reducing power and area by interconnecting memory controllers to memory ranks with rf coplanar...

Post on 27-Mar-2015

220 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Reducing Power and Area by Interconnecting Memory Controllers to Memory Ranks with RF Coplanar Waveguides on the Same Package

WEED 2011, ISCA

Mario D. Marino, Kevin Skadron

Dept. of Computer Science – UVA

{mdm9u,skadron}@cs.virginia.edu

2

What is the problem?

Excessive power usage by the physical memory channel

– 2mW/Gbits/s by Palmer et al. ISSCC’07

– 160W for 10TB/s (Vantrease et al., ISCA’08)

– Poor scaling in physical channel: RC load in package

3

Outline

• Hypothesis: Wired-RF (ie, coplanar waveguides--CPWs) solves all these problems in technology that is easier to adopt than optical.

• Architecture for CPW memory interface

• Evaluation: area, power, and performance

• Conclusion

• PS: note that this is over wires (CPWs), not wireless!

4

Hypothesis: why wired-RF (RF) as a bandwidth solution?

RF

Low latency media andmodulation (Chang et al., “Near Speed-of-Light Signaling Over On-Chip Electrical”, 2003)

All electrical (impedances matching), development costs closer to CMOS

distances from 1mm to 30cm (delays, energy, data rate; “RF for Future Chips”, Tam et al. 2011)

Beckmann et al., “Transmission Line Caches”, MICRO’03

Frank Chang et al. (caches, modulation, high bandwidth, latency ad power reduction; MICRO’08, HPCA’08)

Quilt-packaging (RF coplanar waveguide connecting two dies, > 200GHz, low insertion loss, built), Liu, Buckhanan et al., Notre Dame

Intel-Tera (Polka, ITJ’07): on-package

Modulation and high speed from optical

5

Why can't we use RF in a traditional fashion?

• Different impedances: I/O pad, inner and outer wire bonds, PCB pads, PCB [Liu, 2006]

6

Contributions• Evaluate power and area gains by replacing

power-hungry MC circuitry with on-die RF transceivers + CPW + Quilt packaging

• Evaluate architectural performance gains due to power and area gains

7

Diagram of the proposed organization

• Example with 1 core and 1 RFMC

• RF path from a specific core to its rank

> 1mm

8

Detailed Organization

• RFMC: MCs coupled to on-die RF transceivers and on- and inter-die coplanar waveguides (CPW)

9

Quilt

• The use of Quilt (inter-dies distance ~40um) allows:

– Extending on-die CPWs

– Built for RF/low insertion loss: 0.1 dB

– Use of processor-die and DRAM dies, RF transceivers, and UCLA RF models

– Versus traditional power hungry transceivers (Palmer et al., ISSCC 2007)

– Co-planar, not flip-chip

– See Liu’s PhD dissertation and Buckhanan et al., UGIM’10

10

Interfacing on-dies CPW and Quilt

11

Quilt Packaging is a CPW

• Extension of the interconnection of two dies facing each other

• Designed for frequencies larger than 200GHz

• Prototype from Notre Dame tested up to 60 GHz

• Insertion loss (*): 0.1 dB

• So far, no transceivers needed for Quilt; due to its low insertion loss

12

Transceivers: Power and Area

• Extracted from Chang, Tam with 10% power reduction on the amplifier to account for savings for Quilt-type packaging

Technology(nm)

Data ratePer band(Gbits/s)

#carriers to match DRAM

Power (TX+RX)

(mW)

Energy per bit (pJ)

Area (TX + RX)mm2

45 7 6 28.1 0.67 0.00690

32 8 5 24 0.6 0.00495

22 9 5 23.4 0.53 0.00439

13

Area Comparison

• MC Area decreases for all components, but RF essentially eliminates PHY

• 2.4X area savings

MC RFMC

14

Energy Comparison-PHY

• Even with technology improvements, RF is more efficient for distances >= 1mm and < 10mm

• Net power savings (incl. FE & TE) of 4.6X at 5mm

Performance Evaluation

• M5 and DRAMsim

• 32K L1s, 1MB/core L2

• 8 cores

• 1 DRAM rank per MC, DDR2, at 2 GHz

• Same FE, TE for both MC, RFMC

• No RF latency benefits in the performance evaluation

16

Performance: Stream

• Baseline—current CPUs: 3 or 4 MC

• RFMC is up to 2.4x faster than MC

17

Conclusions

• RF architecture for on-package CPU-DRAM interconnection

• Evolutionary changes to CPU and DRAM design—straightforward manufacturability

• Area and power benefits (preliminary; improve with Quilt dedicated circuits)

• Benefits on performance for more cores (limited to the number of ranks if the same proportion core-to-rank is desired)

18

Thanks!

19

Power Comparison

• FE and TE present power reduction

• PHY/RF part is evaluated in the next slide (McPAT does not model RF)

top related