−3−2−1−012345

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 44 / 45

Regression: improvement of limits

Kin. Fit KF+regr. Improv.(%)

LMR

260 3085 2976 3.7300 1976 1898 4.1350 808 781 3.5400 470 455 3.3

MMR

350 - 925.8 -400 315.9 321.8 -1.8450 140.6 118.2 19.0500 108.9 92.8 17.3550 89.4 76.7 16.6650 59.1 49.3 19.9700 52.2 45.4 15.0800 40.5 35.6 13.8900 35.6 31.7 12.3

1000 33.7 30.8 9.41200 38.6 34.7 11.2

I With regression improvement3.3-4.1% for LMR and9.4-19.0% for MMR(mX > 400 GeV)

Filip Nechansky (FNAL) HbbHbb search on CMS 9/22/2016 45 / 45

top related