permutation groups, permutation patterns, and galois...

Post on 18-Jan-2021

20 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation groups, permutation patterns,and Galois connections

Erkko Lehtonen and Reinhard Poschel

Technische Universitat DresdenInstitute of Algebra

AAA92Arbeitstagung Allgemeine Algebra

Workshop on General AlgebraPraha 27.5.2016

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (1/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Outline

Permutation patterns

The “Galois” connections Pat(`)−Comp(n) andgPat(`)− gComp(n)

The Galois closures gComp(n) G and Galois kernels gPat(`)H

Remarks and references

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (2/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Outline

Permutation patterns

The “Galois” connections Pat(`)−Comp(n) andgPat(`)− gComp(n)

The Galois closures gComp(n) G and Galois kernels gPat(`)H

Remarks and references

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (3/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

5 43 21

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

3

5 421

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

31

5 42

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

1

3

5 42

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

1

53

42

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

1

53

2

4

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

21

53

4

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

53

21 4

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

53 2 41

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

53 2 π41

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

53 2 π41

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoided

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Some motivationWhich number sequences (permutations) can be sorted by a stack?

53 2 π41

Proposition

A permutation π can be sorted by a stack if and only if it does notcontain a subsequence . . . a . . . b . . . c . . . with c < a < b.

i.e., such “patterns” abc (like 352) must be avoidedAAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (4/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

PermutationsA permutation π ∈ Sn (bijection π ∈ [n][n], [n] := {1, . . . , n}) willbe considered as a word (n-tuple π ∈ [n]n) of length n:

π1 . . . πn := (π(1), . . . , π(n)).

e.g. π = 31524 ∈ [5]5 is the permutation1 7→ 3, 2 7→ 1, 3 7→ 5, 4 7→ 2, 5 7→ 4

graphical representation:

π = 31524 ∈ S5

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (5/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

PermutationsA permutation π ∈ Sn (bijection π ∈ [n][n], [n] := {1, . . . , n}) willbe considered as a word (n-tuple π ∈ [n]n) of length n:

π1 . . . πn := (π(1), . . . , π(n)).

e.g. π = 31524 ∈ [5]5 is the permutation1 7→ 3, 2 7→ 1, 3 7→ 5, 4 7→ 2, 5 7→ 4

graphical representation:

π = 31524 ∈ S5

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (5/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

PermutationsA permutation π ∈ Sn (bijection π ∈ [n][n], [n] := {1, . . . , n}) willbe considered as a word (n-tuple π ∈ [n]n) of length n:

π1 . . . πn := (π(1), . . . , π(n)).

e.g. π = 31524 ∈ [5]5 is the permutation1 7→ 3, 2 7→ 1, 3 7→ 5, 4 7→ 2, 5 7→ 4

graphical representation:

π = 31524 ∈ S5

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (5/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

PermutationsA permutation π ∈ Sn (bijection π ∈ [n][n], [n] := {1, . . . , n}) willbe considered as a word (n-tuple π ∈ [n]n) of length n:

π1 . . . πn := (π(1), . . . , π(n)).

e.g. π = 31524 ∈ [5]5 is the permutation1 7→ 3, 2 7→ 1, 3 7→ 5, 4 7→ 2, 5 7→ 4

graphical representation:π = 31524 ∈ S5

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (5/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns (Example)

π = 31524 ∈ S5

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (6/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns (Example)

π = 31524 ∈ S5

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (6/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns (Example)

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (6/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns (Example)

1 2 3

3

2

1

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (6/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns (Example)

σ = 231 ∈ S3

1 2 3

3

2

1

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (6/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns (Example)

σ ≤ πσ is pattern of π

π involves σ

π = 31524 ∈ S5

σ = 231 ∈ S3

1 2 3

3

2

1

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (6/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns (Example)

352

231

231 = red(352)

reduced form

substring

π = 31524 ∈ S5

1 2 3

3

2

1

1 2 3 4 5

1

5

4

3

2

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (6/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns

` ≤ n, σ ∈ S`, π ∈ Snσ ≤ π :⇐⇒ there exists a substring u of π of length `

such that σ = red(u)(σ is `-pattern of π, or π involves σ)

π avoids σ :⇐⇒ σ � π.

Pat(`) π := {σ ∈ S` | σ ≤ π}

The pattern involvement relation ≤ is a partial order on the setP :=

⋃n≥1 Sn of all finite permutations.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (7/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns

` ≤ n, σ ∈ S`, π ∈ Snσ ≤ π :⇐⇒ there exists a substring u of π of length `

such that σ = red(u)(σ is `-pattern of π, or π involves σ)

π avoids σ :⇐⇒ σ � π.

Pat(`) π := {σ ∈ S` | σ ≤ π}

The pattern involvement relation ≤ is a partial order on the setP :=

⋃n≥1 Sn of all finite permutations.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (7/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns

` ≤ n, σ ∈ S`, π ∈ Snσ ≤ π :⇐⇒ there exists a substring u of π of length `

such that σ = red(u)(σ is `-pattern of π, or π involves σ)

π avoids σ :⇐⇒ σ � π.

Pat(`) π := {σ ∈ S` | σ ≤ π}

The pattern involvement relation ≤ is a partial order on the setP :=

⋃n≥1 Sn of all finite permutations.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (7/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Permutation patterns

` ≤ n, σ ∈ S`, π ∈ Snσ ≤ π :⇐⇒ there exists a substring u of π of length `

such that σ = red(u)(σ is `-pattern of π, or π involves σ)

π avoids σ :⇐⇒ σ � π.

Pat(`) π := {σ ∈ S` | σ ≤ π}

The pattern involvement relation ≤ is a partial order on the setP :=

⋃n≥1 Sn of all finite permutations.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (7/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Outline

Permutation patterns

The “Galois” connections Pat(`)−Comp(n) andgPat(`)− gComp(n)

The Galois closures gComp(n) G and Galois kernels gPat(`)H

Remarks and references

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (8/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection Pat(`)−Comp(n)

The relation σ � π (π avoids σ) induces a Galois connectionbetween subsets of S` and Sn. The corresponding “monotoneGalois connection” (residuation) is given by the following operators(monotone w.r.t. ⊆):

For S ⊆ S`, T ⊆ Sn (` ≤ n) let

Comp(n) S := {τ ∈ Sn | Pat(`) τ ⊆ S} = {τ ∈ Sn | ∀σ′ ∈ S` \ S : σ′ � τ},

Pat(`) T :=⋃τ∈T

Pat(`) τ = S` \ {σ′ ∈ S` | ∀τ ∈ T : σ′ � τ}.

In particular we have the defining property of a monotone Galoisconnection:

Pat(`) T ⊆ S ⇐⇒ T ⊆ Comp(n) S

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (9/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection Pat(`)−Comp(n)

The relation σ � π (π avoids σ) induces a Galois connectionbetween subsets of S` and Sn. The corresponding “monotoneGalois connection” (residuation) is given by the following operators(monotone w.r.t. ⊆):

For S ⊆ S`, T ⊆ Sn (` ≤ n) let

Comp(n) S := {τ ∈ Sn | Pat(`) τ ⊆ S} = {τ ∈ Sn | ∀σ′ ∈ S` \ S : σ′ � τ},

Pat(`) T :=⋃τ∈T

Pat(`) τ = S` \ {σ′ ∈ S` | ∀τ ∈ T : σ′ � τ}.

In particular we have the defining property of a monotone Galoisconnection:

Pat(`) T ⊆ S ⇐⇒ T ⊆ Comp(n) S

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (9/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection Pat(`)−Comp(n)

The relation σ � π (π avoids σ) induces a Galois connectionbetween subsets of S` and Sn. The corresponding “monotoneGalois connection” (residuation) is given by the following operators(monotone w.r.t. ⊆):

For S ⊆ S`, T ⊆ Sn (` ≤ n) let

Comp(n) S := {τ ∈ Sn | Pat(`) τ ⊆ S} = {τ ∈ Sn | ∀σ′ ∈ S` \ S : σ′ � τ},

Pat(`) T :=⋃τ∈T

Pat(`) τ = S` \ {σ′ ∈ S` | ∀τ ∈ T : σ′ � τ}.

In particular we have the defining property of a monotone Galoisconnection:

Pat(`) T ⊆ S ⇐⇒ T ⊆ Comp(n) S

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (9/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Connection to permutation groups

Proposition

If S is a subgroup of S`, then Comp(n) S is a subgroup of Sn.

(The converse does not hold)

Sketch of the proof.

Assume that S ≤ S`. Let π, τ ∈ Comp(n) S .Thus Pat(`) π,Pat(`) τ ⊆ S .Crucial observation:

Pat(`) π−1 = (Pat(`) π)−1 := {σ−1 | σ ∈ Pat(`) π},Pat(`) πτ ⊆ (Pat(`) π)(Pat(`) τ) := {σσ′ | σ ∈ Pat(`) π, σ′ ∈ Pat(`) τ}.

Consequently, π−1 and πτ also belong to Comp(n) S (sinceS ≤ S`). Thus Comp(n) S is a group.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (10/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Connection to permutation groups

Proposition

If S is a subgroup of S`, then Comp(n) S is a subgroup of Sn.

(The converse does not hold)

Sketch of the proof.

Assume that S ≤ S`. Let π, τ ∈ Comp(n) S .Thus Pat(`) π,Pat(`) τ ⊆ S .Crucial observation:

Pat(`) π−1 = (Pat(`) π)−1 := {σ−1 | σ ∈ Pat(`) π},Pat(`) πτ ⊆ (Pat(`) π)(Pat(`) τ) := {σσ′ | σ ∈ Pat(`) π, σ′ ∈ Pat(`) τ}.

Consequently, π−1 and πτ also belong to Comp(n) S (sinceS ≤ S`). Thus Comp(n) S is a group.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (10/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Connection to permutation groups

Proposition

If S is a subgroup of S`, then Comp(n) S is a subgroup of Sn.

(The converse does not hold)

Sketch of the proof.

Assume that S ≤ S`. Let π, τ ∈ Comp(n) S .Thus Pat(`) π,Pat(`) τ ⊆ S .Crucial observation:

Pat(`) π−1 = (Pat(`) π)−1 := {σ−1 | σ ∈ Pat(`) π},Pat(`) πτ ⊆ (Pat(`) π)(Pat(`) τ) := {σσ′ | σ ∈ Pat(`) π, σ′ ∈ Pat(`) τ}.

Consequently, π−1 and πτ also belong to Comp(n) S (sinceS ≤ S`). Thus Comp(n) S is a group.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (10/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Connection to permutation groups

Proposition

If S is a subgroup of S`, then Comp(n) S is a subgroup of Sn.

(The converse does not hold)

Sketch of the proof.

Assume that S ≤ S`. Let π, τ ∈ Comp(n) S .Thus Pat(`) π,Pat(`) τ ⊆ S .Crucial observation:

Pat(`) π−1 = (Pat(`) π)−1 := {σ−1 | σ ∈ Pat(`) π},Pat(`) πτ ⊆ (Pat(`) π)(Pat(`) τ) := {σσ′ | σ ∈ Pat(`) π, σ′ ∈ Pat(`) τ}.

Consequently, π−1 and πτ also belong to Comp(n) S (sinceS ≤ S`). Thus Comp(n) S is a group.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (10/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Connection to permutation groups

Proposition

If S is a subgroup of S`, then Comp(n) S is a subgroup of Sn.

(The converse does not hold)

Sketch of the proof.

Assume that S ≤ S`. Let π, τ ∈ Comp(n) S .Thus Pat(`) π,Pat(`) τ ⊆ S .Crucial observation:

Pat(`) π−1 = (Pat(`) π)−1 := {σ−1 | σ ∈ Pat(`) π},Pat(`) πτ ⊆ (Pat(`) π)(Pat(`) τ) := {σσ′ | σ ∈ Pat(`) π, σ′ ∈ Pat(`) τ}.

Consequently, π−1 and πτ also belong to Comp(n) S (sinceS ≤ S`). Thus Comp(n) S is a group.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (10/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Connection to permutation groups

Proposition

If S is a subgroup of S`, then Comp(n) S is a subgroup of Sn.

(The converse does not hold)

Sketch of the proof.

Assume that S ≤ S`. Let π, τ ∈ Comp(n) S .Thus Pat(`) π,Pat(`) τ ⊆ S .Crucial observation:

Pat(`) π−1 = (Pat(`) π)−1 := {σ−1 | σ ∈ Pat(`) π},Pat(`) πτ ⊆ (Pat(`) π)(Pat(`) τ) := {σσ′ | σ ∈ Pat(`) π, σ′ ∈ Pat(`) τ}.

Consequently, π−1 and πτ also belong to Comp(n) S (sinceS ≤ S`). Thus Comp(n) S is a group.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (10/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection gPat(`)− gComp(n)

Modification of Comp−Patfor permutation groups G ≤ S` and H ≤ Sn:

gComp(n) G := 〈Comp(n) G 〉 = Comp(n) G = {τ ∈ Sn | Pat(`) τ ⊆ G},

gPat(`)H := 〈Pat(`)H〉 = 〈⋃τ∈H

Pat(`) τ〉,

This gives also a monotone Galois connection since we have:

gPat(`)H ⊆ G ⇐⇒ H ⊆ gComp(n) G

Thus

gPat(`) gComp(n) G ⊆ G (kernel operator),

H ⊆ gComp(n) gPat(`)H (closure operator),

gComp(n) G = gComp(n) gPat(`) gComp(n) G (closures),

gPat(`)H = gPat(`) gComp(n) gPat(`)H (kernels).

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (11/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection gPat(`)− gComp(n)

Modification of Comp−Patfor permutation groups G ≤ S` and H ≤ Sn:

gComp(n) G := 〈Comp(n) G 〉 = Comp(n) G = {τ ∈ Sn | Pat(`) τ ⊆ G},

gPat(`)H := 〈Pat(`)H〉 = 〈⋃τ∈H

Pat(`) τ〉,

This gives also a monotone Galois connection since we have:

gPat(`)H ⊆ G ⇐⇒ H ⊆ gComp(n) G

Thus

gPat(`) gComp(n) G ⊆ G (kernel operator),

H ⊆ gComp(n) gPat(`)H (closure operator),

gComp(n) G = gComp(n) gPat(`) gComp(n) G (closures),

gPat(`)H = gPat(`) gComp(n) gPat(`)H (kernels).

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (11/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection gPat(`)− gComp(n)

Modification of Comp−Patfor permutation groups G ≤ S` and H ≤ Sn:

gComp(n) G := 〈Comp(n) G 〉 = Comp(n) G = {τ ∈ Sn | Pat(`) τ ⊆ G},

gPat(`)H := 〈Pat(`)H〉 = 〈⋃τ∈H

Pat(`) τ〉,

This gives also a monotone Galois connection since we have:

gPat(`)H ⊆ G ⇐⇒ H ⊆ gComp(n) G

Thus

gPat(`) gComp(n) G ⊆ G (kernel operator),

H ⊆ gComp(n) gPat(`)H (closure operator),

gComp(n) G = gComp(n) gPat(`) gComp(n) G (closures),

gPat(`)H = gPat(`) gComp(n) gPat(`)H (kernels).

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (11/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection gPat(`)− gComp(n)

Modification of Comp−Patfor permutation groups G ≤ S` and H ≤ Sn:

gComp(n) G := 〈Comp(n) G 〉 = Comp(n) G = {τ ∈ Sn | Pat(`) τ ⊆ G},

gPat(`)H := 〈Pat(`)H〉 = 〈⋃τ∈H

Pat(`) τ〉,

This gives also a monotone Galois connection since we have:

gPat(`)H ⊆ G ⇐⇒ H ⊆ gComp(n) G

Thus

gPat(`) gComp(n) G ⊆ G (kernel operator),

H ⊆ gComp(n) gPat(`)H (closure operator),

gComp(n) G = gComp(n) gPat(`) gComp(n) G (closures),

gPat(`)H = gPat(`) gComp(n) gPat(`)H (kernels).

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (11/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection gPat(`)− gComp(n)

Modification of Comp−Patfor permutation groups G ≤ S` and H ≤ Sn:

gComp(n) G := 〈Comp(n) G 〉 = Comp(n) G = {τ ∈ Sn | Pat(`) τ ⊆ G},

gPat(`)H := 〈Pat(`)H〉 = 〈⋃τ∈H

Pat(`) τ〉,

This gives also a monotone Galois connection since we have:

gPat(`)H ⊆ G ⇐⇒ H ⊆ gComp(n) G

Thus

gPat(`) gComp(n) G ⊆ G (kernel operator),

H ⊆ gComp(n) gPat(`)H (closure operator),

gComp(n) G = gComp(n) gPat(`) gComp(n) G (closures),

gPat(`)H = gPat(`) gComp(n) gPat(`)H (kernels).

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (11/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

The (monotone) Galois connection gPat(`)− gComp(n)

Modification of Comp−Patfor permutation groups G ≤ S` and H ≤ Sn:

gComp(n) G := 〈Comp(n) G 〉 = Comp(n) G = {τ ∈ Sn | Pat(`) τ ⊆ G},

gPat(`)H := 〈Pat(`)H〉 = 〈⋃τ∈H

Pat(`) τ〉,

This gives also a monotone Galois connection since we have:

gPat(`)H ⊆ G ⇐⇒ H ⊆ gComp(n) G

Thus

gPat(`) gComp(n) G ⊆ G (kernel operator),

H ⊆ gComp(n) gPat(`)H (closure operator),

gComp(n) G = gComp(n) gPat(`) gComp(n) G (closures),

gPat(`)H = gPat(`) gComp(n) gPat(`)H (kernels).

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (11/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Outline

Permutation patterns

The “Galois” connections Pat(`)−Comp(n) andgPat(`)− gComp(n)

The Galois closures gComp(n) G and Galois kernels gPat(`)H

Remarks and references

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (12/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Question

How to characterize the Galois closures and the Galois kernels ofthe monotone Galois connection gComp(n)− gPat(`) (` < n) ?

Answer: as automorphism groups of special relations(pc-relations and pc-extended invariants, resp. )

Recall the (usual) Galois connection Aut− Inv (betweenpermutations π ∈ Sn and relations % ∈ Reln on {1, . . . , n}):

AutR := {π ∈ Sn | ∀% ∈ R : π . %} for R ⊆ Reln,

InvT := {% ∈ Reln | ∀π ∈ T : π . %} for T ⊆ Sn,

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (13/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Question

How to characterize the Galois closures and the Galois kernels ofthe monotone Galois connection gComp(n)− gPat(`) (` < n) ?

Answer: as automorphism groups of special relations(pc-relations and pc-extended invariants, resp. )

Recall the (usual) Galois connection Aut− Inv (betweenpermutations π ∈ Sn and relations % ∈ Reln on {1, . . . , n}):

AutR := {π ∈ Sn | ∀% ∈ R : π . %} for R ⊆ Reln,

InvT := {% ∈ Reln | ∀π ∈ T : π . %} for T ⊆ Sn,

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (13/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Question

How to characterize the Galois closures and the Galois kernels ofthe monotone Galois connection gComp(n)− gPat(`) (` < n) ?

Answer: as automorphism groups of special relations(pc-relations and pc-extended invariants, resp. )

Recall the (usual) Galois connection Aut− Inv (betweenpermutations π ∈ Sn and relations % ∈ Reln on {1, . . . , n}):

AutR := {π ∈ Sn | ∀% ∈ R : π . %} for R ⊆ Reln,

InvT := {% ∈ Reln | ∀π ∈ T : π . %} for T ⊆ Sn,

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (13/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-relations

For I ∈ P`(n) (`-element subsets of [n]), let hI : [`]→ I be theorder-isomorphism ([`],≤)→ (I ,≤).

Example ` = 3, n = 5, I := {3, 5, 2} = {2, 3, 5} ∈ P3(5):

hI : 1 7→ 2, 2 7→ 3, 3 7→ 5.

Thus, for s := (3, 1), r := (5, 2), we get hI (s) = r and h−1I (r) = s.

For k ≤ ` ≤ n, % ⊆ [n]k , σ ⊆ [`]k define %∨ ⊆ [`]k and σ∧ ⊆ [n]k as

%∨ := {h−1I (r) | r ∈ %, Im r ⊆ I ∈ P`(n)},σ∧ := {hJ(s) | s ∈ σ, J ∈ P`(n)}.

% ⊆ [n]k is called pattern closed relation (pc-relation) if %∨∧ = %.

For k = ` this means r ∈ % ∧ red(r) = red(s) =⇒ s ∈ %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (14/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-relations

For I ∈ P`(n) (`-element subsets of [n]), let hI : [`]→ I be theorder-isomorphism ([`],≤)→ (I ,≤).

Example ` = 3, n = 5, I := {3, 5, 2} = {2, 3, 5} ∈ P3(5):

hI : 1 7→ 2, 2 7→ 3, 3 7→ 5.

Thus, for s := (3, 1), r := (5, 2), we get hI (s) = r and h−1I (r) = s.

For k ≤ ` ≤ n, % ⊆ [n]k , σ ⊆ [`]k define %∨ ⊆ [`]k and σ∧ ⊆ [n]k as

%∨ := {h−1I (r) | r ∈ %, Im r ⊆ I ∈ P`(n)},σ∧ := {hJ(s) | s ∈ σ, J ∈ P`(n)}.

% ⊆ [n]k is called pattern closed relation (pc-relation) if %∨∧ = %.

For k = ` this means r ∈ % ∧ red(r) = red(s) =⇒ s ∈ %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (14/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-relations

For I ∈ P`(n) (`-element subsets of [n]), let hI : [`]→ I be theorder-isomorphism ([`],≤)→ (I ,≤).

Example ` = 3, n = 5, I := {3, 5, 2} = {2, 3, 5} ∈ P3(5):

hI : 1 7→ 2, 2 7→ 3, 3 7→ 5.

Thus, for s := (3, 1), r := (5, 2), we get hI (s) = r and h−1I (r) = s.

For k ≤ ` ≤ n, % ⊆ [n]k , σ ⊆ [`]k define %∨ ⊆ [`]k and σ∧ ⊆ [n]k as

%∨ := {h−1I (r) | r ∈ %, Im r ⊆ I ∈ P`(n)},σ∧ := {hJ(s) | s ∈ σ, J ∈ P`(n)}.

% ⊆ [n]k is called pattern closed relation (pc-relation) if %∨∧ = %.

For k = ` this means r ∈ % ∧ red(r) = red(s) =⇒ s ∈ %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (14/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-relations

For I ∈ P`(n) (`-element subsets of [n]), let hI : [`]→ I be theorder-isomorphism ([`],≤)→ (I ,≤).

Example ` = 3, n = 5, I := {3, 5, 2} = {2, 3, 5} ∈ P3(5):

hI : 1 7→ 2, 2 7→ 3, 3 7→ 5.

Thus, for s := (3, 1), r := (5, 2), we get hI (s) = r and h−1I (r) = s.

For k ≤ ` ≤ n, % ⊆ [n]k , σ ⊆ [`]k define %∨ ⊆ [`]k and σ∧ ⊆ [n]k as

%∨ := {h−1I (r) | r ∈ %, Im r ⊆ I ∈ P`(n)},σ∧ := {hJ(s) | s ∈ σ, J ∈ P`(n)}.

% ⊆ [n]k is called pattern closed relation (pc-relation) if %∨∧ = %.

For k = ` this means r ∈ % ∧ red(r) = red(s) =⇒ s ∈ %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (14/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-relations

For I ∈ P`(n) (`-element subsets of [n]), let hI : [`]→ I be theorder-isomorphism ([`],≤)→ (I ,≤).

Example ` = 3, n = 5, I := {3, 5, 2} = {2, 3, 5} ∈ P3(5):

hI : 1 7→ 2, 2 7→ 3, 3 7→ 5.

Thus, for s := (3, 1), r := (5, 2), we get hI (s) = r and h−1I (r) = s.

For k ≤ ` ≤ n, % ⊆ [n]k , σ ⊆ [`]k define %∨ ⊆ [`]k and σ∧ ⊆ [n]k as

%∨ := {h−1I (r) | r ∈ %, Im r ⊆ I ∈ P`(n)},σ∧ := {hJ(s) | s ∈ σ, J ∈ P`(n)}.

% ⊆ [n]k is called pattern closed relation (pc-relation) if %∨∧ = %.

For k = ` this means r ∈ % ∧ red(r) = red(s) =⇒ s ∈ %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (14/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-relations

For I ∈ P`(n) (`-element subsets of [n]), let hI : [`]→ I be theorder-isomorphism ([`],≤)→ (I ,≤).

Example ` = 3, n = 5, I := {3, 5, 2} = {2, 3, 5} ∈ P3(5):

hI : 1 7→ 2, 2 7→ 3, 3 7→ 5.

Thus, for s := (3, 1), r := (5, 2), we get hI (s) = r and h−1I (r) = s.

For k ≤ ` ≤ n, % ⊆ [n]k , σ ⊆ [`]k define %∨ ⊆ [`]k and σ∧ ⊆ [n]k as

%∨ := {h−1I (r) | r ∈ %, Im r ⊆ I ∈ P`(n)},σ∧ := {hJ(s) | s ∈ σ, J ∈ P`(n)}.

% ⊆ [n]k is called pattern closed relation (pc-relation) if %∨∧ = %.

For k = ` this means r ∈ % ∧ red(r) = red(s) =⇒ s ∈ %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (14/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Characterization of the Galois closures

The Galois closures of the closure operator gComp(n) gPat(`) canbe characterized by a single irreflexive k-ary pc-relation.

We have:

Theorem

(A) gComp(n) gPat(`)H = Aut pcInvH for H ≤ Sn.

(B) Let H be a subgroup of Sn. Then the following are equivalent:

(a) H is Galois closed, i.e., H = gComp(n) gPat(`)H,(a’) ∃G ≤ S` : H = gComp(n) G ,(b) H = Aut pcInvH,(c) ∃ k ≤ `∃ % ⊆ [n]k6= : % = %∨∧︸ ︷︷ ︸

% is pc-relation

∧ H = Aut %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (15/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Characterization of the Galois closures

The Galois closures of the closure operator gComp(n) gPat(`) canbe characterized by a single irreflexive k-ary pc-relation.

We have:

Theorem

(A) gComp(n) gPat(`)H = Aut pcInvH for H ≤ Sn.

(B) Let H be a subgroup of Sn. Then the following are equivalent:

(a) H is Galois closed, i.e., H = gComp(n) gPat(`)H,(a’) ∃G ≤ S` : H = gComp(n) G ,(b) H = Aut pcInvH,(c) ∃ k ≤ `∃ % ⊆ [n]k6= : % = %∨∧︸ ︷︷ ︸

% is pc-relation

∧ H = Aut %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (15/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Characterization of the Galois closures

The Galois closures of the closure operator gComp(n) gPat(`) canbe characterized by a single irreflexive k-ary pc-relation.

We have:

Theorem

(A) gComp(n) gPat(`)H = Aut pcInvH for H ≤ Sn.

(B) Let H be a subgroup of Sn. Then the following are equivalent:

(a) H is Galois closed, i.e., H = gComp(n) gPat(`)H,(a’) ∃G ≤ S` : H = gComp(n) G ,(b) H = Aut pcInvH,(c) ∃ k ≤ `∃ % ⊆ [n]k6= : % = %∨∧︸ ︷︷ ︸

% is pc-relation

∧ H = Aut %.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (15/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-extended invariants

Let G ≤ S`. A relation σ ⊆ [`]k (k ≤ `) is called apattern closed extended invariant (pc-extended invariant) of G if

σ∧∨ = σ and σ∧ ∈ Inv Aut γG∧.

where γG := {s | s ∈ G} - the elements of G ≤ S` = [`]`6= ⊆ [`]`

are viewed as `-tuples.

pcExtG : set of all pc-extended invariants of G .

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (16/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-extended invariants

Let G ≤ S`. A relation σ ⊆ [`]k (k ≤ `) is called apattern closed extended invariant (pc-extended invariant) of G if

σ∧∨ = σ and σ∧ ∈ Inv Aut γG∧.

where γG := {s | s ∈ G} - the elements of G ≤ S` = [`]`6= ⊆ [`]`

are viewed as `-tuples.

pcExtG : set of all pc-extended invariants of G .

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (16/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

pc-extended invariants

Let G ≤ S`. A relation σ ⊆ [`]k (k ≤ `) is called apattern closed extended invariant (pc-extended invariant) of G if

σ∧∨ = σ and σ∧ ∈ Inv Aut γG∧.

where γG := {s | s ∈ G} - the elements of G ≤ S` = [`]`6= ⊆ [`]`

are viewed as `-tuples.

pcExtG : set of all pc-extended invariants of G .

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (16/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Characterization of the Galois kernels

Now the Galois kernels of the kernel operator gPat(`) gComp(n) canbe characterized by pc-extended invariant relations:

Theorem

gPat(`) gComp(n) G = Aut pcExtG for G ≤ S`.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (17/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Characterization of the Galois kernels

Now the Galois kernels of the kernel operator gPat(`) gComp(n) canbe characterized by pc-extended invariant relations:

Theorem

gPat(`) gComp(n) G = Aut pcExtG for G ≤ S`.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (17/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Outline

Permutation patterns

The “Galois” connections Pat(`)−Comp(n) andgPat(`)− gComp(n)

The Galois closures gComp(n) G and Galois kernels gPat(`)H

Remarks and references

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (18/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Remarks

For G ⊆ S`, M.D. Atkinson and R. Beals [1999] consideredthe sequence

G ,Comp(`+1) G , . . . ,Comp(n) G ,Comp(n+1) G , . . .

in the group case, i.e., G ≤ Sn (then Comp(n) G = gComp(n) G ),and asked for the “asymptotic” behaviour of the above sequence.

Recent and much more detailed results about this sequence:Erkko Lehtonen [2015/16]

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (19/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Remarks

For G ⊆ S`, M.D. Atkinson and R. Beals [1999] consideredthe sequence

G ,Comp(`+1) G , . . . ,Comp(n) G ,Comp(n+1) G , . . .

in the group case, i.e., G ≤ Sn (then Comp(n) G = gComp(n) G ),and asked for the “asymptotic” behaviour of the above sequence.

Recent and much more detailed results about this sequence:Erkko Lehtonen [2015/16]

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (19/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

Remarks

For G ⊆ S`, M.D. Atkinson and R. Beals [1999] consideredthe sequence

gPat(1) G , . . . , gPat(`−1) G ,G ,Comp(`+1) G , . . . ,Comp(n) G ,Comp(n+1) G , . . .

in the group case, i.e., G ≤ Sn (then Comp(n) G = gComp(n) G ),and asked for the “asymptotic” behaviour of the above sequence.

Recent and much more detailed results about this sequence:Erkko Lehtonen [2015/16]

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (19/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

References

M.D. Atkinson and R. Beals, Permuting mechanismsand closed classes of permutations. In: Combinatorics,computation & logic ’99 (Auckland), vol. 21 of Aust. Comput.Sci. Commun., Springer, Singapore, 1999, pp. 117–127.

E. Lehtonen, Permutation groups arising from patterninvolvement. arXiv:1605.05571.

E. Lehtonen and R. Poschel, Permutation groups,pattern involvement, and Galois connections. arXiv:1605.04516.

N. Ruskuc, Classes of permutations avoiding 231 or 321.Lecture given at TU Dresden, Nov. 25, 2015.

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (20/21)

Permutation patterns The “Galois” connections Pat(`) − Comp(n) and gPat(`) − gComp(n) The Galois closures gComp(n) G and Galois kernels gPat(`) H Remarks and references

AAA92, Praha, May 27, 2016 R. Poschel, Permutation groups, permutation patterns, and Galois connections (21/21)

top related