reconciling grace derived loading deformation with gnss ... - chanard.pdf · reconciling grace...

Post on 14-Mar-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

K.Chanard, P. Rebischung, L. Fleitout, L. Métivier, X. Collilieux & Z. Altamimi

IGS WORKSHOP 2017 | PARIS

Reconciling GRACE derived loading deformation with GNSS station position time series

MST2, Nepal

Site positions at continuous GNSS station LHAZ, Tibet

North

East

Vertical

2 IGS WORKSHOP 2017 | PARIS

Irregularities (ex: equipment replacement)(Co-seismic)

• Tectonics • Post-glacial rebound

Quasi-linear displacements

+~2cm/yr

~2cm/yr

~2mm/yr

Site positions at continuous GNSS station LHAZ, Tibet

North

East

Vertical

Measurement discontinuities

2 IGS WORKSHOP 2017 | PARIS

• Tectonics • Post-glacial rebound

Quasi-linear displacements

+

Site positions at continuous GNSS station LHAZ, Tibet

ITRF2008

North

East

Vertical• Seasonal loading (continental hydrology,

atmospheric and non-tidal oceanic loads)• (Postseismic deformation)• (Transient deformation)

NON-LINEAR DEFORMATION IN TIME

+

~ 5mm

~ 10mm

Irregularities (ex: equipment replacement)(Co-seismic)

Measurement discontinuities

2 IGS WORKSHOP 2017 | PARIS

IGS WORKSHOP 2017 | PARIS

Physical Explanation

3

Surface load Horizontal Vertical

Seasonal displacements

Loading Season Unloading Season

Physical Model 1. Hypothesis: Rheological model for Earth

2. Convolve seasonal load with Green functions associated to Earth model

Modeling Seasonal Deformation

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

0 100 200 300 400 500 600 700 800 mm

Datasets - Degree-1 - Earth rheology

GRACE — Seasonal Equivalent Water Height 2002-2012

: Water height variations between Summer and Winter (CNES/GRGS)�h

Continental water, oceanic and atmospheric massLong term trends and earthquake contributions removed

IGS WORKSHOP 2017 | PARIS 4

http://grgs.obs-mip.fr/grace/

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

0 100 200 300 400 500 600 700 800 mm

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

Datasets - Degree-1 - Earth rheology

GNSS - IGS REPRO 2 RESIDUALS

: Water height variations between Summer and Winter (CNES/GRGS)�h

IGS WORKSHOP 2017 | PARIS 5

1078 GNSS sites globally distributed Time series corrected for co- and postseismic contributions

(http://acc.igs.org/reprocess2.html)

LHAZGOLD

Numbers of models: difficulty to predict horizontal components

(Fu et al., 2013)

Vertical

GRACE derived model

GPSdata

1cm

Horizontal

GPS dataGRACE derived model

5mm

(Van Dam et al., 2001 ; Davis et al. 2004)

Empirical estimates overlooking spatio-temporal complexity of seasonal signals

(Fu et al., 2013)

IGS WORKSHOP 2017 | PARIS 6

Loading models VS GNSS observations

Global seasonal signals in GNSS time series are related to satellite derived hydrology

Elastic spherical and layered Earth model

(PREM)

Seasonal loading (GRACE)

+ GNSS observations

1. Predict seasonal horizontal and vertical displacements

OUTLINE

IGS WORKSHOP 2017 | PARIS 7

GRACE-derived model VS GNSS:Degree-1 deformation and reference frame issue

CM

CF

CM

CF

Season 1

Season 2

CN

CN

CM

CF

CM

CF

Season 1

Season 2

CN

CN

Degree-1 loading induces:

- Geocenter Motion (translation CM-CF)- Deformation field of the Earth surface

GRACE does not capture degree-1 spherical harmonics loads, contrary to GNSS

To insure comparison, degree-1 contributions are added using coefficients from Swenson et al. (2008)

IGS WORKSHOP 2017 | PARIS 8

Datasets - Degree-1 - Earth rheology

Datasets - Degree-1 - Earth rheology

IGS WORKSHOP 2017 | PARIS 9

−10

−5

0

5

10

Det

. Eas

t (m

m)

2002 2004 2006 2008 2010 2012

LHAZ

−10

−5

0

5

10

Det

. Nor

th (m

m)

2002 2004 2006 2008 2010 2012

−30

−20

−10

0

10

20

30

Det

. Ver

tical

(mm

)

2002 2004 2006 2008 2010 2012

PREM/Deg1-Swenson

Elastic (PREM) & Seasonal Load (GRACE + Deg1-Swenson)

−10

−5

0

5

10

Det

. Eas

t (m

m)

2002 2004 2006 2008 2010 2012

GOLD

−10

−5

0

5

10

Det

. Nor

th (m

m)

2002 2004 2006 2008 2010 2012

−30

−20

−10

0

10

20

30

Det

. Ver

tical

(mm

)

2002 2004 2006 2008 2010 2012

PREM/Deg1-Swenson

Datasets - Degree-1 - Earth rheology

IGS WORKSHOP 2017 | PARIS 10

Elastic (PREM) & Seasonal Load (GRACE + Deg1-Swenson)

Datasets - Degree-1 - Earth rheology

IGS WORKSHOP 2017 | PARIS 11

East − PREM/Deg1−Swenson

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)North − PREM/Deg1−Swenson

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

Vertical − PREM/Deg1−Swenson

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

WRMS Obs. - Elastic & GRACE + Deg1-Swenson

EAST

NORTH

VERTICAL

WRMS reduction (%)North: 536 sites (mean 1.2% )East: 506 sites (mean 4.1%)Vert.: 864 sites (mean 32%)

GRACE-derived model VS GNSS:Degree-1 deformation and reference frame issue

CM

CF

CM

CF

Season 1

Season 2

CN

CN

CM

CF

CM

CF

Season 1

Season 2

CN

CN

To insure comparison, degree-1 contributions are added using coefficients from Swenson et al. (2008)

IGS WORKSHOP 2017 | PARIS 12

Datasets - Degree-1 - Earth rheology

derived from comparing GNSS-GRACE derived model with no degree-1

Deformation field

,

Linear combination of:- 1 Translation on horizontal components- 1 Translation on the vertical component

Degree-1

(prevents the deg-1 horizontal deformation to be biasedby unmodelled vertical signals (thermal expansion, etc.))

−10

−5

0

5

10

Det

. Eas

t (m

m)

2002 2004 2006 2008 2010 2012

LHAZ

−10

−5

0

5

10

Det

. Nor

th (m

m)

2002 2004 2006 2008 2010 2012

−30

−20

−10

0

10

20

30

Det

. Ver

tical

(mm

)

2002 2004 2006 2008 2010 2012

PREM/Deg1-Swenson PREM/Deg1-estimated

IGS WORKSHOP 2017 | PARIS 13

Datasets - Degree-1 - Earth rheology

Elastic (PREM) & Seasonal Load (GRACE + Deg1-Estimated)

−10

−5

0

5

10

Det

. Eas

t (m

m)

2002 2004 2006 2008 2010 2012

GOLD

−10

−5

0

5

10

Det

. Nor

th (m

m)

2002 2004 2006 2008 2010 2012

−30

−20

−10

0

10

20

30

Det

. Ver

tical

(mm

)

2002 2004 2006 2008 2010 2012

PREM/Deg1-Swenson PREM/Deg1-estimated

IGS WORKSHOP 2017 | PARIS 14

Datasets - Degree-1 - Earth rheology

Elastic (PREM) & Seasonal Load (GRACE + Deg1-Estimated)

Vertical − PREM/Deg1−estimated

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

East − PREM/Deg1−estimated

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

North − PREM/Deg1−estimated

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

Datasets - Degree-1 - Earth rheology

IGS WORKSHOP 2017 | PARIS 15

WRMS Obs. - Elastic & GRACE + Deg1-EstimatedEAST

NORTH

VERTICAL

WRMS reduction (%)North: 1048 sites (mean 43% )East: 1010 sites (mean 31%)Vert.: 902 sites (mean 34%)

Derived Geocenter motion compatible with other techniques (annual amplitude: Tx=2.3mm,Ty=2.6mm,Tz=4.5mm)

2. Use seasonal deformation to infer Earth rheological properties

OUTLINE

Rheology of the Earth at an annual time scale?

Seasonal loading (GRACE)

+ GNSS Observations

IGS WORKSHOP 2017 | PARIS 16

Viscoelasticity in the asthenosphere (70-270km)?

Surface displacements & Seismic cycleEa

st d

ispl

acem

ent n

orm

aliz

ed b

y co

seis

mic

Time since earthquake (yr) (Trubienko et al., 2014)

Earthquake

Postseimic deformation

East

dis

plac

emen

t nor

mal

ized

by

cose

ism

ic

Time since earthquake (yr)

Rapid deformationAfterslip?Transient viscosity?Poroelastic rebound?

IGS WORKSHOP 2017 | PARIS 17

Constraints on the asthenosphere transient viscosity

Burger rheology in the asthenosphere derived from postseismic studies

Compatible with seasonal deformation?

η

ηT

µT

µ

Burgers material

Elastic material

Elastic material

H

He

, κ

µ, κ

µ, κ

η

Burger material

η1

η2

µ2

µ1

⌘Tµ ⌘

µTTransient viscosity

Long-term viscosity

Maxwell

IGS WORKSHOP 2017 | PARIS 18

Datasets - Degree-1 - Earth rheology

Constraints on the asthenosphere transient viscosity

−10

−5

0

5

10

2002 2004 2006 2008 2010 2012

−10

−5

0

5

10

2002 2004 2006 2008 2010 2012

SAGA (Brazil)

−30

−20

−10

0

10

20

30

2002 2004 2006 2008 2010 2012

Det

. Nor

th (m

m)

Det

. Eas

t (m

m)

Det

. Ver

tical

(mm

)

Time (years)

Burger 1 Elastic Burger 2= µ/10µT1.1017 Pa.sηT = ,( ) = µ/10µT1.1018 Pa.sηT = ,( ) = µµT1.1017 Pa.sηT = ,( )

Burger 3

(Values from published postseismic studies)

IGS WORKSHOP 2017 | PARIS 19

Datasets - Degree-1 - Earth rheology

Constraints on the asthenosphere transient viscosity

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance 1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance

1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance

1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance

1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance

1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance

1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

Global Admittance (195 cGPS stations)

Transient Viscosities lower than

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance

1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

Pa.s

0.2

0.4

0.6

0.8

1µ/ 10

µ/ 5

µ1.1017 5.1017 1.1018

µ T

ηT (Pa.s)

(frac

tion

of

) µ

a) Effect of transient viscosity and shear modulus (H=200km, He=70km)

Horizontal Adm

ittance

b) Effect asthenospheric thickness and transient viscosity (He=70km, = µ/5)µT

0.2

0.4

0.6

0.8

Horizontal Adm

ittance

1

1.1017 5.1017 1.1018ηT (Pa.s)

200

150

100As

then

osph

eric

thic

knes

s (km

)

c) Effect asthenospheric thickness and transient shear modulus (He=70km, = )ηT 1 10 17. Pa.s

0.4

0.6

0.8

Horizontal Adm

ittance

1200

150

100

Asth

enos

pher

ic th

ickn

ess (

km)

µ µ/ 10µ/ 50.2

µT (fraction of )µ

are not compatible with seasonal observations Shear modulus smaller than

1.2

1

0.8

0.6

0.4

Other mechanisms may play a role when low transient viscosities are required to explain observations

Transposable to longer periods of loading, constraining larger viscosities

IGS WORKSHOP 2017 | PARIS 20

Datasets - Degree-1 - Earth rheology

Phase transformations in the mantle transition zone (400-660km)

Peak to Peak Pressure at 400km

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

0 1 2 3 4 5 6 7 8 9 10kPa

Influence of seasonal surface loading in the Earth mantle:

Unconstrained reactions kinetics between seismic waves and postglacial rebound

IGS WORKSHOP 2017 | PARIS 21

Datasets - Degree-1 - Earth rheology

Induced pressure variations at 400km depth Pressure variations in the mantle from seasonal surface

loading

Mineral transformations

Volume variations at 400-660km(effect on compressibility)

Charge saisonnière

400k

m66

0km

Zone de Transition du

ManteauEquilibre

1 2Seasonal load

➡➡

Mineral Equilibrium

IGS WORKSHOP 2017 | PARIS 22

Datasets - Degree-1 - Earth rheology

Bulk modulus rheology

ηκ

κ0

κ∞

Bulk modulus rheology

ηκ

κ0

κ∞

Bulk modulus rheology

ηκ

κ0

κ∞

Bulk modulus rheology

ηκ

κ0

κ∞, ~transformation kinetics

, elastic incompressibility, relaxed incompressibility

Incompressibility is frequency dependent

Phase transformations in the mantle are divariantAt thermodynamic equilibrium:

Modeling phase transformations:

0 = ⇢�P

�⇢

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Spherical harmonic order

Am

plitu

de

of

Ve

rtic

al d

isp

./E

WH

Elastic

Phase transition

Constraints on Phase transformations in the mantle transition zone

0 10 20 30 40 50 600

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Am

plitu

de o

f H

orizonta

l dis

p./E

WH

Spherical harmonic order

Elastic

Phase transition

+ phase shift < 10days

IGS WORKSHOP 2017 | PARIS 23

Datasets - Degree-1 - Earth rheology

−10

−5

0

5

10

Det

. Eas

t (m

m)

2002 2004 2006 2008 2010 2012

LHAZ

−10

−5

0

5

10

Det

. Nor

th (m

m)

2002 2004 2006 2008 2010 2012

−30

−20

−10

0

10

20

30

Det

. Ver

tical

(mm

)

2002 2004 2006 2008 2010 2012

PREM/Deg1-Swenson PREM/Deg1-estimated Phase transtions

Best fitting model for completion of 22% of total reaction, kinetics ~ 250 days

−10

−5

0

5

10

Det

. Eas

t (m

m)

2002 2004 2006 2008 2010 2012

GOLD

−10

−5

0

5

10

Det

. Nor

th (m

m)

2002 2004 2006 2008 2010 2012

−30

−20

−10

0

10

20

30

Det

. Ver

tical

(mm

)

2002 2004 2006 2008 2010 2012

PREM/Deg1-Swenson PREM/Deg1-estimated Phase transtions

IGS WORKSHOP 2017 | PARIS 24

Datasets - Degree-1 - Earth rheology

Best fitting model for completion of 22% of total reaction, kinetics ~ 250 days

North − Mantle Phase Transitions

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

East − Mantle Phase Transitions

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

Vertical − PREM/Deg1−estimated

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

60˚

60˚

120˚

120˚

180˚

180˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−100 −80 −60 −40 −20 0 20 40 60 80 100 WRMS reduction (%)

IGS WORKSHOP 2017 | PARIS 25

WRMS Obs. - Phase transitions

EAST

NORTH

VERTICAL

WRMS reduction (%)

North: 1054 sites (mean 56% )East: 1015 sites (mean 41%)Vert.: 943 sites (mean 39%)

Datasets - Degree-1 - Earth rheology

IGS WORKSHOP 2017 | PARIS 26

Conclusions

Seasonal horizontal and vertical displacements are indeed related to surface hydrology

GRACE can be used to accurately model seasonal deformation providing that degree-1 loads coefficients are re-estimated

Seasonal deformation may provide insights on the Earth rheology:

- lower bound on asthenospheric transient viscosities,

- partial occurrence of mantle phase transitions at an annual time scale

Summer

Winter

Pattern of Mw>7 deep earthquakes (>70km) from 1900 to present

(Zhan & Shearer, 2015)

top related