roadway safety data – what is it and why should it be important to my state? name date

Post on 27-Dec-2015

218 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Roadway Safety Data – What Is It and Why Should It Be

Important to My State? Name Date

Overview• Safety Data Background• Overview of the MIRE FDE for Safety• Why Collect More Safety Data– Case Study: Using Safety Data Results in Ohio

• How to Collect Safety Data• The Value of Safety Data• Safety Data in INSERT STATE NAME• Q&A

2

Safety Data Background

3

FHWA Roadway Safety Data Initiatives

4

Safety Data 101• Good data helps you make better decisions• Better decisions help you make more effective use

of limited funds • More effective use of funds, more improvements,

more lives saved!

5

How Data Are Used in Safety• Collecting additional roadway data and

integrating into analysis processes will improve safety by:• Improving an agency’s ability to locate problem

areas• Improving ability to apply countermeasures • Improving ability to more accurately evaluate Reducing injuries and fatalities

6

How Data Are Used in Safety (cont.) • Analysis:– Network screening – Where are the issues?– Prioritization – In what order do you address the issues? – Countermeasure selection – What can we do to address

the issues?– Evaluation – How effective were the countermeasures?– Cost/benefit – Do the benefits justify the costs?

• Safety Plans (e.g. SHSPs) • Safety investment decisions

7

What Data Are Used? • Crash data alone isn’t enough • Comprehensive data system includes: – Crash, Roadway/Traffic, Vehicle, Driver, Citation, EMS,

etc

• For engineering – focus on roadway, traffic, and crash

8

What Data to Collect?

• Existing regulations (e.g. HSIP) do not provide specific elements

• FHWA Model Inventory of Roadway Elements (MIRE) comprehensive list of 200+ elements

• FHWA recommends 37 fundamental data elements (FDEs), roadway and traffic Data Elements to support a State’s data-driven safety program

9

Overview of MIRE FDE for Safety

10

MIRE FDEs: The Basics• MIRE FDE: Fundamental roadway and traffic Data Elements

to support a State’s data-driven safety program• 37 Elements– Roadway segment data: route number, median type,

functional class, etc.– Intersection data: intersection/junction geometry,

unique junction Identifier, intersection/junction traffic control, etc.

– Interchange/ramp data: : ramp length, interchange type, ramp AADT, functional class, etc.

• Prerequisite: a location referencing system on all public roads (GIS, LRS, etc.)

11

MIRE FDEs: The Guidance

• MAP-21 Guidance on State Safety Data Systems (December 2012)

• Recommended, not mandatory

12

Available online: http://www.fhwa.dot.gov/map21/guidance/guidesafetydata.cfm

MIRE FDE: The Guidance (cont.)

• Developed through FHWA Working Group • Many elements collected through Highway

Performance Monitoring System (HPMS) on Federal-aid roads

• Support safety programs (e.g. HSIP)• Goal: Collect on all public roads, prioritized based

on existing resources

13

Why Collect More Safety Data?

14

Why Collect More Data?

• Do more than what your agency is already doing• Do a better job of what your agency is already

doing• Ultimately: – Make better, more informed safety decisions– Get more safety improvement for dollars spent -

“more bang for your buck!”

15

Why MIRE FDE Data Collection?

• Establish minimum amount of data to collect• Develop consistent data practice • Better, more accurate cost estimating

16

Better data Better decisions Saves lives!

Benefits Beyond Safety• Decision Makers• Asset Management• Infrastructure• Operations• Maintenance• Planning • GIS

17

OPTIONAL Case Study: Using Safety Data Results in Ohio

18

Total fatalities dropped 28% from 2002 to 2011

• Improved statewide coordination through partnerships formed by Strategic Highway Safety Plan (SHSP)

Ohio DOT’s Safety Program

• Dedicates $75 million annually for safety improvements

• Spot/corridor locations• Systematic improvements

19

Ohio’s Data Improvement Program• Address-based spatial data system on all public roads

• Intersection inventory

• Refined GIS tools to improve crash location at intersections

• Expanded data collection on local roads

• Expanded traffic counts on segments and intersections

• Implementation of SafetyAnalyst

20

Benefits of Data Improvement – Safety

• Improved HSIP Transparency Reports

• Increased identification of sites with highest potential for safety improvement

21

• Improved safety performance functions (SPFs) and crash modification factors (CMFs)

• Reduced number of manual safety studies from 600 to 350

105% Increase

67% Increase

Benefits – Beyond Safety • Improvements for EMS • Improved data collection practices • Increased collaboration with districts and local

agencies • Data utilized by other offices: pavement, traffic,

planning, etc • Retire legacy tools and improve enterprise tools

22

• Integrate safety into all aspects of DOT

• Ensure collection efforts are prioritized and input obtained from all affected stakeholders

• Quantify safety benefits and implement identified best practices

• Implement improvements through an incremental and iterative process – with goal of continuous improvement

Summary Thoughts

23

How to Collect Safety Data

24

What to Collect: MIRE FDE

• MIRE Fundamental data elements to support the HSIP– Segment, Intersection, and Interchange/Ramps

• Based on– Elements needed to network screening analytical tools– Subset of MIRE– Duplicate many of Highway Performance Monitoring

System (HPMS) elements already collected for a few sample sections

25

Where to Collect MIRE FDE• Goal: All public roads • Prioritize collection– Federal-aid roads/Non-Federal-aid roads – State-maintained/Non-State maintained – Functional Classification– Urban/Rural– High crash locations

26

How to Collect MIRE FDE • Traditional and innovative methods• Resources:– FHWA Explore MIRE Element Collection Mechanisms

Report (pending publication)– MIRE Guidebook (in development)– Summary of Roadway Safety Data Partnership (RSDP) –

Capability Assessment (all 50 States)

27

How to Pay for MIRE FDE Data Collection

• Federal Funding Sources for Traffic Safety Data Activities - http://www.dottrcc.gov/funding_sources/

• Collaborate with other divisions/agencies within DOT (they might even already have it!)

• Collaborate with your neighbor States - do they need the same things?

28

The Value vs. Cost of Safety Data

29

Understanding the Cost of Safety Data

• Resources: – FHWA Market Analysis – FHWA project - Methodologies to

Determine the Benefits of Investing in Data Systems and Processes for Data-Driven Safety Programs – being developed

30

Methodologies to Determine Benefits

• Investments for data compete with infrastructure improvements

• Infrastructure improvements have CMFs to help develop C/B

• Build upon Market Analysis• Project goal: Develop methodologies/tools to

make informed decisions on data investments

31

Market Analysis: Implications for States

• Can use results to estimate costs of similar data collection in States

• Determine if fatality and injury reductions are reasonable to expect in the State

32

Safety Data in INSERT STATE

33

Safety Data in [INSERT STATE]• INSERT state specific information regarding the

current state of things locally, i.e. what data is collected?

34

Next Steps

35

Potential Next Steps A1) Have safety engineers review MIRE FDE and

determine safety data priorities for INSERT STATE NAME

2) Bring all roadway data partners to the table:a) What do we already have?b) What do we need?c) Who else needs it too? d) Determine potential funding sources.

36

Potential Next Steps B

1) Assess needs 2) Determine priorities 3) Identify and reach out to stakeholders/partners 4) Determine collection methodologies 5) Assess system capabilities 6) Identify funding 7) Obtain approval

37

Additional ResourcesThe Model Inventory of Roadway Elements (MIRE) Version 1.0 Report (October 2010)•http://www.mireinfo.org/index.htmlMAP-21 Guidance on State Safety Data Systems (December 2012)• http://www.fhwa.dot.gov/map21/guidance/

guidesafetydata.cfmMIRE FDE Cost Benefit Estimation (March 2013)•http://safety.fhwa.dot.gov/rsdp/downloads/mire_fde_%20cbe_finalrpt_032913.pdf

38

Questions/Feedback?

39

Thank you!

40

Name, email addressName, email address

Additional/Replacement Case Study*

41

Case Study: Getting Data Collection Started in Utah

42

Utah Roadway Imaging/ Inventory Project

• Purpose: Obtain data for use in making safety, pavement, and roadway asset management decisions

• Data types include:– Pavement condition– Roadway asset/inventory – Roadside features

• Scope: 5,845 centerline miles, with data collected in both directions, and 310 miles of ramps & collectors on state maintained roads

43

Project Development • Initiated by the UDOT Asset Management

Engineer in Planning & Programming• Champions: Planning & Programming, Central

Maintenance, Central Traffic & Safety• Attempting to institutionalize use of data to

sustain a long-term program

44

Project Timeline

• October 2011: Out to RFP• Nov-Dec 2011: Two-step selection process• January 2012: Contractor selected (Mandli) • Feb-Mar 2012: Refined data elements collected• April 2012: Contract signed – collection begins• September 2012: Collection complete• December 2012: Data delivery complete

45

Data Collection• Contractor is providing:– Data collection, including LiDAR point cloud– Data extraction services– Integrated software solution

46

Project Funding • Cost is being shared across UDOT Divisions;

majority of funding from:– Planning & Programming– Central Maintenance– Central Traffic & Safety

• Justification: one-time data collection effort that will be used across multiple UDOT Divisions

47

Data Uses and Benefits • Data will be shared across the UDOT enterprise

from central databases and the GIS data warehouse:– Safety analysis (combine with crashes)– Asset management (roadway, pavement & structures)– Maintenance operations (feature inventory)– Web viewer, workstations

• Flexibility to extract additional data elements in the future

48

top related