population dynamics of the periwinkle littorina littorea (linnaeus, 1758) in the east frisian wadden...

Post on 10-Jan-2017

85 Views

Category:

Science

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

IntroductionObjectives

MethodsResults

Conclusions

Population dynamics of the periwinkle Littorinalittorea (Linnaeus, 1758) in the East Frisian

Wadden SeaDiplomarbeit

Alexander Jüterbock

Animal Biodiversity and Evolutionary BiologyCarl von Ossietzky University Oldenburg

Supervisors: Prof. Dr. Gabriele Gerlach, Dr. Thomas Friedl

April 13, 2010

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Outline

1 Introduction

2 Objectives

3 Methods

4 Results

5 Conclusions

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Outline

1 Introduction

2 Objectives

3 Methods

4 Results

5 Conclusions

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

larvae

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

larvae

Reef fish

Photo: Randall, J.E.Study: Gerlach et al., 2007

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

larvae

Corals

Photo: Ronald L. ShimekStudy: Whitaker, 2004

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

larvae

Gastropods

Photo: Keith HiscockStudy: Dupont et al., 2007

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

larvae

Divergent selection

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

larvae larvae larvae

Divergent selection

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Populations get Connected by Dispersing LarvaeB

EN

THO

SP

LAN

KTO

N

Population 1 Population 3Population 2

adults adults adults

larvae larvae larvae

Divergent selection

Larval recruitment

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Hydrodynamics of the East Frisian Wadden Sea

a

15

10

5

0

km

0 5 10 15 20 25 30 35 40 45 50 55 60km

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50 55 60

(cm/s)

b

15

10

5

0

km

0 5 10 15 20 25 30 35 40 45 50 55 60km

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50 55 60

(cm/s)

Norderney Langeoog Spiekeroog

(Staneva et al., 2009)

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Hydrodynamics of the East Frisian Wadden Sea

a

15

10

5

0

km

0 5 10 15 20 25 30 35 40 45 50 55 60km

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50 55 60

(cm/s)

b

15

10

5

0

km

0 5 10 15 20 25 30 35 40 45 50 55 60km

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50 55 60

(cm/s)

Norderney Langeoog Spiekeroog

(Staneva et al., 2009)

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Hydrodynamics of the East Frisian Wadden Sea

a

15

10

5

0

km

0 5 10 15 20 25 30 35 40 45 50 55 60km

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50 55 60

(cm/s)

b

15

10

5

0

km

0 5 10 15 20 25 30 35 40 45 50 55 60km

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50 55 60

(cm/s)

Norderney Langeoog Spiekeroog

(Staneva et al., 2009)

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

The Periwinkle’s Life Cycle Includes a PlanktotrophicLarva

(Fretter and Graham, 1962)

(Reid, 1996)

4–7 weeks

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Outline

1 Introduction

2 Objectives

3 Methods

4 Results

5 Conclusions

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Main Objectives of the Study

ObjectivesLarval recruitment?Population preference?Morphological differentiation?Genetic differentiation?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Main Objectives of the Study

ObjectivesLarval recruitment?Population preference?Morphological differentiation?Genetic differentiation?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Main Objectives of the Study

ObjectivesLarval recruitment?Population preference?Morphological differentiation?Genetic differentiation?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Main Objectives of the Study

ObjectivesLarval recruitment?Population preference?Morphological differentiation?Genetic differentiation?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

1 Introduction

2 Objectives

3 Methods

4 Results

5 Conclusions

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

3 MethodsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Larval Dispersal in the Wadden Sea was Simulated

2000

1500

1000

500

0

600

500

400

300

200

100

0

a

b

L1

W2

Baltrum

LangeoogSpiekeroog

Wangerooge

Baltrum

LangeoogSpiekeroog

Wangerooge

Programmed by: Gräwe, U.

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Sampling Sites

0 500 1000kilometersN

EFWS

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Sampling Sites

0 50 100kilometers N

Borkum

NorderneyLangeoog

Wangerooge

B2

B2.2B1

N3N2 N1

L1 W1

W2

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Sampling Sites

0 1000 2000kilometers N

Woods HoleNew York

USA

CANADA

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

3 MethodsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Conspecifics Aggregate on Hard Bottom Substrate

(Geller–Grimm, 2000)

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Snails of 2 Populations Aggregated in Basins

10 cm

60 cm60 cm

Population 1 Population 2

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Snails of 2 Populations Aggregated in Basins

10 cm

60 cm60 cm

60 cm

60cm Individual from population 1

Individual from population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Snails of 2 Populations Aggregated in Basins

10 cm

60 cm60 cm

60 cm

60cm Individual from population 1

Individual from population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Snails of 2 Populations Aggregated in Basins

10 cm

60 cm60 cm

60 cm

60cm Individual from population 1

Individual from population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Analysis of Aggregation Experiments

. . . one hour later

10 cm

60 cm60 cm

1

23

4

5

Individual from population 1

Individual from population 2

- Population Preference Index PPI -

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Testing Snails in Olfactory Choice Flumes

22 cm

5 cm

Snail at startpositionStimulus waterfrom population 1

Stimulus waterfrom population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Testing Snails in Olfactory Choice Flumes

22 cm

5 cm

Snail at startpositionStimulus waterfrom population 1

Stimulus waterfrom population 2

1

. . . %

. . . %

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Testing Snails in Olfactory Choice Flumes

22 cm

5 cm

Snail at startpositionStimulus waterfrom population 1

Stimulus waterfrom population 2

1

. . . %

. . . %

Wilcoxon signed-rank test

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

3 MethodsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Measurements of the Shell

CL

SP

SW

LA

Linear discriminant analysis

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

3 MethodsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Genetic Differentiation at Microsatellite Markers

48–55 individuals/population5 microsatellite lociDifferentiation index Dest,R package DEMEtics (Jüterbock et al., 2010)

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

1 Introduction

2 Objectives

3 Methods

4 Results

5 Conclusions

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

4 ResultsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

No Local Recruitment by Passive Drift in the EFWS

2000

1500

1000

500

0

600

500

400

300

200

100

0

a

b

L1

W2

Baltrum

LangeoogSpiekeroog

Wangerooge

Baltrum

LangeoogSpiekeroog

Wangerooge

Programmed by: Gräwe, U.

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

No Local Recruitment by Passive Drift in the EFWS

. . . one week later

300

250

200

150

100

50

0

10

8

6

4

2

0

Baltrum

LangeoogSpiekeroog

Wangerooge

Baltrum

LangeoogSpiekeroog

Wangerooge

a

b

Programmed by: Gräwe, U.

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

4 ResultsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Snails Prefer Conspecifics of the Own Population

Population-wise aggregation

PPI significant (p ≤ 0.1) in 6 of 17 tests

Attraction to volatile chemicalsNo significant preference in any of 18 tests

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Snails Prefer Conspecifics of the Own Population

Population-wise aggregation

PPI significant (p ≤ 0.1) in 6 of 17 tests

Attraction to volatile chemicalsNo significant preference in any of 18 tests

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

4 ResultsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Populations Differ Morphologically

Shell morphology differsbetween . . .

Woods Hole – EFWSNorth coasts – SouthcoastsNorth coastsSouth coasts

Woods Hole

EFWS

Wilks’ Lambda = 0.867, p < 0.001 ***

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Populations Differ Morphologically

Shell morphology differsbetween . . .

Woods Hole – EFWSNorth coasts – SouthcoastsNorth coastsSouth coasts

Borkum

NorderneyLangeoog

Wangerooge

Wilks’ Lambda = 0.802, p < 0.001 ***

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Populations Differ Morphologically

Shell morphology differsbetween . . .

Woods Hole – EFWSNorth coasts – SouthcoastsNorth coastsSouth coasts

Borkum

NorderneyLangeoog

Wangerooge

Wilks’ Lambda = 0.135, p < 0.001 ***

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Populations Differ Morphologically

Shell morphology differsbetween . . .

Woods Hole – EFWSNorth coasts – SouthcoastsNorth coastsSouth coasts

Borkum

NorderneyLangeoog

Wangerooge

Wilks’ Lambda = 0.731, p < 0.001 ***

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Outline

4 ResultsLarval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Genetic Distance . . .

. . . between Woods Hole and East Frisian populations

Dest = 0.033–0.057 ***p ≤ 0.05

Woods Hole

EFWS

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Larval RecruitmentPopulation PreferenceShell MorphologyPopulation Genetics

Genetic Distance . . .

. . . between islands

Dest = -0.007–0.001p > 0.05 Borkum

NorderneyLangeoog

Wangerooge

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Outline

1 Introduction

2 Objectives

3 Methods

4 Results

5 Conclusions

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

ObjectivesLarval recruitment?Population preference?Morphologicaldifferentiation?Genetic differentiation?

Unanswered questionsLarval behavior?Intrinsic differencesRecognition cues?Assortative mating?Expressed loci?Phenotypic plasticity?

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Do the Results Indicate Reproductive Isolation?

Overall conclusion

Alexander Jüterbock Population dynamics of the periwinkle

IntroductionObjectives

MethodsResults

Conclusions

Acknowledgements

Gabriele Gerlach

Thomas Glatzel

Thomas Friedl

Ulf Gräwe

Peter Harmand

Achim Wehrmann

Anke Müller

Andreas Sommer

Philipp Krämer

Jana Deppermann

Cornelia Hinz

Jelle Atema

René Spierling

Elke Frahmann

Marén BökampFunded by the

NiedersächsischeWattenmeerstiftung

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

For Further Reading I

Reid, D.G. (1996)Systematics and Evolution of Littorina.The Ray Society, London.

Cowen, R.K. & Sponaugle, S. (2009)Larval dispersal and marine population connectivityAnnual Review of Marine Science 1:443–466.

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

For Further Reading II

Staneva, J.; Stanev, E.V.; Wolff, J.-O.; Badewien, T.H.;Reuter, R.; Flemming, B.; Bartholomä, A. & Bolding, K.(2009)Hydrodynamics and sediment dynamics in the GermanBight. A focus on observations and numerical modelling inthe East Frisian Wadden Sea.Continental Shelf Research 29(1):302–319.

Jost, L. (2008)Gst and its relatives do not measure differentiation.Molecular Ecology 17(18):4015–4026.

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Residual Current in the German Bight

55.4N

55.2N

55.0N

54.8N

54.6N

54.4N

54.2N

54.0N

53.8N

53.6N

53.4N

6.3E

6.6E

6.9E

7.2E

7.5E

7.8E

8.1E

8.4E

8.7E

9.0E

(m/s)

0.160.140.120.100.080.060.040.02

0.25

(Staneva et al., 2009)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

L. littorea Occurs on Both Sides of the Atlantic

(Reid, 1996)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

The Periwinkle’s Life Cycle Includes a PlanktotrophicLarva

a b| ~

(Fretter and Graham, 1962)

(Fretter and Graham, 1962)

(Reid, 1996)

5–6 days

4–7 weeks

12–18 months

1–12 hoursafter fertilization

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

The Periwinkle’s Life Cycle Includes a PlanktotrophicLarva

a b| ~

(Fretter and Graham, 1962)

(Fretter and Graham, 1962)

(Reid, 1996)

5–6 days

4–7 weeks

12–18 months

1–12 hoursafter fertilization

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

The Periwinkle’s Life Cycle Includes a PlanktotrophicLarva

a b| ~

(Fretter and Graham, 1962)

(Fretter and Graham, 1962)

(Reid, 1996)

5–6 days

4–7 weeks

12–18 months

1–12 hoursafter fertilization

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Sampled Snails Were Kept in Aquaria

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Were Individually Characterized

CL

Shell height Barnacle fouling Sex

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Were Individually Characterized

Shell height Barnacle fouling Sex

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Were Individually Characterized

Shell height Barnacle fouling Sex

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Aggregation Experiments Were Performed in SpecialBasins

10 cm

60 cm60 cm

60 cm

60cm Individual from population 1

Individual from population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Aggregation Experiments Were Performed in SpecialBasins

10 cm

60 cm60 cm

60 cm

60cm Individual from population 1

Individual from population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Aggregation Experiments Were Performed in SpecialBasins

10 cm

60 cm60 cm

60 cm

60cm Individual from population 1

Individual from population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Analysis of Aggregation experiments

. . . one hour later

10 cm

60 cm60 cm

. . . 15 tests at least

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Analysis of Aggregation experiments

10 cm

60 cm60 cm

1

23

4

5

Are certain types ofconspecifics preferred?

Snails of the samepopulationSnails of the same sexSnails of the same size

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Analysis of Aggregation experiments

10 cm

60 cm60 cm

1

23

4

5

Individual from population 1

Individual from population 2

- PPI -

Are certain types ofconspecifics preferred?

Snails of the samepopulationSnails of the same sexSnails of the same size

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Analysis of Aggregation experiments

10 cm

60 cm60 cm

|||||

1

|||2

|

|3

~~~ 4

~~~~5

~

~

- Sex-PI -

Are certain types ofconspecifics preferred?

Snails of the samepopulationSnails of the same sexSnails of the same size

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Analysis of Aggregation experiments

10 cm

60 cm60 cm

1

23

4

5

- Size-PI -

Are certain types ofconspecifics preferred?

Snails of the samepopulationSnails of the same sexSnails of the same size

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Analysis of Aggregation experiments

10 cm

60 cm60 cm

1

23

4

5

PPI and Size-PI, both high

Are certain types ofconspecifics preferred?

Snails of the samepopulationSnails of the same sexSnails of the same size

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p = var =

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p = var =

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p =1.0 var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p =1.0 var =0.000

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p =1.0 var =0.000

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index

Population mixture

p =0.5 PPI =0.000

Real population preference

p =0.5 PPI =0.263

Ambiguous

p =1.0 PPI =0.000

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p = var =

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =5

10 ∗10+ 510 ∗10

20var =

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =( 5

10−0.5)2∗10+( 510−0.5)2∗10

19

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p = var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p =1010 ∗10+ 0

10 ∗1020

var =

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =( 10

10−0.5)2∗10+( 010−0.5)2∗10

19

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p = var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p =1010 ∗10

10var =

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p =1.0 var =( 10

10−1)2∗109

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p =1.0 var =0.000

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 var =0.000

Real population preference

p =0.5 var =0.263

Ambiguous

p =1.0 var =0.000

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Defining the Population Preference Index in Detail

Population mixture

p =0.5 PPI =0.000

Real population preference

p =0.5 PPI =0.263

Ambiguous

p =1.0 PPI =0.000

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Aggregate Assortatively

Borkum

NorderneyLangeoog

Wangerooge

B1 B2 N3 N1 N2 L1 W1 W2 WH

B1

B2

N3

N1

N2

L1

W1

W2

****

·**

··

· **

Population preference

significanceSize preference

significance

· p≤0.10,* p≤0.05, ** p≤0.01,*** p≤0.001

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Simplified Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

Population 1 Population 2

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Simplified Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

Population 1 Population 2

Random allocationRandom allocation

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Simplified Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

Population 1 Population 2

Random allocationRandom allocation

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Simplified Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Simplified Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

Calculation of PPI

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Simplified Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

A histogram of PPI values

Mean PPI

Fre

quen

cy

0.00 0.02 0.04 0.06 0.08 0.10

0

20

40

60

80

100100

80

60

40

20

0

Freq

uenc

y

0.00 0.02 0.04 0.06 0.08 0.10

Mean PPI

Critical value

90% < 0.068

significantnot significant

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

~~|~|||~~| ~|~|~||~|~

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

~~|~|||~~| ~|~|~||~|~

Random allocationRandom allocation

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

~~|~|||~~| ~|~|~||~|~

Random allocationRandom allocation

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

~||~| 1

||~ 2

|

| 3

~|~4

~~|~5

~|

~

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

~||~| 1

||~ 2

|

| 3

~|~4

~~|~5

~|

~

Calculation of PPI, Sex-PI and Size-PI

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

~~|~|||~~| ~|~|~||~|~

1000-fold repetition

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

~~|~|||~~| ~|~|~||~|~

Random allocationRandom allocation

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

1

23

4

5

~~|~|||~~| ~|~|~||~|~

Random allocationRandom allocation

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

|~|~~ 1

|~|2

|

| 3

~|~4

~~|~5

|~

|

1000-fold calculation of PPI, Sex-PI and Size-PI

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Detailed Monte Carlo Simulation

10 cm

60 cm60 cm

|~|~~ 1

|~|2

|

| 3

~|~4

~~|~5

|~

|

A histogram of PPI values

Mean PPI

Fre

quen

cy

0.00 0.02 0.04 0.06 0.08 0.10

0

20

40

60

80

100100

80

60

40

20

0

Freq

uenc

y

0.00 0.02 0.04 0.06 0.08 0.10

Mean PPI

Critical value

90% < 0.068

significantnot significant

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes

22 cm

5 cm

Snail at startpositionStimulus waterfrom population 1

Stimulus waterfrom population 2

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water A

Stimulus water B

1

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water A

Stimulus water B

1

1

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

1

1

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

1

2

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

1

2

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

1

3

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

75%

25%

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

22 cm

5 cm

Stimulus water B

Stimulus water A

1

Difference75%−25% = 50%

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Testing Snails in Olfactory Flumes in Detail

15 Differences50%25%...0%

Wilcoxon signed-ranktest

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

Arithmetic plot

0 2 4 6 8 10 12 140

2

4

6

8

10

12

14

x = shell length (cm)

y=

shel

lw

idth

(cm

)y = 0.13 ∗ x1.32

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

Logarithmic plot

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

log10(y) = log10(0.13) + 1.32 ∗ log10(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

log10(y) = log10(0.13)+1.32∗log10(x)

1

1.32 1.321 = 1.32

b: slope = allometric coefficient

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

log10(y) = log10(0.13)+1.32∗log10(x)

1

1.32 1.321 = 1.32

b: slope = allometric coefficient

a: intersection of y-axis when x = 0

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

log10(y) = log10(0.13)+1.32∗log10(x)

1

1.32 1.321 = 1.32

b: slope = allometric coefficient

a: intersection of y-axis when x = 0

log(y) = log(a)+b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

log10(y) = log10(0.13)+1.32∗log10(x)

1

1.32 1.321 = 1.32

b: slope = allometric coefficient

a: intersection of y-axis when x = 0

log(y) = log(a)+b∗log(x)

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

)) log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

)) log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

)) log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

x mean of x

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

x mean of xlog(x)

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

x mean of xlog(x)

Correctionlog(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

x mean of xlog(x)

Correctionlog(a) = log(y)−b∗(log(x)−log(x))log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

x mean of xlog(x)

Correctionlog(a) = log(y)−b∗(log(x)−log(x))log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

x mean of xlog(x)

Correctionlog(a) = log(y)−b∗(log(x)−log(x))log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Allometric correction

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

log10(x) = log10(shell length (cm))

log 1

0(y)

=lo

g 10(

shel

lw

idth

(cm

))

spread of x

x mean of xlog(x)

Correctionlog(a) = log(y)−b∗(log(x)−log(x))log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗(log(x)−log(x))

log(a) = log(y)−b∗log(x)

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

DNA extraction

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

DNA extractionPCR

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

-

+

DNA extractionPCR

gel electrophoresis

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

-

+

DNA extractionPCR

gel electrophoresis

178

212

162

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

-

+

DNA extractionPCR

gel electrophoresis

178

212

162

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

-

+

DNA extractionPCR

gel electrophoresis

178

212

162

Pop1 Pop2allele1 allele2 allele1 allele2

178 178 212 162

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

-

+

DNA extractionPCR

gel electrophoresis

178

212

162

Pop1 Pop2allele1 allele2 allele1 allele2

178 178178 234234 234234 178... ...... ...... ...

212 162162 162212 212212 162... ...... ...... ...

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 1

Pop1 Pop2

-

+

DNA extractionPCR

gel electrophoresis

178

212

162

Pop1 Pop2allele1 allele2 allele1 allele2

178 178178 234234 234234 178... ...... ...... ...

212 162162 162212 212212 162... ...... ...... ...

Differentiation index Dest

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

CATGTA

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

CATCATCATCATCATCATGTAGTAGTAGTAGTAGTA

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

CATCATCATCATCATCATGTAGTAGTAGTAGTAGTA

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

amplification byPCR

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

15

12

9

gelelectrophoresis

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

15

12

9

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

15

12

9

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

15

12

9

15

9 12

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

15

12

9

15

9 12

Pop1165 165230 165230 230165 230230 230165 165165 165230 165

Pop2170 170198 170198 198170 198198 198170 170170 170198 170

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic Differentiation at Microsatellite Markers 2

GTCTCAGC CATCATCATCATCATCATACATCGACCAGAGTCG GTAGTAGTAGTAGTAGTATGTAGCTG

Repeat no.

12

9

15

15

15

12

9

15

9 12

Pop1165 165230 165230 230165 230230 230165 165165 165230 165

Pop2170 170198 170198 198170 198198 198170 170170 170198 170

Difference Dest

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Prefer Conspecifics of the own Population

Population-wise aggregation

PPI significant (p ≤ 0.1) in 6 of 17 tests

Sex-bias aggregation

~~~~~~~~~~ |||||||||| Sex-PI significant (p ≤ 0.1) in 0 of 17 tests

Size-wise aggregation

Size-PI significant (p ≤ 0.1) in 2 of 17 tests

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Prefer Conspecifics of the own Population

Population-wise aggregation

PPI significant (p ≤ 0.1) in 6 of 17 tests

Sex-bias aggregation

~~~~~~~~~~ |||||||||| Sex-PI significant (p ≤ 0.1) in 0 of 17 tests

Size-wise aggregation

Size-PI significant (p ≤ 0.1) in 2 of 17 tests

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Prefer Conspecifics of the own Population

Population-wise aggregation

PPI significant (p ≤ 0.1) in 6 of 17 tests

Sex-bias aggregation

~~~~~~~~~~ |||||||||| Sex-PI significant (p ≤ 0.1) in 0 of 17 tests

Size-wise aggregation

Size-PI significant (p ≤ 0.1) in 2 of 17 tests

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Prefer Conspecifics of the own Population

Populationsdiffer

intrinsically

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails Prefer Conspecifics of the own Population

. . . aggregation frequencyincreasesduring the

mating season

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails do not Prefer any Volatile ChemicalsP

refe

renc

e (%

)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

B2 −

L1

L1 −

B2

B2 −

N1

N1 −

B2

N1 −

L1

L1 −

N1

N2 −

N3

N3 −

N2

W1

− B2

B2 −

W1

W1

− L1

L1 −

W1

W1

− N1

N1 −

W1

W2

− N2

N2 −

W2

WH −

B2.

2

B2.2

− W

H

N1ma

− N1f

e

N1fe

− N1m

a

B1u −

B1m

B1m −

B1u

N1 −

Sw

0.93 0.32 0.54 0.47 0.59 0.62 1 0.22 0.12 0.19 0.81 0.58 0.91 1 0.99 0.22 1 0.43 0.19 0.76 0.52 0.1 0.59

own

other

.0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Pre

fere

nce

(%) ow

not

her

B2–L1

L1–B

2

B2–N1

N1–B2

N1–L1

L1–N

1

N2–N3

N3–N2

W1–

B2

B2–W

1

W1–

L1

L1–W

1

W1–

N1

N1-W

1

W2–

N2

N2–W

2

WH–B

2.2

B2.2–W

H

N1ma–

N1fe

N1fe–N

1ma

B1u–B

1t

B1t–B1u

N1–Sw

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails do not Prefer any Volatile ChemicalsP

refe

renc

e (%

)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

B2 −

L1

L1 −

B2

B2 −

N1

N1 −

B2

N1 −

L1

L1 −

N1

N2 −

N3

N3 −

N2

W1

− B2

B2 −

W1

W1

− L1

L1 −

W1

W1

− N1

N1 −

W1

W2

− N2

N2 −

W2

WH −

B2.

2

B2.2

− W

H

N1ma

− N1f

e

N1fe

− N1m

a

B1u −

B1m

B1m −

B1u

N1 −

Sw

0.93 0.32 0.54 0.47 0.59 0.62 1 0.22 0.12 0.19 0.81 0.58 0.91 1 0.99 0.22 1 0.43 0.19 0.76 0.52 0.1 0.59

own

other

.0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Pre

fere

nce

(%) ow

not

her

B2–L1

L1–B

2

B2–N1

N1–B2

N1–L1

L1–N

1

N2–N3

N3–N2

W1–

B2

B2–W

1

W1–

L1

L1–W

1

W1–

N1

N1-W

1

W2–

N2

N2–W

2

WH–B

2.2

B2.2–W

H

N1ma–

N1fe

N1fe–N

1ma

B1u–B

1t

B1t–B1u

N1–Sw

Population preference

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails do not Prefer any Volatile ChemicalsP

refe

renc

e (%

)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

B2 −

L1

L1 −

B2

B2 −

N1

N1 −

B2

N1 −

L1

L1 −

N1

N2 −

N3

N3 −

N2

W1

− B2

B2 −

W1

W1

− L1

L1 −

W1

W1

− N1

N1 −

W1

W2

− N2

N2 −

W2

WH −

B2.

2

B2.2

− W

H

N1ma

− N1f

e

N1fe

− N1m

a

B1u −

B1m

B1m −

B1u

N1 −

Sw

0.93 0.32 0.54 0.47 0.59 0.62 1 0.22 0.12 0.19 0.81 0.58 0.91 1 0.99 0.22 1 0.43 0.19 0.76 0.52 0.1 0.59

own

other

.0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Pre

fere

nce

(%) ow

not

her

B2–L1

L1–B

2

B2–N1

N1–B2

N1–L1

L1–N

1

N2–N3

N3–N2

W1–

B2

B2–W

1

W1–

L1

L1–W

1

W1–

N1

N1-W

1

W2–

N2

N2–W

2

WH–B

2.2

B2.2–W

H

N1ma–

N1fe

N1fe–N

1ma

B1u–B

1t

B1t–B1u

N1–Sw

Sex preference

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails do not Prefer any Volatile ChemicalsP

refe

renc

e (%

)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

B2 −

L1

L1 −

B2

B2 −

N1

N1 −

B2

N1 −

L1

L1 −

N1

N2 −

N3

N3 −

N2

W1

− B2

B2 −

W1

W1

− L1

L1 −

W1

W1

− N1

N1 −

W1

W2

− N2

N2 −

W2

WH −

B2.

2

B2.2

− W

H

N1ma

− N1f

e

N1fe

− N1m

a

B1u −

B1m

B1m −

B1u

N1 −

Sw

0.93 0.32 0.54 0.47 0.59 0.62 1 0.22 0.12 0.19 0.81 0.58 0.91 1 0.99 0.22 1 0.43 0.19 0.76 0.52 0.1 0.59

own

other

.0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Pre

fere

nce

(%) ow

not

her

B2–L1

L1–B

2

B2–N1

N1–B2

N1–L1

L1–N

1

N2–N3

N3–N2

W1–

B2

B2–W

1

W1–

L1

L1–W

1

W1–

N1

N1-W

1

W2–

N2

N2–W

2

WH–B

2.2

B2.2–W

H

N1ma–

N1fe

N1fe–N

1ma

B1u–B

1t

B1t–B1u

N1–Sw

Control for effect oflabel color

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails do not Prefer any Volatile ChemicalsP

refe

renc

e (%

)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

B2 −

L1

L1 −

B2

B2 −

N1

N1 −

B2

N1 −

L1

L1 −

N1

N2 −

N3

N3 −

N2

W1

− B2

B2 −

W1

W1

− L1

L1 −

W1

W1

− N1

N1 −

W1

W2

− N2

N2 −

W2

WH −

B2.

2

B2.2

− W

H

N1ma

− N1f

e

N1fe

− N1m

a

B1u −

B1m

B1m −

B1u

N1 −

Sw

0.93 0.32 0.54 0.47 0.59 0.62 1 0.22 0.12 0.19 0.81 0.58 0.91 1 0.99 0.22 1 0.43 0.19 0.76 0.52 0.1 0.59

own

other

.0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Pre

fere

nce

(%) ow

not

her

B2–L1

L1–B

2

B2–N1

N1–B2

N1–L1

L1–N

1

N2–N3

N3–N2

W1–

B2

B2–W

1

W1–

L1

L1–W

1

W1–

N1

N1-W

1

W2–

N2

N2–W

2

WH–B

2.2

B2.2–W

H

N1ma–

N1fe

N1fe–N

1ma

B1u–B

1t

B1t–B1u

N1–Sw

Own population –seawater

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Snails do not Prefer any Volatile Chemicals

Populationsare

not discriminatedby

volatile chemicals

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Results of Discriminant analyzes

EFWS – Woods Hole

9

8

7

6

5

4

3

2

-2 -1 0 1 2 3 4 5 6 7

Can

onic

al2

Canonical 1

-SP (Spire height)

Nor

thA

mer

ica

Eur

ope

Continent

North AmericaEurope

Wilks’ Lambda: 0.867p < 0.001 ***significant influence: SP

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Results of Discriminant analyzes

North coasts – South coasts

10

9

8

7

6

5

4

3

2

Can

onic

al2

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5Canonical 1

+CL (Columellar length)-LA (Length of aperture

sout

h

nort

h

Sidenorthsouth

Wilks’ Lambda: 0.802

p < 0.001 ***

significant influence: CL > LA

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Results of Discriminant analyzes

Within north coasts

12

11

10

9

8

7

6

5

4

3

Can

onic

al2

-SP

(Spi

rehe

ight

)-C

L(C

olum

ella

rlen

gth)

-7 -6 -5 -4 -3 -2 -1 0Canonical 1

+SP (Spire height)-CL (Columellar length)

Wan

gero

oge

Bor

kum

Nor

dern

ey

PlaceBorkum

Wangerooge

Wilks’ Lambda: 0.135

p < 0.001 ***

significant influence: SP > CL

Norderney

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Results of Discriminant analyzes

Within south coasts

6

5

4

3

2

1

0

-1

-2

Can

onic

al2

-CL

(Col

umel

larl

engt

h)+S

W(S

hell

wid

th)

-LA

(Len

gth

ofap

ertu

re)

-SP

(Spi

rehe

ight

)

7 8 9 10 11 12 13 14 15 16 17 18 19Canonical 1

+CL (Spire height)-SW (Shell width)+LA (Length of aperture)+SP (Spire height)

Nor

dern

ey

Lang

eoog

Wan

gero

oge

Bor

kum

PlaceBorkumLangeoogNorderneyWangerooge

Wilks’ Lambda: 0.731p < 0.001 ***significant influence: CL > SW > LA > SP

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Results of Discriminant analyzes

Sexes

4

3

2

1

0

-1

-2

-3

-4

-5

Can

onic

al2

3 4 5 6 7 8 9 10 11 12Canonical 1

mal

efe

mal

e

Sex

malefemale

Wilks’ Lambda: 0.985p < 0.277

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic (Dest) and Geographic (km) Distance

B2 W1 N2 WHB2 . . . 0.011 -0.007 0.033 *W1 82.5 . . . 0.006 0.056 **N2 38.0 39.9 . . . 0.057 *

WH 5662.8 5730.7 5692.3 . . .

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic (Dest) and Geographic (km) Distance

B2 W1 N2 WHB2 . . . 0.011 -0.007 0.033 *W1 82.5 . . . 0.006 0.056 **N2 38.0 39.9 . . . 0.057 *

WH 5662.8 5730.7 5692.3 . . .

Borkum

NorderneyLangeoog

Wangerooge

Within the EFWS

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic (Dest) and Geographic (km) Distance

B2 W1 N2 WHB2 . . . 0.011 -0.007 0.033 *W1 82.5 . . . 0.006 0.056 **N2 38.0 39.9 . . . 0.057 *

WH 5662.8 5730.7 5692.3 . . . Woods Hole

EFWS

Between the EFWS and Woods Hole

Alexander Jüterbock Population dynamics of the periwinkle

Appendix

Further ReadingIntroductionMethodsResults

Genetic (Dest) and Geographic (km) Distance

Wadden SeaPopulations

arenot differentiated

atneutral loci

Alexander Jüterbock Population dynamics of the periwinkle

top related