multi-scale modeling of bird diversity using canopy structure metrics of habitat heterogeneity

Post on 27-Jan-2016

67 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Multi-Scale Modeling of Bird Diversity using Canopy Structure Metrics of Habitat Heterogeneity. Scott Goetz Mindy Sun (WHRC) Ralph Dubayah Anu Swatatran Amanda Whitehurst (UMD) Andy Hansen Linda Phillips (MSU) Richard Pearson Ned Horning (AMNH). Magnolia warbler. - PowerPoint PPT Presentation

TRANSCRIPT

Multi-Scale Modeling of Bird Diversity using Canopy Structure Metrics of

Habitat Heterogeneity

Scott GoetzMindy Sun(WHRC)

Ralph DubayahAnu Swatatran

Amanda Whitehurst(UMD)

Andy HansenLinda Phillips

(MSU)

Richard PearsonNed Horning

(AMNH)

NASA Annual Biodiversity MeetingSeattle, April 2012

Magnolia warbler Black throated blue warbler

Collaborators:

Matthew Betts(OSU)

Richard Holmes(Dartmouth)

Objectives / Research Questions

(1) How can patterns of ecosystem structure be observed and modeled at regional to continental scales?

(2) What is the influence of satellite measurements of canopy structure on bird diversity (extent, richness and abundance)?

(3) What are the relationships between bird diversity, vegetation structure and ecosystem productivity at regional to continental-scales?

~

Summer Tanager. Photo by Scott Somershoe, USGS.

UAVSAR False Color

HH

HV

VV

Canopy Height (m)0

5 - 10

10 - 15

15-20

20 - 25

25-30

> 30

±0 2.5 51.25 km

LVIS RH100 DRL Canopy Height

UAVSAR

UA

VS

AR

Fa

lse

Co

lor

HH

HV

VV

Can

op

y H

eig

ht

(m)

0 5 -

10

10 -

15

15-2

0

20 -

25

25-3

0

> 3

0

±0

2.5

51.

25km

LandsatNDVI difference

UAVSAR False Color

HH

HV

VV

Canopy Height (m)0

5 - 10

10 - 15

15-20

20 - 25

25-30

> 30

±0 2.5 51.25 km

0 0.6

UA

VS

AR

Fa

lse

Co

lor

HH

HV

VV

Can

op

y H

eig

ht

(m)

0 5 -

10

10 -

15

15-2

0

20 -

25

25-3

0

> 3

0

±0

2.5

51.

25km

0 5 10 15 20 25 >30 m

Synergistic use of lidar, moderate to high resolution optical & SAR..

0 5 10 15 20 25 >30 m

Hubbard Brook Experimental Forest

What is the influence of satellite measurements of canopy structure on bird diversity (extent, richness

and abundance) and habitat use (prevalence)?

We made use of a unique bird observation data set across 371 sites at HBEF collected over 10+ years

(1999-2009)

% v

aria

nce

expl

aine

d Single versus multi-sensor predictions of the Bird Species Richness

Hubbard Brook Experimental Forest

Swatatran, Dubayah, Goetz, et al. (2012 PlosOne)

understory

Lidar-derived canopy cover at different heights

midstory

Lidar-derived canopy cover at different heights

overstory

Lidar-derived canopy cover at different heights

cumulative

Species habitat use varies with cover across a range of heights

Yellow-rumped warbler more prevalent in lower canopy

Ovenbird more prevalent in upper canopy but also near surface (ground gleaner)

Predictions of Species Abundance at HBEFBoosted Regression Tree Hurdle Model

Predictor VariablesLaser Vegetation Imaging Sensor (LVIS)

Total canopy cover

Canopy cover at 15-20m height

Canopy cover at 20-25m height

Canopy cover at 25-30m height

Energy return at 25% canopy height

Energy return at 50% canopy height

Energy return at 75% canopy height

Canopy complexity

Discrete Return Lidar (DRL) Elevation

Canopy height

Average crown diameter

Average crown diameter*height

Stem Density

Crown area-weighted height

Landsat NDVI

NDVI Difference

Radar HV backscatter

HH/VV ratio

HH/VV index

Following Goetz et al. 2010 and Swatantran et al. 2012

Hurdle modeling approach links a presence-absence model with an abundance

model to address the issue of inflated zero counts -

predictions can be interpreted as being abundance given

suitable habitat (after Strubbe et al., 2010)

Boosted Regression Tree Hurdle Model Predictions of Species Abundance at HBEF

Magnolia Warbler, r2=0.756

Good prediction… Reasonable prediction… Poor prediction…

Black-throated blue warbler, r2=0.497

Brown Creeper, r2=0.049

Mean r2 for 16 species = 0.381,Max = 0.756, Min = 0.039.

Boosted Regression Tree Hurdle Model Predictions of Species Abundance at HBEF

National Scale Predictors of Bird Diversity Patterns

• Physical Environment: climate and topography

• Vegetation Properties: canopy density / percent cover, functional groups, biomass

• Vegetation Productivity: NPP, GPP (MODIS)

• Vegetation Structure: GLAS metrics

What are the relationships between bird diversity, vegetation structure and ecosystem productivity at regional

to continental-scales?

At least 10

GLAS shots within Breeding Bird Survey

(BBS) routes

Robust Predictions of Bird Species Richness

Forest Birds predicted well even in high

Canopy Cover & Productivity areas

High productivityroutes (389)

High Canopy CoverExplained = 63%

High ProductivityExplained = 68%

All Forest BirdsExplained Variance = 84%

All 730 routes

High Canopy Cover routes

(259)

Cross-validated with 10% reserved BBS routes

National Scale Predictions of Bird Guild Species RichnessBiophysical Structure and Environmental predictors

All Forest

WoodlandGrassland

Models developed on BBS routesGoetz et al. (forthcoming)

Southeast US

BBS sample locations, Segments, Routes

Disturbance History and Land Use

LVIS Canopy cover

Canopy cover by height class

Land coverPercent AgPercent developedPercent CanopyVariety of cover types

MODISGPPVCF forest

Soil fertility

Geographic LocationGeographic Location

Three Analysis unitsThree Analysis units

StratifyStratify

Predictor variablesPredictor variables

Other biophysicalTemperaturePrecipiationElevationNDVI

Regional Interactions among Ecosystem Productivity, Land Use and Canopy Structure

############## ### ## #### ### ## ### ## ## ### ######### ####### ## ## # ### ### ###### ############ ### ## #### #### ## ####### # ######## ## ##### ##### ### ## ## ### # ### ##### # ##### ### ## ## ## ##### # # #### ### ## ### ### ## ##### ### ## ### #### # ### ### # ### ### ## ### ### ## ##### ### ## ### ##### #### ##### ### ### #### ### ### ### ### # ### #### ## # ### #### # #### ### # # ### ### ## ### ## ## ## #### # # ##### ##### # # #### ## ## ### ####### ### ######## ### #### # ##### ### ## ### # #### ### ### # ### #### ### # ## # #### #### ### ### #### #### ## # ### # #### #### ###### ## ### ### # ### #### ### # ### ### # ### ### # ### ### ## ### ### ### ## ### ### #### ### ### ### #### ###### ###### ######### ### ### ### ## ## ###### ### ###### ##### ##### ##### ###### ### ### ###### ### ## ### #### ##### ## ## ### ### ### #### ### #### #### ### ## ### #### ## ### #### ## ## ### #### ### ### ## #### #### ## ### #### ### ### #### #### #### ## ##### ### ## ###### ## ###### ## #### ### ### ############### ### ########### ##### ####### ####### ###### ###### ########### ###### ####### ##### ###### ######## ########## ####### ####### #### ####### ###### ####### ### ####### ############ ###### ########### #### ### ### ### #### #### #### #### ### ### ### ### #### ############ ### ### #### #### ###### ### ##### ## ### ## ### #### ### ## ###### #### ### #### ## ### ## ## #### #### ### ##### ### ### #### ### #### ## ### #### ### ### ## ### #### ### #### ### ##### #### ### #### #### #### ### ### ### #### ### ### ### ### ### ### #### #### ### ### # ##### # # ### # ### #### ## # #### ### ### # ### #### # #### ## # ### #### # ## ### # # #### # #### ## ###### ## ##### ## #### #### # ###### # ### ## #### ## ####### #### ##### # #### ##### #### ##### ## # # ##### # # ### ###### # # ########## # ########## # ## ####### # ## ####### ## ## ### #### ######## # ####### ##### # # ### ### ### ## ##### ## # ## ### ### # ### ###### ## #### ### ### # ### #### ### # # ### ### # ## ### ### # ### #### # ## #### # ### ## #### # ## #### ### ## # #### # #### #### #### # ## ### #### ## ### ## ### ## # # ### ## # # ### ## ## # ### #### # # ### ### # # ### # # # # ### # # ## ## ### # # # ###### ## # ## # ######## ## ###### # ### ## ######## ### ## ### ### ##### ### ### ### ## ### #### ####### ##### ### #### ### ### ## ## #### ##### ## ## ### ### ###### ### ### #### #### ###### ###### ### ### ## ###### #### #### ###### ##### #### ##### ##### #### #### ###### ##### ## ##### ##### ##### # #### #### # ##### ## ##### # ## ## #### ## # #### # #### # # ##### # ###### # ###### ## ##### # ###### ## ## ###### # ## ### # # ###### # # ###### # # ##### ### ##### ## ###### # ##### # # #### #### # ###### #### #### # ##### # ## ##### # #### # ##### # #### ##### # ##### # ### # ### # ###### # # ###### # # #### # ##### ##### ## ##### # ### ## ###### ###### #### # # ##### # # ##### # ### #### ## ###### ## # ###### ## #### ##### # ##### # ######### # ####### # # ### # ### # #### #### ##### # ### # ### ### ##### # ### ##### #### # ## ##### #### # ### #### ### ## #### #### ### #### ### # #### ## ### #### ######## ## # ####### # ## ### ## ### # ## ### ## ### #### ## ## ###### ################## ## #### # ### # ########################## # ### ## # ### # # ## ## ## ### # # ## # ### # # ## # ## # # ## # ## ## # ### ## # ### # ## # ### # ## # #### # ## #### # ### ### # ### ### ## ### ### # ### # ### ## # # ### # #### ## ### # #### ## ### ## ## ## # ## # # ## # ### ## # ### ## ### # ### # ### # # ##### # #### # # ########## # ## ############ #### ############## ########## ######## ##### ##### # # ######## ####### ########## ## ## ### ## ### ### ## ### ## ## ## ## # #### # ## ## ## # ### # ## ### ## ## ## # #### # ####################### ## ## ##### ### ### ### ### ## ### ### ### ### ######### ### ### #### ### #### ## ### ### ## ## ###### ## #### ## #################### ## ## ### #### ### ### ## ##### ### ## ### ## ### ### ### ## ## ### ### ### ### ## #### ### #### ### ###### #### ##### #### ##### ### ##### ### ##### #### ##### #### ####### ##### #### ##### #### ##### ##### ##### ##### ##### #### ##### #### #### #### #### #### #### #### ##### ###### ##### #### ## ### ##### ### #### #### ### ### #### ###### ### ### ####### #### ##### #### #### ##### ### #### ### ### ### ##### ##### ##### ### #### ### ### ## ### #### #### #### #### ### ### ### #### ### #### ## ## ###### ## ########## ## ### ###### ## ###### ####### ##### ####### # ## ####### # ### ###### # ### ####### # ## ####### ## #### ####### ## ### ####### # #### ######## ### ####### ## ### ###### # #### ####### # ## ####### # ### ######## # ### ###### #### ###### # ### ####### ### ####### ### ###### #### #### ## ## # #### ### ### #### ###### #### #### #### ### #### ## #### ## ###### #### ## ## ### ### #### ## #### ### #### ## ### ### #### ## ### #### #### #### ### ##### ### ### ### ## ## #### #### ### ## ### #### ### ## ### #### ### #### ### #### ## ### #### ### ### ### #### ### ### ## #### ## #### ## #### #### ### #### ## ### ### #### ## #### ### ## ### #### ##### ## ##### ##### ##### ### ##### ##### ##### #### ##### ############ ############## ##### ######## ##### ##### ###### ###### #### #### ##### ##### #### #### ###### #### ##### ###### #### #### ## #### ## ## ## ### ### ### #### ### #### #### ########### ####### ### ####### #### ######## ###### ## ####### #### ######### ####### ## ####### #### ######## ###### ### ####### ### ###### #### ##### ### ###### #### ###### ### ###### #### ##### ### ###### ## ###### ### ##### #### ###### #### #### ### ####### ###### #### ######## ### ############# #### ######### #### ########## ## ######## ######## ######################################################################################################################################################################################################################################################################################################################################################## ##

#S

#S

#S

#S

#S#S #S

#S

#S

Raleigh

Atlanta

Richmond

Knoxville

Asheville

Charlotte

Washington

Birmingham

Charlottesville

LVIS transect (approx 2400 miles surveyed)BBS routes (66 routes that overlap transect)

#

50 0 50 100 Kilometers

BBS stop locations

Point Segment Route

Three analysis units

Southeast LVIS Transect

Intersection of BBS routes with LVIS

acquisitions

Stop locations and BBS route buffer

LVIS transect overlap

Collected GPS stop location data collected for 53 of 63 BBS routes from BBS Surveyor and/or driving the route GPS

Stop locations and BBS route buffer

LVIS points in red

BBS stop locations buffered (Red)

BBS route buffered (Yellow)

Canopy cover at 10_15m

Derivation of cover at multiple

canopy heights / layers

Canopy cover at

25-30m20-25m15-20m10-15m5-10m0-5m

Summary of Findings(thus far)

1. At local scale (e.g. HBEF) bird species richness and habitat use (multi-year prevalence) can be predicted well using lidar (and multi-sensor) canopy structure

– Performance of abundance predictions is species specific and first requires identification of suitable habitat

2. At national scale bird species richness can be robustly predicted using a suite of environmental variables

– Lidar canopy structure metrics are not selected as the most important predictors at this scale

Next Steps & in Progress

3. Regional scale work is ongoing using SE transect

• Extending analyses across productivity, land use and disturbance gradients

• Also:– Additional analysis of SE LVIS transect layers and analysis

within BBS route observations– Extend work at HBEF including abundance modeling,

vertical habitat use, breeding productivity

top related