ph880 topics in physics - wordpress.com › 2010 › 11 › ph880-wk12-2.pdfph880 topics in physics...

Post on 09-Jun-2020

26 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

PH880 Topics in Physics

Modern Optical Imaging (Fall 2010)Modern Optical Imaging (Fall 2010)

KAIST PH880 11/17/2010

Overview of week 12

• Monday:• Monday: 

‐ FRET

• Wednesday:

‐ NSOM

KAIST PH880 11/17/2010

Förster resonance energy transfer (FRET)Fl i iFluorescence emission

FRET

Donor Acceptor

KAIST PH880 11/17/2010wikipedia

FRET: spectroscopic rulerDetermines distances between biomolecules labeled with an appropriate donor andDetermines distances between biomolecules labeled with an appropriate donor and acceptor fluorochrome when they are within 10 nanometers of each other.

(* l diff ti li it d fl i l ti i i ffi i t t d t i(* normal diffraction‐limited fluorescence microscope resolution is insufficient to determine whether an interaction between biomolecules actually takes place.)

KAIST PH880 11/17/2010 http://www.olympusmicro.comTeakjip Ha group

KAIST PH880 11/17/2010508 | VOL.5 NO.6 | JUNE 2008 | NATURE METHODS

Overview of week 12

• Monday:• Monday: 

‐ FRET

• Wednesday:

‐ NSOM

KAIST PH880 11/17/2010

Things NaturalThings Natural Things ManmadeThings Manmade1 cm10-2 m

The Scale of Things The Scale of Things –– Nanometers and MoreNanometers and More

Head of a pin1-2 mm

Ant~ 5 mm

The Challenge

1 millimeter (mm)

10 mm10 m

10-3 m

e

1,000,000 nanometers =

mm

Dust mite

200 mm 0.1 mm100 mm

(mm)

10-4 m

Mic

row

ave

MicroElectroMechanical (MEMS) devices10 -100 mm wide

Red blood cells

Fly ash~ 10-20 mmHuman hair

~ 60-120 mm wideO O

O

OO

O OO O OO OO

O

S

O

S

O

S

O

S

O

S

O

S

O

S

O

S

PO

O

Mic

row

orld

0.01 mm10 mm

10-5 m

Infra

red

Red blood cells

Pollen grain

(~7-8 mm)

Fabricate and combine nanoscale building blocks to make useful0 1

1 micrometer (mm)

10-6 m

Visi

ble

1,000 nanometers = Zone plate x-ray “lens”Outer ring spacing ~35 nm

blocks to make useful devices, e.g., a photosynthetic reaction center with integral semiconductor storage.

0.01 mm10

0.1 mm100 nm

10-7 m

10-8 mnow

orld Ultra

viol

et

Self-assembled,Nature-inspired structureMany 10s of nm

ATP synthase

~10 nm diameter Nanotube electrode

1 nanometer (nm)

10 nm

10-9 m

Nan

ray

Carbon buckyball

Many 10s of nm

Quantum corral of 48 iron atoms on copper surfacepositioned one at a time with an STM tip

Corral diameter 14 nm

Carbon nanotube~1.3 nm diameter

0.1 nm10-10 m

Soft

x-r

Office of Basic Energy ScienceOffice of Science, U.S. DOE

Version 05-26-06, pmd

~1 nm diameter

Atoms of silicon

spacing 0.078 nm

DNA~2-1/2 nm diameter

Scanning probe microscopes

Scanning Tunneling Microscope STM

Atomic Force Microscope AFM

Nearfield Scanning Optical Microscope NSOM

KAIST PH880 11/17/2010

Scanning Tunneling Microscope: STMBinnig and Rohrer won Nobel Prize in 1986 for the development of STM

S. Woedtke, Ph.D. thesis, Inst. f. Exp. u. Ang. Phys. der CAU Kiel, 2002.

When STM tip is close to the specimen (~ 1nm), a tunneling current, IT is established

, , p g y ,

IT  is exponentially proportional to the distance 

A feedback loop maintaining IT can change z‐position  topographical information

KAIST PH880 11/17/2010

p g T g p p g p

STM images

“Carbon Monoxide Man”“Atom”"quantum corral" 

C Iron on Copper Carbon Monoxide on Platinum Iron on Copper

Don Eigler, IBM

Lutz & Eigler, IBM Lutz & Eigler, IBM

KAIST PH880 11/17/2010

Atomic Force Microscope AFMSTM is a precursor of AFM

Feedback Loop

V

Laser

Photodiode

MirrorPZT

~ deflection

ThermoMicroscopes Explorer AFM

Tip

SubstrateThermoMicroscopes Explorer AFM

AFM relies on contact rather than current  nonconductive materials can be imaged

KAIST PH880 11/17/2010

AFM images

the compaction of DNA in yeast d b t i ll d AbF2

nuclear pore complex

caused by a protein called AbF2

LR Brewer, et al, Biophysical journal, 2003

D Stoffler et al, Current opinion in cell biology, 1999

KAIST PH880 11/17/2010

AFM + Fluorescence imaging techniques

A. Gaiduk et al, Chem. Phys. Chem. 6, no. 5, pp. 976‐983, 2005

KAIST PH880 11/17/2010

Near field

sub‐wavelength aperture  (a)(20 ‐ 200 nm)(20  200 nm)

~10 nm

b d i b iImage can be reconstructed point by point spatial resolution is limited by a (rather than λ)

KAIST PH880 11/17/2010

the propagation of waves :the loss of spatial information:the loss of spatial information

Hartschuh et al., Angewandte Chemie,2008

KAIST PH880 11/17/2010

History of NSOM

1. Theoretically proposed in 1928, EH Synge, Philos. Mag. 6, 356 (1928) 

2. Demonstration at microwave frequencies with a resolution of λ/60.EA Ash ad G. Nicholls, Nature (London) 237, 510 (1972)

3. At visible wavelengths (“optical stethoscopy”) was demonstrated.D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984)

4. Betzig et al used fiber probes to image a variety of samples with a number of different contrast mechanisms. Betzig, E. & Trautman, JK Science 257 

KAIST PH880 11/17/2010

KAIST PH880 11/17/2010

KAIST PH880 11/17/2010

KAIST PH880 11/17/2010

NSOM tip fabrication

chemical etching(meniscus or tube etching)

Micro‐fabrication(meniscus or tube etching)

Fast, convenient processFastLarge cone angle (Low cost, reproducible)

mass production.  

Smooth surface

Low cone angle (low throughput)

Large cone angle

Toxic (HF) vapor

( p )

Complex fabrication processLow cone angle (low throughput)Fragile

Toxic (HF) vaporDifficult  to control surface quality

p p

NSOM tip: metal coating

NSOM tip: illumination 

Waveguide tip (Takashi et al.1999)

SiO2 cantilevered tip (Mitsuoka et al. 2000)

Fiber tip by Nanonics Inc.

KAIST PH880 11/17/2010

NSOM tip: intensity distribution

Probe‐to‐Probe configuration (Ohtsu et al. 2000)

Minh et al 2000

KAIST PH880 11/17/2010

Minh et al. 2000

Lu et al. 2001

NSOM tip: geometry and light throughput

KAIST PH880 11/17/2010

Ultramicroscopy 57 (1995) 204‐207

Common NSOM illumination

KAIST PH880 11/17/2010

Other focusing concepts using near field optics 

a) Far‐field focusing using a lens. The angular frequency range of propagating waves 

Hartschuh et al., Angewandte Chemie,2008

) g g g q y g p p g gkx,max, and thus the focus diameter, is limited by the aperture angle of the lenskx,max=nsin(q)2p/l, with n being the refractive index and l thewavelength of light. b) Aperture‐type scanning near‐field optical microscope (aperture‐SNOM).c) Tip‐enhanced near‐field optical microscopy (TENOM). d) Tip‐on‐aperture (TOA) approach, which combines the advantages of (b) and (c).

KAIST PH880 11/17/2010

Oscillatory Feedback Methods

Oscillating ~ 1 nm at resonance freq (~ 30 kHz)Increases SNR for feedback methods

Q factor ~ 500 (the oscillator's resonance frequency divided by its resonance width)

1.  Shear force detection

utilizes lateral oscillation shear forces generated between the tip and specimen

2.  Tapping mode detection

relies on atomic forces occurring during oscillation of the tip perpendicular to thegenerated between the tip and specimen 

(parallel to the surface) to control the tip‐specimen gap during imaging

oscillation of the tip perpendicular to the specimen surface (as in AFM) to generate the feedback signal for tip control.

KAIST PH880 11/17/2010http://www.olympusmicro.com/primer/techniques/nearfield/nearfieldintro.html

Reading List

i i i & h ( ) i ld iBetzig E, Lewis A, Harootunian A, Isaacson M, & Kratschmer E (1986) Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications. Biophys J 49(1):269‐279.

KAIST PH880 11/17/2010

top related