purpose - courses.cecs.anu.edu.aucourses.cecs.anu.edu.au/courses/engn8101/lectures...parameter...

Post on 10-May-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

8/06/2007 ENGN8101 Modelling and Optimization 1

To provide direction in understanding the process and application of Parameter Design in the

development of robust products and processes

PurposePurpose

8/06/2007 ENGN8101 Modelling and Optimization 2

Parameter Design Course Objectives

Describe how Parameter Design relates to quality engineering.Apply the Engineered System model to the product/process of study.Identify the ideal function of the system.Identify control and noise factors affecting the system.

8/06/2007 ENGN8101 Modelling and Optimization 3

Parameter Design Course Objectives (continued)

Develop an experimental plan for both static and dynamic Parameter Design experiments.Use statistical concepts and tools from Experimental Design to analyze data from Parameter Design experiments.Make predictions and confirm improved robustness.Apply Parameter Design principles to teamwork to optimize project outcomes.

Introduction to Robustness

Introduction

to Robustness

8/06/2007 ENGN8101 Modelling and Optimization 5

Traditional Philosophy of Quality

No Good No GoodGood

No Loss Loss

LowerLimit

yTargetValue

Loss

ResponseUpperLimit

8/06/2007 ENGN8101 Modelling and Optimization 6

Either Side ofthe Specification Limit

Lower Limit

Target Value

Upper Limit

Just “in Spec”

Just“out of Spec”

8/06/2007 ENGN8101 Modelling and Optimization 7

Lower Limit

Target Value

Upper Limit

The Difference Between Targetand Specification Limit

8/06/2007 ENGN8101 Modelling and Optimization 8

Meeting the Target

The further away from target value, the lower the quality and the less satisfied the customer

Meet the TargetMeet the Target

The goal is to meet the target, not the specification

Lower Limit

Target Value

Upper Limit

8/06/2007 ENGN8101 Modelling and Optimization 9

Loss Function Philosophy

TargetPoor

ym

Loss

Poor

BestGood Good

FairFair

$

Response

8/06/2007 ENGN8101 Modelling and Optimization 10

How the Distribution Affects Quality Loss

Producing this distribution, we would experience some loss

Lower Limit

Target Value

Upper Limit

Loss Function

8/06/2007 ENGN8101 Modelling and Optimization 11

How the Distribution Affects Quality Loss

Producing this distribution, that has less variance from target, the loss would be lower

Lower Limit

Target Value

Upper Limit

Loss Function

8/06/2007 ENGN8101 Modelling and Optimization 12

Definition of Noise

NOISE FACTORS:Parameters which affect system response variability and are difficult, impossible or expensive to control.

8/06/2007 ENGN8101 Modelling and Optimization 13

Robustness

ROBUSTNESS: Low system response variability in the presence of noise.

8/06/2007 ENGN8101 Modelling and Optimization 14

For Example...

As consumers, we expect our automobiles to start every time, on the first turn of the key, regardless of:

Ambient temperatureAltitudeAge of the carHot or cold start, etc.

8/06/2007 ENGN8101 Modelling and Optimization 15

The Robust Product/Process

The robust product/process can operate within a wide range of conditions and still perform its intended function at a high quality level as perceived by the customer.

8/06/2007 ENGN8101 Modelling and Optimization 16

The Non-Robust Product/Process

The non-robust product/process will operate at a high quality level only within a limited range of conditions.

Parameter Design Introduction

Parameter

Design Intro

8/06/2007 ENGN8101 Modelling and Optimization 18

Dealing With Noise

Traditional– Eliminate or reduce– Compensate– Overlook

Parameter Design– Minimize the effect of noise

8/06/2007 ENGN8101 Modelling and Optimization 19

Parameter Designat the INA Tile Company

Kiln Wall

BurnersTiles

Initial Distribution

TargetAcceptable Deviation

TileDimension

8/06/2007 ENGN8101 Modelling and Optimization 20

The Traditional Approach

Upgrade technology– Build a new kiln– Add more burners

Feedback control– Control the temperature variation of the oven

8/06/2007 ENGN8101 Modelling and Optimization 21

Alternative Solutions

1. Redesign and build a new kiln» Cost = $1 million

2. Adjust the parameters that could be changed easily and inexpensively

» Cost = Unknown

8/06/2007 ENGN8101 Modelling and Optimization 22

Actions

$$ $$ $

INA Tile Company AlternativesCost Comparisons

Inspection and Scrap

Redesigned Kiln Increased Lime Content

8/06/2007 ENGN8101 Modelling and Optimization 23

Parameter Design at the INA Tile Company Summary

TargetAcceptable Deviation

Improved Distribution

Initial Distribution

Tile Dimension

8/06/2007 ENGN8101 Modelling and Optimization 24

What is the intent and how do we maximize it?

Shift from:

What is wrong and how do we fix it?

to:

Dr. Genichi Taguchi’s Approach

8/06/2007 ENGN8101 Modelling and Optimization 25

Making the system insensitive to usage variations

Shift from:

Controlling, compensating or eliminating usage variationsto:

Dr. Genichi Taguchi’s Approach

8/06/2007 ENGN8101 Modelling and Optimization 26

Taguchi’s 3-Step Robust Engineering Process

1. Concept Design

2. Parameter Design

3. Tolerance Design

8/06/2007 ENGN8101 Modelling and Optimization 27

The Impact ofIgnoring Parameter Design

Concept DesignOften requires longer lead timesMay introduce unnecessarily high levels of technology

Tolerance DesignMakes products more expensive to manufacture

8/06/2007 ENGN8101 Modelling and Optimization 28

Parameter Design

2.Selecting optimum values for parameters that will reduce the variability of the response to noise

The best design is determined at the leastcost by:1. Running a designed experiment with

low cost components and processsettings

8/06/2007 ENGN8101 Modelling and Optimization 29

Parameter Design

4.Selecting the lowest cost setting for factors that have minimal effect onresponse

The best design is determined at the leastcost by:3. Selecting optimum values for control

factors that will shift the mean of theresponse toward target

8/06/2007 ENGN8101 Modelling and Optimization 30

Steps in Parameter Design

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

Parameter Design: Static

Parameter

Design: Static

8/06/2007 ENGN8101 Modelling and Optimization 32

Steps in Parameter Design: Static

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

8/06/2007 ENGN8101 Modelling and Optimization 33

Project Selection

Project selection should be based on the potential to:– Increase customer satisfaction– Increase reliability– Incorporate new technology– Reduce cost– Reduce warranty– Achieve Best-in-Class

8/06/2007 ENGN8101 Modelling and Optimization 34

Successful Project Requirements

A clear objective Cross-functional team Thorough planning Management support

8/06/2007 ENGN8101 Modelling and Optimization 35

Steps in Parameter Design: Static

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

8/06/2007 ENGN8101 Modelling and Optimization 36

Customer’s World

“Voice of the Customer”

INTENT:What the customer expects

PERCEIVED RESULT:What the

customer gets

Customer’s World

8/06/2007 ENGN8101 Modelling and Optimization 37

SYSTEM:Transforms intent into perceived

result

SIGNAL:Causes the system to fulfill the intent

RESPONSE (y):System output that determines the perceived result

Engineer’s World

Engineer’s World

8/06/2007 ENGN8101 Modelling and Optimization 38

Signal Energy

Transformations

Engineer’s World

Response (y)

Intended Result

Unintended Result

Maximizing energy which produces the intended result will minimize the unintended results (error states)

System:

Energy Transfer

8/06/2007 ENGN8101 Modelling and Optimization 39

The ideal function is the transfer of energy to the intended result

Ideal Function

Engineer’s World

Response (y)

Intended Result

SystemSignal

8/06/2007 ENGN8101 Modelling and Optimization 40

Measuring the transformation of energy

Shift from:

Measuring symptoms of poor quality

to:

Dr. Genichi Taguchi’s Approach

8/06/2007 ENGN8101 Modelling and Optimization 41

Response

A response should:Be related to the Perceived ResultBe an engineering metricBe related to the Ideal Function of the systemQuantify the energy transfer

8/06/2007 ENGN8101 Modelling and Optimization 42

Composite View

“Voice of the Customer”

System Response (y)Signal

Customer Intent

PerceivedResult

8/06/2007 ENGN8101 Modelling and Optimization 43

Steps in Parameter Design: Static

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

8/06/2007 ENGN8101 Modelling and Optimization 44

Completing the Engineered System

Signal ResponseSystem

CONTROL FACTORS: parameters that are controllable by the engineer

NOISE FACTORS: parameters that affect the system and are difficult, impossible or expensive to control

8/06/2007 ENGN8101 Modelling and Optimization 45

Where to Look for Noise

environment

customer usage

neighboring systems

deterioration

manufacturing

8/06/2007 ENGN8101 Modelling and Optimization 46

Noise or Control?

Is material hardness (Rockwell) a noise or control factor?

ControlNoise

8/06/2007 ENGN8101 Modelling and Optimization 47

Steps in Parameter Design: Static

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

8/06/2007 ENGN8101 Modelling and Optimization 48

Experimental PlanSelect Control Factors

Filter control factor list based on:– Improvement potential– Change feasibility– Cost– Testing resources – Prioritize list

Control FactorsA B C …

8/06/2007 ENGN8101 Modelling and Optimization 49

Experimental PlanIdentify Levels

Keep in mind:– 2 or 3 levels is most

common– Level range should be

as wide as possible– One level may

represent baseline– More levels require

more testing

A1

A2

Leve

ls…

Control FactorsA B C …

8/06/2007 ENGN8101 Modelling and Optimization 50

Experimental PlanSelect Orthogonal Array

Select based on:– Number of factors– Number of levels– Testing resources

Control FactorsA B C …

Leve

ls

Orthogonal array L?This array is called the Inner Array

8/06/2007 ENGN8101 Modelling and Optimization 51

Steps in Parameter Design: Static

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

8/06/2007 ENGN8101 Modelling and Optimization 52

Inner and Outer Arrays

A B CControl Factors

...

Noise Factors

Outer Orthogonal Array

Response Data

Inner Orthogonal

Array

8/06/2007 ENGN8101 Modelling and Optimization 53

Noise

Noise Factors

Outer Array – Effect on energy transfer– Effect on response

variability– Engineering knowledge– Screening experiments– Customer usage profiles

• Prioritize noise factor list based on:

8/06/2007 ENGN8101 Modelling and Optimization 54

Steps in Parameter Design: Static

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

8/06/2007 ENGN8101 Modelling and Optimization 55

Preliminary Run

Dot plot

ResponseN1 N2

8/06/2007 ENGN8101 Modelling and Optimization 56

Experimental Layout

An experiment can be run in any order

Outer Array

Inner Array

A B C …...y11 y12

y21 y22 ...

............

123

Run N1 N2…

8/06/2007 ENGN8101 Modelling and Optimization 57

Steps in Parameter Design: Static

1. Identify Project and Team

2. Formulate Engineered System: Ideal Function

3. Formulate Engineered System: Parameters

4. Assign Control Factors to Inner Array

5. Assign Noise Factors to Outer Array

6. Conduct Experiment and Collect Data

7. Analyze Data and Select Optimal Design

8. Predict and Confirm

8/06/2007 ENGN8101 Modelling and Optimization 58

1900305000.0On

15

Level2

600456000.5Off

9

Ball-and-Ramp Analysis: Introduction

Response:Swirl Time (secs)

Control Factors (Inner Array):L : Run Length (mm)A : Ramp-to-Funnel Angle (deg)H : Run End Height (mm)C : Clamping (turns unscrewed)O : Operator Hat

Noise Factor (Outer Array)Ball Size (mm)

8/06/2007 ENGN8101 Modelling and Optimization 59

Experimental Plan

25

11

14

267 28 2

Run No. A

123 1

1

1

2

122

H

12

2

1

2

211

O

12

C

1

1

2

212

21

L

2

1

1

112

22

1

1

1

221

22

c6

2

1

2

121

21

c5NOISE

N1 N2

8/06/2007 ENGN8101 Modelling and Optimization 60

Calculating Averages

13.0 13.0 13.5

7.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

1 1 1 1 1 8.3 8.4 8.11

8.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

9.1 9.4 9.3 11.7 11.9 11.72 1 2 2 167 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 18 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2

Run No. A H O C L N1

NOISEN2

5.4 5.1 5.4 6.7 6.8 6.21 1 1 2 22

N1 N2 y

3 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

Avg 1Avg 2Effect Effect

Avg N2Avg N1

8/06/2007 ENGN8101 Modelling and Optimization 61

13.0 13.0 13.5

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

10.71 1 1 1 1 8.3 8.4 8.11

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 167 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 22

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

Avg 1Avg 2Effect

Avg N2Avg N1Effect

Calculating Averages

8/06/2007 ENGN8101 Modelling and Optimization 62

13.0 13.0 13.5

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.75

10.71 1 1 1 1 8.3 8.4 8.1 8.31

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.34

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.367 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.2

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.32

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5

Avg 1Avg 2Effect Effect

Avg N2Avg N1

Calculating Averages

8/06/2007 ENGN8101 Modelling and Optimization 63

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

Avg 1Avg 2Effect Effect

Avg N2Avg N1

Calculating Averages

8/06/2007 ENGN8101 Modelling and Optimization 64

Calculating Control Factor Effects

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

Avg 1Avg 2Effect Effect

Avg N2Avg N1

8/06/2007 ENGN8101 Modelling and Optimization 65

10.7

9.710.512.6

9.2

Calculating Control Factor Effects

7.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

1 1 1 1 1 8.3 8.4 8.1 13.0 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

9.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.38 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 10.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

8.8Avg 1Avg 2Effect Effect

Avg N2Avg N1

8/06/2007 ENGN8101 Modelling and Optimization 66

Calculating Control Factor Effects

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

10.58.8Avg 1

Avg 2Effect Effect

Avg N2Avg N1

8/06/2007 ENGN8101 Modelling and Optimization 67

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

9.7

Calculating Control Factor Effects

7.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

-1.710.5

8.8Avg 1Avg 2Effect Effect

Avg N2Avg N1

8/06/2007 ENGN8101 Modelling and Optimization 68

Calculating Control Factor Effects

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

Avg 1Avg 2Effect Effect

9.2 9.6 10.5 10.910.1 9.7 8.9 8.4-0.9 -0.1 1.6 2.5

Avg N2Avg N1

-1.710.5

8.8

8/06/2007 ENGN8101 Modelling and Optimization 69

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

-1.710.5

8.8Avg 1Avg 2Effect Effect

9.2 9.6 10.5 10.910.1 9.7 8.9 8.4-0.9 -0.1 1.6 2.5

Avg N2Avg N1

Calculating the Noise Effect

8/06/2007 ENGN8101 Modelling and Optimization 70

10.7

11.5 11.6 12.0

13.0 13.0 13.5

11.4 11.5 11.4

11.7 11.9 11.715.5 15.4 15.110.8 10.6

6.7 6.8 6.211.0 11.2 11.2

11.5

9.77.6 7.8 7.62 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 8.3 13.21

9.98.5 8.3 8.21 2 2 2 1 8.3 11.44

10.59.1 9.4 9.32 1 2 2 1 9.3 11.867 9.8 10.0 10.02 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.41 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.51 2 2 1 2 6.5 11.1

-1.710.5

8.8Avg 1Avg 2Effect Effect

9.2 9.6 10.5 10.910.1 9.7 8.9 8.4-0.9 -0.1 1.6 2.5

Avg N2Avg N1

Calculating the Noise Effect

8/06/2007 ENGN8101 Modelling and Optimization 71

Calculating the Noise Effect

13.0

11.5

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

-1.710.5

8.8Avg 1Avg 2Effect Effect

9.2 9.6 10.5 10.910.1 9.7 8.9 8.4-0.9 -0.1 1.6 2.5

7.9Avg N2Avg N1

8/06/2007 ENGN8101 Modelling and Optimization 72

Calculating the Noise Effect

3.6

13.0

11.5

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 2 7.7 11.75

10.71 1 1 1 1 8.3 8.4 8.1 13.0 13.5 8.3 13.21

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 1 8.3 11.44

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 1 9.3 11.867 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 9.9 15.3 12.68 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 7.7 9.210.7

Run No. A H O C L N1

NOISEN2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 2 5.3 6.62

N1 N2 y

8.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2 6.5 11.1

-1.710.5

8.8Avg 1Avg 2Effect Effect

9.2 9.6 10.5 10.910.1 9.7 8.9 8.4-0.9 -0.1 1.6 2.5

7.9Avg N2Avg N1

8/06/2007 ENGN8101 Modelling and Optimization 73

Avg 1Avg 2Effect

A H O C L N8.8 9.2 9.6 10.5 10.9 7.9

10.5 10.1 9.7 8.9 8.4 11.5− 1.6 − 0.9 − 0.1 1.6 2.5 3.6

Main Effects Plot

6789

10111213

A1 A2 H1 H2 O1 O2 C1 C2 L1 L2 N1 N2

Factors

Ave

rage

Tim

e (s

ecs)

8/06/2007 ENGN8101 Modelling and Optimization 74

1

2

11.48.3

7.7 10.7

7.7

8.3

9.39.9

5.36.5

11.7

13.2

11.815.3

6.611.1

Calculating Noise x Control Interaction Effects

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2CF 1CF 2

Effect

N1 N2 yRun No. A H O C L N1 N212345678

DATA2 1 2 1 2

1 1 1 1 1

1 2 2 2 1

1 2 2 12 2 1 1 1

22 1 2 2

1 1 1 2 22 2 1 2

9.7

10.7

9.9

10.512.6

9.2

5.98.8

8/06/2007 ENGN8101 Modelling and Optimization 75

7.7

11.4

10.7

7.7 11.79.3 11.89.9 15.3

2222

Calculating Noise x Control Interaction Effects

8.3

7.1N1 N2 N1 N2 N1 N2 N1 N2 N1 N2

CF 1CF 2

Effect

N1 N2 yRun No. A H O C L N1 N212345678

DATA1 2 1 2

1 1 1 1 1

1 2 2 2 1

1 2 2 12 1 1 12 1 2 2

1 1 1 2 21 2 2 1 2

9.7

10.78.3 13.2

9.9

10.512.6

9.2

5.95.3 6.68.86.5 11.1

8/06/2007 ENGN8101 Modelling and Optimization 76

15.3

11.4

15.3

11.7

13.2

11.8

10.7

6.611.1

8.3

Calculating Noise x Control Interaction Effects

7.18.6

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2CF 1CF 2

Effect

N1 N2 yRun No. A H O C L N1 N212345678

DATA2 1 2 1 2

1 1 1 1 1

1 2 2 2 1

2 1 2 2 12 2 1 1 1

22 1 2 2

1 1 1 2 22 2 1 2

9.77.7

10.78.3

9.9

10.59.39.9 12.67.7 9.2

5.98.86.5

8/06/2007 ENGN8101 Modelling and Optimization 77

11.411.16.5

7.715.310.7

8.3

10.67.18.6

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2CF 1CF 2

Effect

Calculating Noise x Control Interaction Effects

N1 N2 yRun No. A H O C L N1 N212345678

DATA2 1 2 1 2

1 1 1 1 1

1 2 2 2 1

2 1 2 2 12 2 1 1 1

22 1 2 2

1 1 1 2 21 2 2 1 2

9.77.7 11.7

10.78.3 13.2

9.9

10.59.3 11.89.9 12.6

9.2

5.95.3 6.68.8

8/06/2007 ENGN8101 Modelling and Optimization 78

10.7

6.5

7.7

12.410.67.1

8.6

Calculating Noise x Control Interaction Effects

8.3

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2CF 1CF 2

Effect

N1 N2 yRun No. A H O C L N1 N212345678

DATA2 1 2 1 2

1 1 1 1 1

1 2 2 2 1

2 1 2 2 12 2 1 1 1

22 1 2 2

1 1 1 2 21 2 2 1 2

9.77.7 11.7

10.78.3 13.2

9.911.4

10.59.3 11.89.9 15.3 12.6

9.2

5.95.3 6.68.811.1

8/06/2007 ENGN8101 Modelling and Optimization 79

Calculating Interaction Effects

+−

++

−− + −−+

A

B

(− −) = B(− +) −Interactioneffect

( − ) =2

A B

(+ +) − (+ −) = A

8/06/2007 ENGN8101 Modelling and Optimization 80

12.410.6

Calculating Noise x Control Interaction Effects

8.3

7.18.6

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2CF 1CF 2

Effect

N1 N2 yRun No. A H O C L N1 N212345678

DATA2 1 2 1 2

1 1 1 1 1

1 2 2 2 1

2 1 2 2 12 2 1 1 1

22 1 2 2

1 1 1 2 21 2 2 1 2

9.77.7 11.7

10.78.3 13.2

9.911.4

10.59.3 11.89.9 15.3 12.67.7 9.210.7

5.95.3 6.68.86.5 11.1

0.1

Effect( ) ( )

2

+ + + − − + − −− −−=

8/06/2007 ENGN8101 Modelling and Optimization 81

Calculating Noise x Control Interaction Effects

8.3

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2CF 1CF 2

Effect

N1 N2 yRun No. A H O C L N1 N212345678

DATA2 1 2 1 2

1 1 1 1 1

1 2 2 2 1

2 1 2 2 12 2 1 1 1

22 1 2 2

1 1 1 2 21 2 2 1 2

9.77.7 11.7

10.78.3 13.2

9.911.4

10.59.3 11.89.9 15.3 12.67.7 9.210.7

5.95.3 6.68.86.5 11.1

0.1 0.4 0.0 -1.1 -0.4

7.6 10.8 7.8 11.4 8.1 12.8 9.0 12.98.1 12.2 7.9 11.5 7.6 10.1 6.8 10.012.4

10.67.18.6 Effect

( ) ( )2

+ + + − − + − −− −−=

8/06/2007 ENGN8101 Modelling and Optimization 82

Noise x Control Interaction Plot

4

6

8

10

12

14

N1 N2

Ave

rage

Tim

e

CF Level 1CF Level 2

A H O C LN1 N2

CF 1 7.1 10.6 7.6 10.8 7.8 11.4 8.1 12.8 9.0 12.9CF 2 8.6 12.4 8.1 12.2 7.9 11.5 7.6 10.1 6.8 10.0Effect 0.1 0.4 0.0 -1.1 -0.4

N1 N2 N1 N2N1 N2 N1 N2

N1 N2N1 N2 N1 N2 N1 N2

8/06/2007 ENGN8101 Modelling and Optimization 83

Average Effects Daniel PlotN

xO

O NxA

Nxc

5

Nxc

6

c5 NxL

c6 NxH

H NxC

C A L N

Absolute Effect

Half-NormalScores

NxC

N

L

AC

H

0.0

1.0

2.0

3.0

4.0

0.00 0.50 1.00 1.50 2.00

Half-Normal Scores

Abs

olut

e Ef

fect

s

0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.4 0.4 0.9 1.1 1.6 1.7 2.5 3.6.04 .12 .21 .29 .38 .47 .57 .67 .77 .89 1.02 1.17 1.36 1.61 2.10

8/06/2007 ENGN8101 Modelling and Optimization 84

1. Reduce variabilityIdentify factors which interact with noise -- use these to reduce variability.

2. Adjust to mean to targetIdentify factors with location effects, that do not interact with noise -- use these to adjust the mean.

2-Step Optimization

8/06/2007 ENGN8101 Modelling and Optimization 85

=Energy producing the intended resultEnergy wasted on unintended results

SN

Signal-to-Noise Ratio

8/06/2007 ENGN8101 Modelling and Optimization 86

y

Intended vs. Unintended Results

measured in σ’s

8/06/2007 ENGN8101 Modelling and Optimization 87

SN = 10 log10( )

2yσ

Robustness Metric

Always maximize S/N to improve robustness

8/06/2007 ENGN8101 Modelling and Optimization 88

Calculating Signal-to-Noise Ratio

Run No. N1 N2 σ S/Ny

Avg 1Avg 2Effect

9.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

13.0 13.0 13.5 10.71 1 1 1 1 8.3 8.4 8.11

9.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

10.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

8 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

5.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 228.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6

A H O C L

8/06/2007 ENGN8101 Modelling and Optimization 89

13.5 2.7

Run No. N1 N2 σ S/N

Calculating Signal-to-Noise Ratio

y

Effect

2.29.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

13.0 13.0 10.71 1 1 1 1 8.3 8.4 8.11

1.79.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

1.410.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

1.78 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

0.75.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 222.58.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6 3.0

Avg 1Avg 2

A H O C L

8/06/2007 ENGN8101 Modelling and Optimization 90

12.0

S

Calculating Signal-to-Noise Ratio

N = 10 log10 ( )2y

σ

Run No. N1 N2 σ S/Ny

Effect

2.2 12.89.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

2.713.0 13.0 13.5 10.71 1 1 1 1 8.3 8.4 8.11

1.7 15.39.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

1.4 17.710.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

1.7 14.88 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

0.7 18.25.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 222.5 10.88.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6 12.63.0

Avg 1Avg 2

A H O C L

8/06/2007 ENGN8101 Modelling and Optimization 91

Calculating Signal-to-Noise Effects

Run No. N1 N2 σ S/Ny

Effect

2.2 12.89.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

2.7 12.013.0 13.0 13.5 10.71 1 1 1 1 8.3 8.4 8.11

1.7 15.39.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

1.4 17.710.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

1.7 14.88 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

0.7 18.25.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 222.5 10.88.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6 12.63.0

Avg 1Avg 2

A H O C L

8/06/2007 ENGN8101 Modelling and Optimization 92

14.1

Calculating Signal-to-Noise Effects

Run No. A H O C L N1 N2 σ S/Ny

Effect

2.2 12.89.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

2.7 12.013.0 13.0 13.5 10.71 1 1 1 1 8.3 8.4 8.11

1.7 15.39.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

1.4 17.710.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

1.7 14.88 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

0.7 18.25.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 222.5 10.88.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6 12.63.0

Avg 1Avg 2

8/06/2007 ENGN8101 Modelling and Optimization 93

Calculating Signal-to-Noise Effects

15.3

14.1

Run No. A H O C L N1 N2 σ S/Ny

Effect

2.2 12.89.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

2.7 12.013.0 13.0 13.5 10.71 1 1 1 1 8.3 8.4 8.11

1.79.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

1.4 17.710.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

1.7 14.88 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

0.7 18.25.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 222.5 10.88.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6 12.63.0

Avg 1Avg 2 14.5

8/06/2007 ENGN8101 Modelling and Optimization 94

Calculating Signal-to-Noise Effects

15.3

14.1

Run No. A H O C L N1 N2 σ S/Ny

Effect

2.2 12.89.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

2.7 12.013.0 13.0 13.5 10.71 1 1 1 1 8.3 8.4 8.11

1.79.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

1.4 17.710.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

1.7 14.88 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

0.7 18.25.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 222.5 10.88.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6 12.63.0

Avg 1Avg 2 14.5

-0.4

8/06/2007 ENGN8101 Modelling and Optimization 95

15.3

14.1

Run No. A H O C L N1 N2 σ S/N

Calculating Signal-to-Noise Effects

y

Effect

2.2 12.89.77.6 7.8 7.6 11.5 11.6 12.02 1 2 1 25

2.7 12.013.0 13.0 13.5 10.71 1 1 1 1 8.3 8.4 8.11

1.79.98.5 8.3 8.2 11.4 11.5 11.41 2 2 2 14

1.4 17.710.59.1 9.4 9.3 11.7 11.9 11.72 1 2 2 16

1.7 14.88 2 7.4 7.9 7.7 10.8 10.6 10.72 1 2 2 9.2

0.7 18.25.95.4 5.1 5.4 6.7 6.8 6.21 1 1 2 222.5 10.88.83 6.5 6.5 6.5 11.0 11.2 11.21 2 2 1 2

7 9.8 10.0 10.0 15.5 15.4 15.12 2 1 1 1 12.6 12.63.0

Avg 1Avg 2 14.5

-0.4 1.8

15.213.4

0.3

14.414.1

-4.4

12.116.5

0.2

14.414.2

8/06/2007 ENGN8101 Modelling and Optimization 96

S/N Ratio Effects Plot

A H O C L14.1 15.2 14.4 12.1 14.414.5 13.4 14.1 16.5 14.2- 0.4 1.8 0.3 - 4.4 0.2

101112131415161718

A1 A2 H1 H2 O1 O2 C1 C2 L1 L2Factors

Ave

rage

S/N

Avg 1Avg 2Effect

8/06/2007 ENGN8101 Modelling and Optimization 97

S/N Daniel Plot

L O A c5 c6 H CAbsolute Effect 0.2 0.3 0.4 0.9 1.1 1.8 4.4

Half-Normal Score 0.09 0.27 0.45 0.66 0.90 1.20 1.71

C

0.0

1.0

2.0

3.0

4.0

5.0

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80Half-Normal Score

Abs

olut

e Ef

fect

8/06/2007 ENGN8101 Modelling and Optimization 98

2-Step Optimization

1. Reduce variabilityIdentify factors with large S/N effects--use these to reduce variability.

2. Adjust mean to targetIdentify factors with location effects--use these to adjust the mean.

8/06/2007 ENGN8101 Modelling and Optimization 99

2-Step Optimization Example

A1 A2 H1 H2 O1 O2 C1 C2 L1 L210

12

14

16

18

Ave

rage

S/N

6

8

10

12

Ave

rage

Tim

e

A1 A2 H1 H2 O1 O2 C1 C2 L1 L2

top related