sala 5017 e fermassa@lee.uerj rev vf.pdf · substrato e poço os circuitos cmos são fabricados num...

Post on 15-Mar-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Microeletrônica

Prof. Fernando Massa Fernandeshttps://www.fermassa.com/Microeletrônica.php

(Prof. Germano Maioli Penello)

Sala 5017 Efermassa@lee.uerj.br

http://www.lee.eng.uerj.br/~germano/Microeletronica_2016-2.html

1

Lei de Moore

http://en.wikipedia.org/wiki/Moore%27s_law

286386

Pentium 4

Transistores com dimensões menores que 20 nm!

“O número de transistores dobraa cada 18-24 meses”

Tecnologia CMOS – Visão Geral

Par MOSFET Complementar. → Inversor. → Porta Nand. →

→ Circuitos digitais (Lógica Booleana) → Processadores Memórias Microcontroladores

Leiaute →

CMOS – Tecnologia dominante na fabricação de CIs

Fazendo um CI

http://jas.eng.buffalo.edu/education/fab/pn/diodeframe.html

Etapas recorentes

Sala limpa

Laminar http://en.wikipedia.org/wiki/Cleanroom

Ambiente normal - 35,000,000 partículas/m3 com tamanhos acima de 0.5mSala Limpa Classe 100 (ISO 5) – 3,520 partículas/m3 com tamanhos acima de 0.5mSala Limpa Classe 1 (ISO 3) – 35 partículas/m3 com tamanhos acima de 0.5m

Sala limpa (ISO 1) – 12 partículas/m3 com tamanhos acima de 0.3m

16

Exemplos de Processos de fabricação comerciais

• CMOS padrão (circuitos digitais)

• CMOS HV (alta tensão)

• CMOS SOI (Silicon on Insulator) →Para melhor isolamento e controle de canal

• SiGe-BiCMOS → Alta freq (RF, micro-ondas)

• CMOS-OPTO → Para optoeletrônica (Wafer especial) • SiGe:C → Sistemas Microeletromecânicos (MEMS)

Substrato e poçoOs circuitos CMOS são fabricados num substrato de Si.Dopante tipo-n (P - fósforo)Dopante tipo-p (B - Boro) – substrato mais comum de ser usado em CI CMOS

No substrato tipo-p, NMOS são fabricados diretamente, enquanto PMOS são fabricados em um poço-n.

O substrato ou o poço são chamados de corpo do MOSFET.

Normalmente, uma camada epitaxial de Si é crescida antes do processamento. Não faremos distinção entre essa camada e o próprio substrato.

Um processamento que usa o substrato tipo-p com um poço-n é chamado “processo poço-n” (“n-well process”). Um processamento que usa o substrato tipo-n com um poço-p é chamado “processo poço-p” (“p-well process”).

21

Difusão

Difusão de átomos doadores (tipo-n).

Elemento da coluna V da tabela periódica

P - Fósforo.

Note que a difusão ocorre também embaixo do fotorresiste protetor

4

Leiaute do poço-nO leiaute das máscaras fotolitográficas é feita consideranto a visão superior. Um dos pontos chaves do leiaute é o fator de escala. Ex.:Dimensões mínimas = 50nmQuadrado de 10x10 (adimensional) tem seus lado de 500nm desprezando a difusão lateral e outras imperfeições.

Usar números inteiros para desenhar o leiaute simplifica o processamento.

Vista superior

Seção reta

25

Regras de design (poço-n)

A medida que o leiaute fica mais e mais complicado, programas computacionas que verificam se as regras de design não são violadas são fundamentais.

O tamanho mínimo pode ser devido à qualidade de criar padrões no fotorreste enquanto que o espaçamento mínimo pode ser devido ao transistor npn parasítico.

Veremos as regras de design mais adiante no curso!

27

Resistor (poço-n)

Além de ser usado como o corpo do PMOS, o poço pode ser usado como um resistor.

Se as tensões nos terminais do resistor forem maiores que a tensão do substrato, podemos evitar que o diodo parasítico seja polarizado diretamente.

23

Resistência de folha

Uma grandeza comum é a resistência de folha de um material. Ela é utilizada em sistemas de filmes finos e implica que o fluxo de corrente se dá ao longo do plano da folha, e não perpendicular a ela.

Unidade de Rs : /sq ou /

Esta unidade serve para evitar a confusão entre a resistência de folha e a resistência

Ex. Um quadrado com Rs = 100 /sq tem resistência de 100 .Um retângulo de lado 1 e comprimento 3 do mesmo material tem resistência de 300

32

Além de servir como base para o transistor PMOS, o poço-n também é utilizado para criar resistores.

A espessura t de um processo CMOS é normalmente fixa

O valor projetado não é alterado pelo fator de escala!

Exemplo

Calcule a resistência de um poço-n que tem comprimento 100 e largura 10. Considere Rs = 2 k/sq. Agora, considere que devido ao processamento, esse valor pode variar entre 1.6 a 2.4 k/sq.

Note como o valor do resitor não é muito preciso!

24

Concentração de portadoresÀ temperatura ambiente (~300K) em um Si intrínseco,

n – elétrons livresp – buracos

Pode parecer um número grande, mas é baixo se comparado ao número de átoms de Si no cristal (NSi = 50 x 1021 cm-3)

Só existe um par elétron/buraco a cada ~1012 átomos de Si

7

Dopagem

A dopagem aumenta a condutividade porque agora há mais portadores disponíveis para realziar a condução. No semicondutor tipo-n esse excesso é de elétrons. No semicondutor tipo-p esse excessor é de buracos.

É de se imaginar que, se o número de elétrons aumenta com a dopagem, o número de buracos no mesmo material diminua. Por que?

Essa relação entre elétrons, buracos e número de portadores intrínsecos é governada pela Lei de ação das massa

A dopagem é feita para alterar as propriedades elétricas do semicondutor.Dopante tipo p? – B (coluna III da tabela periódica)Dopante tipo n? – P (coluna V da tabela periódica)

8

Exemplo

Pouquíssimos buracos! Note que com ND = 1018, a aproximação de que

começa a não ser muito boa. Quando ND ~ NSi, o material é chamado de degenerado. Materiais degenerados não seguem mais a lei de ação das massas.

9

Junção pn - Energia de Fermi

http://jas.eng.buffalo.edu/education/pin/pin2/index.html#

10

Nível de Fermi no silício intrínseco (não dopado).

Energia de Fermi (Junção pn)

Ao criar uma junção pn, como fica a estrutura de banda da junção?

Junção pn

(Reveja eq. do slide 43)

13

DiodoAs características DC de um diodo são dadas pela equação de Shockley do diodo

http://jas.eng.buffalo.edu/education/pn/iv/index.html

2

Capacitância parasítica

Uma região de cargas fixas positivas e cargas fixas negativas pode ser analisada como placas de um capacitor! Essa capacitância parasítica é chamada de capacitância de depleção ou de junção.

16

Capacitância parasíticaA capacitância de depleção (polarização reversa) pode ser modelado pela equação

Cj0 – capacitância sem tensão aplicada na junçãoVD – Tensão no diodom – coeficiende de gradação (grading coefficient)Vbi – potencial intrínseco

17

Exemplo

26

Capacitância de depleção - polarização reversa (VD negativo).

Quando o diodo é polarizado diretamente, os portadores minoritários formam uma capacitância de difusão muito maior que a de depleção!

Capacitância parasíticaCapacitância de difusão

A capacitância de difusão pode ser caracterizada como:

Modelo útil para análise de sinais pequenos AC. Em aplicações digitais estamos mais interessados em chaveamento de sinais altos. Em geral, em processos CMOS não desejamos ter diodos polarizados diretamente. Diodos polarizados diretamente são considerados problemas! 10

Atraso RC por um poço-nVimos até agora que o poço-n pode ser usado como um diodo em conjunto com o substrato e como um resistor. Como toda junção pn tem uma capacitância parasítica, ao analisar o resistor, temos que incluir essa capacitância nos cálculos.

11

Esta é a forma básica de uma linha de transmissão RC!

Atraso RC por um poço-n

Tempo de atraso do circuito

Tempo de subida

IMPORTANTE EM CIRCUITOS DIGITAIS 16

Atraso RC por um poço-nAnalisamos um simples circuito RC. O modelo de resistência inclui diversos circuitos RC acoplados. Como analisar?

Para um número l de segmentos:

Soma de l termos com incremento 1 (Gauss fez isso quando era criança! )

Se l >> 1

23

Exemplo

24

69 ns

* Tempo de subida

Parasíticos associados ao metal

28 ps é um atraso significativo?

31

Utilizando o SiO2 como dielétrico com constante dielétrica ~4.

Capacitância metal-substratoO substrato está aterrado e para efeitos práticos pode ser pensado como um plano equipotencial.

Aparecimento de capacitâncias parasíticas entre o metal e o substrato.

Capacitâncias parasíticas típicas em um processo CMOS 17

Capacitância parasítica entre metal2 e metal1

(Veja a tabela)Capacitância parasítica entre quadrados de 10x10 com =50nm

36

Qual a variação de tensão no metal1 quando o metal2 varia de 0 a 1V?

(Conservação de carga Q = CV)

Limite de corrente

51

CrosstalkUm sinal propagando em um condutor acopla com o outro condutor.

Im – corrente no condutor adjacenteVA – tensão de sinal

17

Indutância mútua:

IA é a corrente injetada que varia no tempo (sinal de entrada), Vm é a tensão induzida (sinal de saída) e Lm é a indutância mútua.

O crosstalk pode ser reduzido se aumentarmos a distância dos condutores!

Ground bounce - AC

Este capacitor deve ser inserido externamente ao circuito entre os pinos VDD e terra do CI.

É muito comum em CMOS circuitos com baixíssima dissipação (baixo consumo de corrente), ex. Calculadora de alimentação solar. Nestes casos, o problema DC não é crítico.

Mas e se, num curto período, a corrente vai a 50A?Podemos adicionar um capacitor decoupling que mantém a DDP do circuito.

21

Exemplo

270 pF não é um valor de capacitância que pode ser feita facilmente.

Se o circuito está rodando a 500MHz (período de 2ns),

Corrente alta para a saída de um CI 25

Porta auto alinhada

A área abaixo do poly não é dopada (camada poly auto alinhada).

A camada poly protege a região abaixo dela da implantação dos dopantesA fina camada de óxido entre o poly e a região ativa é chamada de óxido de porta - gate oxide (GOX)

GOX

O dreno e fonte ficam auto alinhados com a deposição do poly da porta.

22

Exemplo de erros

Abertura no óxido-FOX (camada ativa)

Implantação dos dopantes (camadas select) antes da deposição do poly.

O que aconteceria caso o poly e as camadas ativas fiquem ligeiramente desalinhadas?

Esta é a vantagem da camada poly auto alinhada.23

Resistências típicasCom silicide as resistências são bem menores!

Note que o silicide é sempre colocado acima do poly! Se for colocado abaixo, cria um contato retificador (contato de barreira Schottky).

25

Bloco de siliceto

Resistências da tabela do slide anterior (com e sem Silicide):

26

FEOL e BEOL

As sequências feitas nos últimos slides são chamadas de FEOL (front-end of the line)

As sequências feitas após isso (camadas de metais e vias) são chamadas de BEOL (back-end of the line))

36

Etapas de processo damasceno

As sequências 1)Trincheira2)Cobrir a trincheira com óxido3)Polir o substrato para que o topo seja plano

É chamado de processo damasceno. Foi este o processo que apresentamos aqui.

O processo damasceno é utilizado mais comumente nas camadas metálicas. Trincheiras são formadas nos isolantes, cobre é depositado e o topo do wafer é polido para ficar plano

37

Conectando o substrato-p ao terra

Não conectamos diretamente o metal1 no substrato! A conexão é feita na camada p+.

Lembre-se que o poly fica em cima do FOX e o metal1 fica em cima do isolante acima do FOX.

21

Lembrem-se do trabalho 1Resistor de poço-n

A conexão é feita utilizando a camada ativa e a n-select. Se o substrato está aterrado, não podemos aplicar potenciais menores que aprox. -0.5V para evitar a condução através do diodo parasítico.

26

Resistência é estimada entre as beiradas da região ativa L

Nesta seção de corte não estamos mostrando o siliceto

Leiaute de um NMOS

Sempre que a camada poly cobre a camada ativa, temos um MOSFET!Dispositivo de 4 terminais.Corpo conectado ao terra.

Dreno e fonte são equivalentes.27

Leiaute de um PMOS

Sempre que a camada poly cobre a camada ativa, temos um MOSFET!Dispositivo de 4 terminais.Corpo conectado ao VDD.

Dreno e fonte são equivalentes.28

46

Transistor PMOS, as camadas ativas são dopadas com átomos aceitadores através da camada p-select. Outra forma de identificar é que o PMOS é construído sobre o poço-n.

• O transistor abaixo é um NMOS ou um PMOS?• O leiaute tem um problema. Identifique-o.• Faça um esboço da seção reta ao longo da linha

pontilhada. Considere que este é um processamento que utiliza dois metais

Este transistor não tem a conexão de corpo (conexão com o poço-n). Neste caso, o corpo deve estar conectado a qual potencial? VDD.

Poço-nFOX FOX

IsolanteIsolante

Isolante

47Substrato-p

p+ p+

48

• Por que a capacitância parasítica por quadrado do polisilício é maior do que a do metal1?

Para uma mesma área e considerando o mesmo óxido, a capacitância do polisilício é maior do que a do metal1 porque o polisilício tem uma espessura menor de óxido entre os contatos elétricos.

e – permissividade do óxido

A – área das placas paralelas

d – distância entre as placas

Resistores

49

Cálculo SPICE (termo quadrático):

No cálculo a mão, consideramos TCR2 = 0

Exercício

50

Resistores

51

A resistência também se altera com a aplicação de tensão. O coeficiente de tensão é dado por VCR:

V é a tensão média aplicada nos terminais do resistor.

Este fenômeno é observado principalmente por causa da largura da região de depleção entre o poço-n e o substrato que altera a resistência de folha.

Exercício

52

Bem menor que a variação devido a temperatura

Exemplo

53

Divisor de tensão. Relacionar Vout e Vin

Em função da temperatura:

Independente da temperatura!

Em função da tensão:

Com

e

Dependente da tensão!

Resistores

54

Guard ring

Todo circuito de precisão está sujeito a ruídos do substrato (corrnete em circuitos adjacentes influenciando os vizinhos)

O guard ring (implantação de p+ entre os circuitos) é um método simples de reduzir o ruído.

•Mantém o potencial em volta do circuito•Protege o circuito de injeção de portadores indesejadas vindas do substrato.

Guard ring num resistor

Exercício

55

Resistores

56

Elementos dummy (falso, postiço)

Difusão desigual devido a variações de concentração de dopantes levaria a um descasamento entre elementos. O elemento dummy não tem função elétrica nenhuma, ele é normalmente aterrado ou ligado ao VDD em vez de ficarem flutuando.

Capacitores

57

Processos CMOS podem conter uma segunda camada de polisilício chamada poly2.

Importante para:Capacitores poly-polyMOSFETsDispositivos de portas flutuantes (EPROM, memória FLASH, por exemplo)

C´ox – capacitância por área

Espessura entre as camadas poly (tox) é a mesma do GOX.

Capacitores

58

Dependência com tensão e temperatura

Coeficiente de temperatura:

Coeficiente de tensão:

MOSFET

59

Difusão lateral

O dopante difunde lateralmente criando um MOSFET de comprimento Leff

MOSFET

60

Oxide encroachment (invasão do óxido)

O óxido invade a região ativa e reduz a área do transistor. Para compensar, o leiaute pode ser aumentado antes de fazer a máscara que define a região ativa.

MOSFET

61

Capacitância parasítica de depleção de fonte e dreno

Modelo SPICE:

Não confundir capacitância de depleção (polarização reversa) com capacitância de difusão (polarização direta)!

MOSFET

62

Resistência parasítica de fonte e dreno

O comprimento da região ativa aumenta a resistência parasítica em série com o MOSFET, determinada pelo número de quadrados na fonte (NRS) e dreno (NSD)

NRS = comprimento da fonte / largura da fonte

Resistência de folha incluída no modelo SPICE como rsh (confira o valor no processo C5)

MOSFET

63

Capacitância parasítica

Para obter boa resposta a altas frequências, é desejado que a capacitância maior seja aterrada (para NMOS) ou conectada ao VDD (PMOS)

Maior capacitância

A menor capacitância descarrega pelos dois capacitores (maior resistência no caminho de descarga) enquanto a maior capacitância não carrega nem descarrega.

Menor capacitância

MOSFET

64

Capacitância parasítica

Dispositivo operando na região de inversão forte (strong inversion region)

Capacitância não depende da extensão da difusão lateral

Canal formado entre o dreno e a fonte

MOSFET

65

Capacitância parasítica

Dispositivo operando na região de depleção. Não há canal entre o dreno e fonte.

Capacitância depende da extensão da difusão lateral

Os parâmetros CGDO (gate-drain overlap capacitance) e CGSO são estipulados no modelo SPICE. Confira os valores no modelo do processo C5.

Exemplos de leiautes

66

Capacitores apenas com camadas de metal.

Capacitância entre vias (também chamada de capacitor lateral).

Tipicamente 500 aF/m vs. 25 aF/m da capacitância de borda com o substrato

A adição de vias aumenta a capacitância lateral, mas não linearmente.

Exemplos de leiautes

67

Resistores de polisilício

Melhor performance quando necessita-se de razões precisas entre resistências (não forma junções pn como a resistência de poço-n).

Melhor casamento, melhor comportamento em função da temperatura e tensão

Em geral, tamanho mínimo da largura e comprimento de 10 a 100

Por exemplo, para um processo de canal-curto, onde = 50 nm, a largura mínima do resistor de poli será de 500 nm.

Resistores largos dissipam melhor o calor – menores efeitos de eletromigração → R = ρ (L/A)

68

Exemplos de leiautesResistores de polisilício

http://www.paulotrentin.com.br/eletronica/conversor-dac-atraves-da-rede-de-escada-r2r/

Onde ficam o MSB, LSB, Term. e Vout?

Rede resistiva tipo R-2R(R-2R resistor string)

Tempo de transição e de atraso

69

No nosso modelo digital:

Ctot = capacitância total entre o dreno e o terra.

Modelo simplificado para ser usado no cálculo a mão apenas!

Exemplo

70

Descarga Carga

Exemplo

71

Descarga Carga

Canal longo

Canal curto (maior resistência de canal)

MOSFET pass gate

72

NMOS é bom para passar sinal lógico 0

NMOS não é bom para passar sinal lógico 1

Atraso num pass gate

73

Exemplo:

Transmission gate

74

Acoplar um NMOS e um PMOS

Desvantagens:Aumento de área utilizada no leiauteDois sinais de controle

Atraso em conexão de pass gates

75

10x NMOS (50 nm) em série + uma carga capacitiva de 50fF tdelay ~ 1,2ns

O atraso total é a soma do atraso da conexão pass gate (linha de transmissão) com o atraso do carregamento da capacitância na saída.

Inversor CMOS

76

Características DC VTC - Característica de transferência de tensão

Importante – Se o sinal não varre totalmente os limites inferiores e superiores da tensão uma corrente significativa passa pelo inversor! (potência dissipada!)

O mesmo fenômeno é significativo se o transistor chaveia lentamente.

Inversor CMOS - Projeto digital

77

Por que NMOS e PMOS têm tamanhos diferentes?

Casamento da resistência de chaveamento efetiva

Inversor CMOS

78

Ponto de chaveamento do inversor (VSP)

Os dois transistores estão na região de saturação e a mesma corrente passa por eles

Vsp → Vg

Exemplos

79

Se n/p = 1, temos VSP = VDD/2

Desenhando MOSFETs com mesmo L

Para obtermos

Num MOSFET de canal longo

=>

Características de chaveamento

80

Utilizando o modelo digital que havíamos criado na última aula

ATENÇÃO! O desenho mostra as duas chaves abertas, mas isto não é possível de acontecer!

Vamos examinar as capacitâncias e resistências parasíticas do inversor

Características de chaveamento

81

Vamos examinar as capacitâncias e resistências parasíticas do inversor

Tempos de atraso

Se o inversor estiver conectado a uma carga capacitiva:

Exemplo

82

A simulação não dá exatamente o mesmo resultado!(~20ps)

Fazer com que Rp = Rn faz com que a capacitância de entrada aumente!

Exemplo

83

Simulação

Ring oscillator

84

Vimos que existe um atraso na propagação de sinal em uma porta inversora.

O que acontece se ligarmos um número impar de portas inversoras em sequência e alimentarmos a saída da última na entrada da primeira?

Frequência de oscilação

Onde n é o número impar de inversoras.

Cada inversor chaveia duas vezes durante um período de oscilação. Tempo de chaveamento de um inversor = tPHL + tPLH

Ring oscillator

85

Qual a capacitância total de inversores idênticos acoplados?

Ring oscillator

86

Qual a capacitância total de inversores idênticos acoplados?

Com:

Desta maneira:

f=1

n .0,7 . (Rn+Rp ) .C tot

Inversor

87

Dissipação de potência dinâmica

Aplicando um pulso quadrado de período T e frequência fclk na entrada, a corrente média que o inversor tem que puxar da fonte VDD é

A potência total é

Exemplo

88

Exemplo

89

Simulação

f ~1.25 GHz Pavg = 19.6W (apenas 1 inversor) PDP = 431x10-18 J

Processo de 50nm

top related