qs 2009, ipamhelper.ipam.ucla.edu/publications/qs2009/qs2009_8060.pdf · nikolay prokofiev, umass,...

Post on 28-Jun-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Nikolay Prokofiev, Umass, Amherst

Boris SvistunovUMass, Amherst

work done in collaboration with 

QS 2009, IPAM

DIAGRAMMATIC MONTE CARLO: WHAT HAPPENS TO THE SIGN‐PROBLEM

Kris van HouckeUMass, Amherst,

Univ. Gent

Evgeny KozikUMass, Amherst, 

ETH, Zurich

Outline

Ising spins vs Feynman Diagrams: Is there any difference from the Monte Carlo perspective?

Polarons in Fermi systems

Many‐body implementation for the Fermi‐Hubbard model

Acceptable solution to the sign problem? 

Yes! (so far …)

Feynman Diagrams: graphical representation for the high‐order perturbation theory  

int0 H HH= +

/

0 0 0/ ...

H Tn n

nH T

n nn

AeA A AB AC

e

Ψ Ψ= = + + +

Ψ Ψ

∑∑

int H∝ 2int H∝

explicit graphical representation  for all terms and easy rules to convert graphs to math 

Diagrammatic technique: explicit summation of geometric series  “on‐the‐go” with self‐consistent re‐formulation of the diagrams

† † †' ' '

, , '

( ) k k k q k q p q p kk kpq

H a a U a a a aσ σ σ σ σ σσ σσ

ε μ − += − +∑ ∑

1 2( )qU δ τ τ−

(0)3 4( , )G k τ τ

↓ −(0)

5 6( , )G p τ τ ↑ −

Configuration space =  (diagram order, topology and types of  lines, internal variables) 

Standard Monte Carlo setup:

‐ each cnf. has a weight factor c n fW

‐ quantity of interest

c n f c n fc n f

c n fc n f

A WA

W=

∑∑

‐ configuration space  (depends on the model and it’s representation)    

/c n fE Te −

Monte Carlo

MC

cnfcnf

A ∑ configurations  generated from the prob. distribution

cnfW

( ) ( )1 2 1 20

; , , ,n nnn

A y d x d x d x W x x x y Wνξ ν

ξ∞

=

= =∑∑ ∑∫∫∫ur r r r r r r ur

K K

term order

different terms ofof the same order 

Integration variables

Contribution to the answer 

Monte Carlo (Metropolis‐Rosenbluth‐Teller) cycle:

Diagram ν suggest a change

Accept with probability

'

'

1(new { })acc

v v

WR

W P xν

ν

∼ v

Collect statistics: ( ) ( ) ( )counter counterA y A y sign ν= +ur ur

sign problem and potential trouble!, but …

Sign‐problem

Variational methods+ universal‐ often reliable only at T=0‐ systematic errors‐ finite‐size extrapolation

Determinant MC+ “solves” case  ‐ CPU expensive ‐ not universal‐ finite‐size extrapolation

1i in nσ σ−+ =Cluster DMFT / DCA methods+ universal‐ cluster size extrapolation    

Diagrammatic MC+  universal‐ diagram‐order extrapolation    

Cluster DMFT

linear size

Nξ =diagram order

Diagrammatic MC

DF LTεξ ⎛ ⎞= ⎜ ⎟

⎝ ⎠

Computational complexityIs exponential : exp{# }ξ

for irreducible diagrams

Further advantages of the diagrammatic technique

Calculate irreducible diagrams for  ,   , … to get      ,     ,  …. from Dyson equations  

+ + + ...=0 ( , )G p τ

1 2( , )p τ τΣ −

Σ Π G U

+ =Dyson Equation:( , )G p τ

Make the entire scheme self‐consistent, i.e. all internal lines in   ,      , … are “bold”Σ Π

U +=

Σ

or(0) Γ

+ =U (0)G

Γ + + = T

G(0) (0)GG G G −

Polaron problem:

environmentparticl couplinge HHH H= + + → quasiparticle

*( 0), , ( , ), ...E p m G p t=

Electrons in semiconducting crystals (electron‐phonon polarons)

e e

( )

( )( 1/ 2)

( )

. .

q qq

q

p p

pqq

p

p q p

H p a

V

a

a a

p

h

b

c

b

b

ω

ε

+

+

+−

+

= +

++

+

electron

phonons

el.‐ph. interaction

Fermi‐polaron problem:Fermi s

2

ea ( )' ( ') '2

H V rH nr r rpm

d= + + −∫

0rr

( )V r

( )rΨ

1/3 ~ /Fn k π

0

~ 10

F S

F

kk r

a→

Universal physics(            independent)( )V r

particle dressed by interactions with the Fermi sea:

Non‐interacting     Fermi sea

Extra      fermion

Fermionic quasiparticle (polaron)

BCS BEC

Bosonic quasiparticle (molecule)

cold Fermi gases with population strong imbalance orthogonality catastrophe, X‐ray singularities, heavy fermions, 

quantum diffusion in metals, ions in He‐3,  etc.

Examples: 

Electron‐phonon polarons (e.g. Frohlich model)= particle in the bosonic environment.

Too “simple”, no sign problem, 210N :

Fermi –polarons (polarized resonant Fermi gas= particle in the fermionic environment.

Γ

G↑

G↓

Sign problem!    max 11N =self‐consistent       and G Γ

self‐consistent        onlyG

Fermi‐Hubbard model:

( , )G p τ↑

( )U q

( , )G p τ↓

Self‐consistency in the form of Dyson, RPA

+ = ΣG U

+ =U

Π

Extrapolate to the                    limit.N → ∞

(0)G

, , i j ii i

ij i iH t a a U n n nσ σ σ

σ σ

μ ↑ ↓< >

= − + −∑ ∑ ∑

Evgeni Kozik

Kris Van‐Houcke

1D

/ 4U t =/ 0.5tμ =−

/ 0.3T t =

3D

/ 4U t =/ 1.5tμ =

/ 0.5T t =

Better quality than in 1D!

In 3D temperatures are low enough                            to claim Fermi‐liquid properties / 0.03T zt <

(using bare propagators so far)

Conclusions/perspectives

• Bold-line Diagrammatic series can be efficiently simulated.- combine analytic and numeric tools

- thermodynamic-limit results

- sign-problem tolerant (relatively small configuration space)

• Work in progress: bold-line implementation for the Hubbard

model and the resonant Fermi-gas ( version) and the continuous

electron gas, or jellium model (screening version).

• Next step: Effects of disorder, broken symmetry phases, additional correlation functions, etc.

G Γ

Γ

top related