module9 fourier transform of standard signals objective

Post on 05-Nov-2021

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Module9

Fourier Transform of Standard Signals

Objective:To find the Fourier transform of standard signals like unit impulse, unit step etc. and

any periodic signal.

Introduction:

The Fourier transform of a finite duration signal can be found using the formula

๐‘‹ ๐œ” = ๐‘ฅ(๐‘ก)๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘กโˆž

โˆ’โˆž

This is called as analysis equation

The inverse Fourier transform is given by

๐‘ฅ(๐‘ก) = ๐‘‹ ๐œ” ๐‘’๐‘—๐œ”๐‘ก ๐‘‘๐œ”โˆž

โˆ’โˆž

This is called as synthesis equation

Both these equations form the Fourier transform pair.

Description:

Existence of Fourier Transform:

The Fourier Transform does not exist for all aperiodic functions. The condition for a function

x(t) to have Fourier Transform, called Dirichletโ€Ÿs conditions are:

1. x t is absolutely integrable over the interval -โˆž to +โˆž,that is

x(t) dt

โˆž

โˆ’โˆž

< โˆž

2. x t has a finite number of discontinuities in every finite time interval. Further, each of

these discontinuities must be finite.

3. x t has a finite number of maxima and minima in every finite time interval.

Almost all the signals that we come across in physical problems satisfy all the above

conditions except possibly the absolute integrability condition.

Dirichletโ€Ÿs condition is a sufficient condition but not necessary condition. This means,

Fourier Transform will definitely exist for functions which satisfy these conditions. On the

other hand, in some cases , Fourier Transform can be found with the use of impulses even for

functions like step function, sinusoidal function,etc.which do not satisfy the convergence

condition .

Fourier transform of standard signals:

1. Impulse Function ๐›… ๐ญ

Givenx t = ฮด t ,

ฮด t = 1 for t = 00 for t โ‰  0

Then

X ฯ‰ = x t eโˆ’jฯ‰tdt = ฮด t eโˆ’jฯ‰t dt โˆž

โˆ’โˆž

โˆž

โˆ’โˆž = eโˆ’jฯ‰tโŽธt=0 = 1

โˆด F ฮด t = 1 or ฮด t FT 1

Hence , the Fourier Transform of a unit impulse function is unity.

X ฯ‰ = 1 for all ฯ‰

X ฯ‰ = 0 for all ฯ‰

The impulse function with its magnitude and phase spectra are shown in below figure:

Similarly,

F ฮด t โˆ’ to = ฮด t โˆ’ to eโˆ’jฯ‰tdt = eโˆ’jฯ‰t0 i. e. ฮด(t โˆ’ to)FT eโˆ’jฯ‰to

โˆž

โˆ’โˆž

2. Single Sided Real exponential function ๐žโˆ’๐š๐ญ๐ฎ(๐ญ)

Given x t = eโˆ’at u t , u(t) = 1 fort โ‰ฅ 00 fort < 0

Then

X ฯ‰ = x t eโˆ’jฯ‰tdt = eโˆ’at u t eโˆ’jฯ‰tdt

โˆž

โˆ’โˆž

โˆž

โˆ’โˆž

= eโˆ’at eโˆ’jฯ‰tdt = eโˆ’(a+jฯ‰)tdt = e(โˆ’ a +jฯ‰ t

โˆ’ a + jฯ‰

โˆž

0

โˆž

0 0

โˆž

= eโˆ’โˆž โˆ’ e0

โˆ’(a + jฯ‰)

=0 โˆ’ 1

โˆ’(a + jฯ‰)=

1

a + jฯ‰

โˆด F eโˆ’at u t =1

a+jฯ‰ or eโˆ’at u t

FT

1

a+jฯ‰

Now, X ฯ‰ =1

a+jฯ‰=

aโˆ’jฯ‰

a+jฯ‰ (aโˆ’jฯ‰)

=aโˆ’jฯ‰

a2+ฯ‰2 = a

a2+ฯ‰2 โˆ’ jฯ‰

a2+ฯ‰2 = 1

a2+ฯ‰2 โ€“ tanโˆ’1 ฯ‰

a

โˆด X(ฯ‰) =1

a2 + ฯ‰2 , X ฯ‰ = โˆ’ tanโˆ’1

ฯ‰

a forallฯ‰

Figure shows the single-sided exponential function with its magnitude and phase spectra.

3.Double sided real exponential function ๐žโˆ’๐š ๐ญ

Given x t = eโˆ’a t

โˆด x t = eโˆ’a t = eโˆ’a โˆ’t =eat fort โ‰ค 0eโˆ’at = eโˆ’at fort โ‰ฅ 0

= eโˆ’a โˆ’t u โˆ’t + eโˆ’at u t

= eat u โˆ’t + eโˆ’at u(t)

X ฯ‰ = x t eโˆ’jฯ‰tdt

โˆž

โˆ’โˆž

= eat eโˆ’jฯ‰tdt + eโˆ’at eโˆ’jฯ‰tdt = e aโˆ’jฯ‰ tdt + eโˆ’ a+jฯ‰ tdt

โˆž

0

0

โˆ’โˆž

โˆž

0

0

โˆ’โˆž

= eโˆ’ aโˆ’jฯ‰ tdt + eโˆ’ a+jฯ‰ tdt = โˆž

0

โˆž

0

eโˆ’ aโˆ’jฯ‰ t

โˆ’(aโˆ’jฯ‰)

0

โˆž

+ eโˆ’ a +jฯ‰ t

โˆ’(a+jฯ‰)

0

โˆž

= eโˆ’โˆž โˆ’eโˆ’0

โˆ’(aโˆ’jฯ‰)+

eโˆ’โˆž โˆ’eโˆ’0

โˆ’(a+jฯ‰)=

1

aโˆ’jฯ‰+

1

a+jฯ‰=

2a

a2+ฯ‰2

โˆด F eโˆ’a t = 2a

a2 + ฯ‰2oreโˆ’a t

FT

2a

a2 + ฯ‰2

โˆด X ฯ‰ = 2a

a2 + ฯ‰2forallฯ‰

And X ฯ‰ = 0 forallฯ‰

A Two sided exponential function and its amplitude and phase spectra are shown in figures

below:

4. Complex Exponential Function๐ž๐ฃ๐›š๐ŸŽ๐ญ :

To find the Fourier Transform of complex exponential function ejฯ‰0t , consider finding the

inverse Fourier transform of ฮด(ฯ‰ โˆ’ ฯ‰0). Let

X ฯ‰ = ฮด(ฯ‰ โˆ’ ฯ‰0)

โˆด x t = Fโˆ’1 X ฯ‰ = Fโˆ’1[ฮด(ฯ‰ โˆ’ ฯ‰0)] =1

2ฯ€ X ฯ‰ ejฯ‰tdฯ‰

โˆž

โˆ’โˆž

=1

2ฯ€ ฮด(ฯ‰ โˆ’ ฯ‰0)ejฯ‰tdฯ‰

โˆž

โˆ’โˆž=

1

2ฯ€ejฯ‰0t

โˆด Fโˆ’1 ฮด ฯ‰ โˆ’ ฯ‰0 =ejฯ‰0t

2ฯ€orFโˆ’1 2ฯ€ฮด ฯ‰ โˆ’ ฯ‰0 = ejฯ‰0t

= F ejฯ‰0t = 2ฯ€ฮด(ฯ‰ โˆ’ ฯ‰0)

Or ejฯ‰0tFT 2ฯ€ฮด(ฯ‰ โˆ’ ฯ‰0)

5. Constant Amplitude (1)

Let x t = 1 โˆ’ โˆž โ‰ค t โ‰ค โˆž

The waveform of a constant function is shown in below figure .Let us consider a small section of

constant function, say, of duration ๐œ.If we extend the small duration to infinity, we will get back

the original function.Therefore

x t = Lt tโ†’โˆž

[rect t

ฯ„ ]

Where rect t

ฯ„ =

1 forโˆ’ฯ„

2โ‰ค t โ‰ค

ฯ„

2

0 elesewhere

By definition, the Fourier transform of x(t) is:

X(ฯ‰) = F[x(t)] = F Lt tโ†’โˆž

rect t

ฯ„ = Lt

tโ†’โˆžF rect

t

ฯ„

= Lt tโ†’โˆž

1 ฯ„ 2

โˆ’ฯ„ 2 eโˆ’jฯ‰t dt = Lt

tโ†’โˆž

eโˆ’jฯ‰ t

โˆ’jฯ‰ โˆ’ฯ„ 2

ฯ„ 2

= Lt tโ†’โˆž

eโˆ’jฯ‰ (ฯ„ 2 )โˆ’ejฯ‰ (ฯ„ 2 )

โˆ’jฯ‰ = Lt

tโ†’โˆž

2sin [ฯ‰ ฯ„

2 ]

ฯ‰ = Lt

tโ†’โˆž ฯ„

sin [ฯ‰ ฯ„

2 ]

ฯ‰(ฯ„

2)

= Lt tโ†’โˆž

ฯ„ sa(ฯ‰ฯ„

2) = 2ฯ€ Lt

tโ†’โˆž

ฯ„ 2

ฯ€sa(

ฯ‰ฯ„

2)

Using the sampling property of the delta function i. e. Lt tโ†’โˆž

ฯ„ 2

ฯ€sa(

ฯ‰ฯ„

2) = ฮด(ฯ‰) , we get

X(ฯ‰) = F Lt tโ†’โˆž

rect t

ฯ„ = 2ฯ€ฮด ฯ‰

6.Signum function sgn(t)

The signum function is denoted by sgn(t) and is defined by

sgn(t) = 1 for t > 0

โˆ’1 for t < 0

This function is not absolutely integrable. So we cannot directly find its Fourier transform.

Therefore, let us consider the function eโˆ’aโŽนtโŽธsgn(t) and substitute the limit aโ†’0 to obtain the

above sgn(t)

Given x(t) = sgn(t) = Lt aโ†’0

eโˆ’aโŽนtโŽธ sgn(t) = Lt aโ†’0

[ eโˆ’at u t โˆ’ eโˆ’at u โˆ’t

โˆด X(ฯ‰) = F[sgn(t)] = Lt aโ†’0

[ eโˆ’at u t โˆ’ eโˆ’at u โˆ’t eโˆ’jฯ‰tโˆž

โˆ’โˆždt

= Lt aโ†’0

eโˆ’at eโˆ’jฯ‰tu t dt โˆ’ eat eโˆ’jฯ‰tu โˆ’t dt โˆž

โˆ’โˆž

โˆž

โˆ’โˆž

= Lt aโ†’0

eโˆ’(a+jฯ‰)tdt โˆ’ e(aโˆ’jฯ‰)tdt 0

โˆ’โˆž

โˆž

0 = Lt

aโ†’0 eโˆ’(a+jฯ‰)tdt โˆ’ eโˆ’(aโˆ’jฯ‰)tdt

โˆž

0

โˆž

0

= Lt aโ†’0

eโˆ’(a +jฯ‰ )t

โˆ’(a+jฯ‰)

0

โˆž

โˆ’ eโˆ’(aโˆ’jฯ‰ )t

โˆ’(aโˆ’jฯ‰)

0

โˆž

= Lt aโ†’0

1

a+jฯ‰โˆ’

1

aโˆ’jฯ‰ =

1

๐‘—๐œ”โˆ’

1

โˆ’๐‘—๐œ” =

2

๐‘—๐œ”

F[sgn(t)] = 2

๐‘—๐œ”

sgn(t)๐น๐‘‡

2

๐‘—๐œ”

โˆด โŽนX(โต)โŽธ = 2

๐œ” and ๐‘‹(โต) =

๐œ‹

2๐‘“๐‘œ๐‘Ÿ ๐œ” < 0 ๐‘Ž๐‘›๐‘‘ โˆ’

๐œ‹

2๐‘“๐‘œ๐‘Ÿ ๐œ” > 0

Figure below shows the signum function and its magnitude and phase spectra

7. Unit step function u(t)

The unit step function is defined by

u(t) = 1 for t โ‰ฅ 00 for t < 0

since the unit step function is not absolutely integrable, we cannot directly find its Fourier

transform. So express the unit step function in terms of signum function as:

u(t) = 1

2+

1

2 ๐‘ ๐‘”๐‘› ๐‘ก

x(t)= u(t) = 1

2[1 + ๐‘ ๐‘”๐‘› ๐‘ก ]

X(๐œ”) = F[u(t)] = F 1

2[1 + ๐‘ ๐‘”๐‘› ๐‘ก ]

= 1

2 ๐น 1 + ๐น[๐‘ ๐‘”๐‘› ๐‘ก ]

We know that F[1] = 2๐œ‹๐›ฟ(๐œ”) and F[sgn(t)] = 2

๐‘—๐œ”

F[u(t)]= 1

2 2๐œ‹๐›ฟ ๐œ” +

2

๐‘—๐œ” = ๐œ‹๐›ฟ ๐œ” +

1

๐‘—๐œ”

u(t)๐น๐‘‡ ๐œ‹๐›ฟ ๐œ” +

1

๐‘—๐œ”

โˆด โŽนX(โต)โŽธ=โˆž at โต=0 and is equal to 0 at โต=โˆ’โˆž and โต=โˆž

Figure shows the unit step function and its spectrum.

8. Rectangular pulse ( Gate pulse) ๐ญ

๐›• or rect

๐ญ

๐›•

Consider a rectangular pulse as shown in below figure. This is called a unit gate function and is

defined as

x(t) = rect t

ฯ„ =

t

ฯ„ =

1 ๐‘“๐‘œ๐‘ŸโŽน tโŽธ <ฯ„

2

0 ๐‘œ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Then X(โต) = F[ x(t)] = F ๐‘ก

๐œ =

t

ฯ„

โˆž

โˆ’โˆž๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก

= 1 ๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก๐œ 2

โˆ’๐œ 2 =

๐‘’โˆ’๐‘—๐œ”๐‘ก

โˆ’๐‘—๐œ” ๐œ 2

๐œ 2

= ๐‘’โˆ’๐‘—๐œ” (๐œ 2) โˆ’ ๐‘’ ๐‘—๐œ” (๐œ 2)

โˆ’๐‘—๐œ”

= ๐œ

๐œ”(๐œ 2) ๐‘’ ๐‘—๐œ” (๐œ 2) โ€“ ๐‘’โˆ’๐‘—๐œ” (๐œ 2)

2๐‘— = ๐œ

sin ๐œ”(๐œ 2)

๐œ”(๐œ 2)

= ๐œ ๐‘ ๐‘–๐‘›๐‘ ๐œ”(๐œ 2)

โˆด F ๐‘ก

๐œ = ๐œ ๐‘ ๐‘–๐‘›๐‘ ๐œ”(๐œ 2) , that is

rect t

ฯ„ =

t

ฯ„

๐น๐‘‡ ๐œ ๐‘ ๐‘–๐‘›๐‘ ๐œ”(๐œ 2)

Figure shows the spectra of the gate function

The amplitude spectrum is obtained as follows:

At ๐œ” = 0, sinc(๐œ”๐œ/2)=1. Therefore, โŽนX(๐œ”)โŽธ ๐‘Ž๐‘ก ๐œ” = 0 is equal to ๐œ. At (๐œ”๐œ/2)=ยฑ๐‘›๐œ‹, i.e.

at

๐œ” = ยฑ2๐‘›๐œ‹

๐œ‹ , n = 1, 2, โ€ฆโ€ฆsinc(๐œ”๐œ/2) =0

The phase spectrum is: ๐‘‹(๐œ”) = 0 if sinc(๐œ”๐œ/2)> 0

= ยฑ๐œ‹ if sinc(๐œ”๐œ/2) < 0

The amplitude response between the first two zero crossings is known as main lobe and the

portions of the response for ๐œ” < โˆ’ 2๐œ‹

๐œ and ๐œ” >

2๐œ‹

๐œ are known as side lobes. From the

amplitude spectrum, we can find that majority of the energy of the signal is contained in the main

lobe. The first zero crossing occurs at ๐œ” = 2๐œ‹

๐œ or at f =

1

๐œ Hz. As the width of the rectangular

pulse is made longer, the main lobe becomes narrower. The phase spectrum is odd function of ๐œ”.

If the amplitude spectrum is positive, then phase is zero, and if the amplitude spectrum is

negative, then the phase is โ€“ ๐œ‹ ๐‘œ๐‘Ÿ ๐œ‹.

9. Triangular Pulse โˆ† t

ฯ„

Consider the triangular pulse as shown in below figure. It is defined as:

x(t) = โˆ† t

ฯ„ =

1

ฯ„ 2 t +

ฯ„

2 = 1 + 2

t

ฯ„ for โˆ’

ฯ„

2< ๐‘ก < 0

1

ฯ„ 2 t โˆ’

ฯ„

2 = 1 โˆ’ 2

t

ฯ„ for 0 < ๐‘ก <

ฯ„

2

0 elsewhere

i.e. as x(t) = โˆ† t

ฯ„ = 1 โˆ’

2โŽนtโŽธ

ฯ„ for โŽนtโŽธ <

ฯ„

2

0 otherwise

Then X(โต) = F[ x(t)] = F โˆ† t

ฯ„ = โˆ†

t

ฯ„

โˆž

โˆ’โˆž๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก

= 1 +2t

ฯ„

0

โˆ’๐œ 2 ๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก + 1 โˆ’

2t

ฯ„

๐œ 2

0๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก

= 1 โˆ’2t

ฯ„

๐œ 2

0๐‘’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก + 1 โˆ’

2t

ฯ„

๐œ 2

0๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก

= ๐‘’๐‘—๐œ”๐‘ก๐œ 2

0๐‘‘๐‘ก โˆ’

2t

ฯ„

๐œ 2

0๐‘’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก + ๐‘’โˆ’๐‘—๐œ”๐‘ก๐œ 2

0๐‘‘๐‘ก โˆ’

2t

ฯ„

๐œ 2

0๐‘’โˆ’๐‘—๐œ”๐‘ก ๐‘‘๐‘ก

= [๐‘’๐‘—๐œ”๐‘ก +๐œ 2

0๐‘’โˆ’๐‘—๐œ”๐‘ก ]๐‘‘๐‘ก โˆ’

2

ฯ„ ๐‘ก[๐‘’๐‘—๐œ”๐‘ก +

๐œ 2

0๐‘’โˆ’๐‘—๐œ”๐‘ก ]๐‘‘๐‘ก

= 2 cos ๐œ”๐‘ก๐œ 2

0๐‘‘๐‘ก โˆ’

2

ฯ„ 2๐‘ก cos ๐œ”๐‘ก

๐œ 2

0๐‘‘๐‘ก

= 2 sin ๐œ”๐‘ก

๐œ”

0

๐œ 2

โˆ’ 4

๐œ ๐‘ก

sin ๐œ”๐‘ก

๐œ”

0

๐œ 2

+ cos ๐œ”๐‘ก

๐œ”2 0

๐œ 2

= 2

๐œ” sin ๐œ”

๐œ

2 โˆ’

4

๐œ”๐œ ๐œ

2sin

๐œ”๐œ

2 โˆ’

4

๐œ”2๐œ cos

๐œ”๐œ

2โˆ’ 1

=4

๐œ”2๐œ 1 โˆ’ cos

๐œ”๐œ

2 =

4

๐œ”2๐œ 2 ๐‘ ๐‘–๐‘›2 ๐œ”๐œ

4

= 8

๐œ”2๐œ ๐œ”๐œ

4

2 sin 2 ๐œ”๐œ

4

๐œ”๐œ

4

= ๐œ

2๐‘ ๐‘–๐‘›๐‘2

๐œ”๐œ

4

F โˆ† t

ฯ„ =

๐œ

2๐‘ ๐‘–๐‘›๐‘2

๐œ”๐œ

4

Or โˆ† t

ฯ„

๐น๐‘‡

๐œ

2๐‘ ๐‘–๐‘›๐‘2

๐œ”๐œ

4

Figure shows the amplitude spectrum of a triangular pulse.

10. Cosine wave cos โต0๐‘ก

Given x(t) = cosโต0๐‘ก

Then X(โต) = F[ x(t)] = F[cosโต0๐‘ก] = F 1

2 ๐‘’๐‘—โต0๐‘ก + ๐‘’โˆ’๐‘—โต0๐‘ก

= 1

2 ๐น ๐‘’๐‘—โต0๐‘ก + ๐น ๐‘’โˆ’๐‘—โต0๐‘ก =

1

2 2๐œ‹๐›ฟ โต โˆ’ โต๐‘œ + 2๐œ‹๐›ฟ โต + โต๐‘œ

= ๐œ‹ ๐›ฟ โต โˆ’ โต๐‘œ + ๐›ฟ โต + โต๐‘œ

โˆด F[cos โต0๐‘ก] = ๐œ‹ ๐›ฟ โต โˆ’ โต๐‘œ + ๐›ฟ โต + โต๐‘œ or cos โต0๐‘ก๐น๐‘‡ ๐œ‹ ๐›ฟ โต โˆ’ โต๐‘œ + ๐›ฟ โต + โต๐‘œ

Below Figure shows the cosine wave and its amplitude and phase spectra.

11. Sine wave sin โต0๐‘ก

Given x(t) = sinโต0๐‘ก

Then X(โต) = F[ x(t)] = F[sinโต0๐‘ก] = F 1

2๐‘— ๐‘’๐‘—โต0๐‘ก โˆ’ ๐‘’โˆ’๐‘—โต0๐‘ก

= 1

2๐‘— ๐น ๐‘’๐‘—โต0๐‘ก โˆ’ ๐น ๐‘’โˆ’๐‘—โต0๐‘ก =

1

2๐‘— 2๐œ‹๐›ฟ โต โˆ’ โต๐‘œ โˆ’ 2๐œ‹๐›ฟ โต + โต๐‘œ

= โˆ’๐‘—๐œ‹ ๐›ฟ โต โˆ’ โต๐‘œ โˆ’ ๐›ฟ โต + โต๐‘œ

โˆด F[cosโต0๐‘ก] = โˆ’๐‘—๐œ‹ ๐›ฟ โต โˆ’ โต๐‘œ โˆ’ ๐›ฟ โต + โต๐‘œ or cos โต0๐‘ก๐น๐‘‡ โˆ’๐‘—๐œ‹ ๐›ฟ โต โˆ’ โต๐‘œ โˆ’ ๐›ฟ โต + โต๐‘œ

Below Figure shows the sine wave and its amplitude and phase spectra.

Fourier transform of a periodic signal

The periodic functions can be analysed using Fourier series and that non-periodic

function can be analysed using Fourier transform. But we can find the Fourier transform of a

periodic function also. This means that the Fourier transform can be used as a universal

mathematical tool in the analysis of both non-periodic and periodic waveforms over the entire

interval. Fourier transform of periodic functions may be found using the concept of impulse

function.

We know that using Fourier series , any periodic signal can be represented as a sum of

complex exponentials. Therefore, we can represent a periodic signal using the Fourier integral.

Let us consider a periodic signal x(t) with period T. Then, we can express x(t) in terms of

exponential Fourier series as:

x(t) = ๐ถ๐‘› ๐‘’๐‘—๐‘› โต0๐‘กโˆž

๐‘›=โˆ’โˆž

The Fourier transform of x(t) is:

X(โต) = F[x(t)] = F ๐ถ๐‘› ๐‘’๐‘—๐‘› โต0๐‘กโˆž

๐‘›=โˆž

= ๐ถ๐‘› ๐น ๐‘’๐‘—๐‘› โต0๐‘ก โˆž๐‘›=โˆž

Using the frequency shifting theorem, we have

๐น 1๐‘’๐‘—๐‘› โต0๐‘ก = ๐น 1 โŽนโต=โตโˆ’๐‘›โต0 = s๐œ‹๐›ฟ โต โˆ’ ๐‘›โต0

X(โต) = 2๐œ‹ ๐ถ๐‘› ๐›ฟ โต โˆ’ ๐‘›โต0 โˆž๐‘›=โˆž

Where ๐ถ๐‘› ๐‘  are the Fourier coefficients associated with x(t) and are given by

๐ถ๐‘› = 1

๐‘‡ ๐‘ฅ(๐‘ก)

๐‘‡ 2

โˆ’๐‘‡ 2 ๐‘’โˆ’๐‘—๐‘› โต0๐‘ก๐‘‘๐‘ก

Thus, the Fourier transform of a periodic function consists of a train of equally spaced impulses.

These impulses are located at the harmonic frequencies of the signal and the strength of each

impulse is given as 2๐œ‹๐ถ๐‘› .

Solved Problems:

Problem 1:Find the Fourier transform of the signals e3tu(t)

Solution:

Given x(t) = e3tu(t)

The given signal is not absolutely integrable. That is e3tu t = โˆžโˆž

โˆ’โˆž. Therefore, Fourier

transform of x(t) = e3tu(t) does not exist.

Problem 2: Find the Fourier transform of the signals cos ฯ‰otu(t)

Solution:

Given x(t) = cos ฯ‰ot u(t)

i.e. = ejฯ‰o t +eโˆ’jฯ‰o t

2 u(t)

โˆด X(โต) = F[cos ฯ‰ot u(t)] = ejฯ‰o t +eโˆ’jฯ‰o t

2 u(t)

โˆž

โˆ’โˆžeโˆ’jฯ‰t dt

= 1

2 eโˆ’j(ฯ‰โˆ’ฯ‰o )tโˆž

0dt + eโˆ’j(ฯ‰+ฯ‰o )tโˆž

0 dt

= 1

2

eโˆ’j(ฯ‰โˆ’ฯ‰o )t

โˆ’j(ฯ‰โˆ’ฯ‰o )+

eโˆ’j(ฯ‰+ฯ‰o )t

โˆ’j(ฯ‰+ฯ‰o )

0

โˆž

= 1

2

โˆ’e0

โˆ’j(ฯ‰โˆ’ฯ‰o )+

โˆ’e0

โˆ’j(ฯ‰+ฯ‰o )

With impulses of strength ฯ€ at ฯ‰ = ฯ‰o and ฯ‰ = โˆ’ฯ‰o

โˆด X(โต) = 1

2

1

j(ฯ‰โˆ’ฯ‰o )+

1

j(ฯ‰+ฯ‰o )+ ฯ€ฮด ฯ‰ โˆ’ ฯ‰o + ฯ€ฮด(ฯ‰ + ฯ‰o)

= 1

2

j2ฯ‰

(jฯ‰)2+ ฯ‰o2 + ฯ€ฮด ฯ‰ โˆ’ ฯ‰o + ฯ€ฮด(ฯ‰ + ฯ‰o)

= jฯ‰

(jฯ‰)2+ ฯ‰o2 +

1

2 ฯ€ฮด ฯ‰ โˆ’ ฯ‰o + ฯ€ฮด(ฯ‰ + ฯ‰o)

Problem 3: Find the Fourier transform of the signals sin ฯ‰ot u(t)

Solution:

Given x(t) = sin ฯ‰ot u(t)

i.e. = ejฯ‰o tโˆ’ eโˆ’jฯ‰o t

2j u(t)

โˆด X(โต) = F[sin ฯ‰ot u(t)] = ejฯ‰o tโˆ’eโˆ’jฯ‰o t

2j u(t)

โˆž

โˆ’โˆžeโˆ’jฯ‰t dt

= 1

2j eโˆ’j(ฯ‰โˆ’ฯ‰o )tโˆž

0dt โˆ’ eโˆ’j(ฯ‰+ฯ‰o )tโˆž

0 dt

= 1

2j

eโˆ’j(ฯ‰โˆ’ฯ‰o )t

โˆ’j(ฯ‰โˆ’ฯ‰o )โˆ’

eโˆ’j(ฯ‰+ฯ‰o )t

โˆ’j(ฯ‰+ฯ‰o )

0

โˆž

= 1

2j

โˆ’e0

โˆ’j(ฯ‰โˆ’ฯ‰o )โˆ’

โˆ’e0

โˆ’j(ฯ‰+ฯ‰o )

With impulses of strength ฯ€ at ฯ‰ = ฯ‰o and ฯ‰ = โˆ’ฯ‰o

โˆด X(โต) = 1

2j

1

j(ฯ‰โˆ’ฯ‰o )โˆ’

1

j(ฯ‰+ฯ‰o )+ ฯ€ฮด ฯ‰ โˆ’ ฯ‰o โˆ’ ฯ€ฮด(ฯ‰ + ฯ‰o)

= 1

2j

j2ฯ‰o

(jฯ‰)2+ ฯ‰o2 + ฯ€ฮด ฯ‰ โˆ’ ฯ‰o โˆ’ ฯ€ฮด(ฯ‰ + ฯ‰o)

= ฯ‰o

(jฯ‰)2+ ฯ‰o2 โˆ’ j

ฯ€

2 ฮด ฯ‰ โˆ’ ฯ‰o + ฮด(ฯ‰ + ฯ‰o)

Problem 4: Find the Fourier transform of the signals eโˆ’tsin 5t u(t)

Solution:

Given x(t) = eโˆ’tsin 5t u(t)

x(t) = eโˆ’t ej5tโˆ’ eโˆ’j5t

2j u(t)

โˆด X(โต) = F[eโˆ’t sin 5t u(t)] = F eโˆ’t ej5tโˆ’ eโˆ’j5t

2j u(t)

= 1

2j [

โˆž

โˆ’โˆžeโˆ’t(ej5t โˆ’ eโˆ’j5t)u(t)] eโˆ’jฯ‰t dt

= 1

2j

eโˆ’[1+j ฯ‰โˆ’5 ]t

โˆ’[1+j ฯ‰โˆ’5 ]โˆ’

eโˆ’[1+j ฯ‰+5 ]t

โˆ’[1+j ฯ‰+5 ]

0

โˆž

= 1

2j

1

[1+j ฯ‰โˆ’5 ]โˆ’

1

[1+j ฯ‰+5 ]

= 5

[1+j ฯ‰โˆ’5 ][1+j ฯ‰+5 ] =

5

(1+jฯ‰)2 + 25 [neglecting impulses]

Problem 5: Find the Fourier transform of the signals eโˆ’2tcos 5t u(t)

Solution:

Given x(t) = eโˆ’2tcos 5t u(t)

x(t) = eโˆ’2t ej5t + eโˆ’j5t

2 u(t)

โˆด X(โต) = F[eโˆ’2t cos 5t u(t)] = F eโˆ’2t ej5tโˆ’ eโˆ’j5t

2 u(t)

= 1

2 [

โˆž

โˆ’โˆžeโˆ’2t(ej5t โˆ’ eโˆ’j5t)u(t)] eโˆ’jฯ‰t dt

= 1

2[ eโˆ’ 2+j ฯ‰โˆ’5 tโˆž

0 dt + eโˆ’ 2+j ฯ‰+5 tโˆž

0 dt ]

= 1

2

eโˆ’[2+j ฯ‰โˆ’5 ]t

โˆ’[2+j ฯ‰โˆ’5 ]โˆ’

eโˆ’[2+j ฯ‰+5 ]t

โˆ’[2+j ฯ‰+5 ]

0

โˆž

= 1

2

1

[1+j ฯ‰โˆ’5 ]โˆ’

1

[1+j ฯ‰+5 ]

= 1

2

2(2+jฯ‰)

(2+jฯ‰)2 + 25 =

2+jฯ‰

(2+jฯ‰)2 + 25 [neglecting impulses]

Problem 6: Find the Fourier transform of the signals eโˆ’โŽนtโŽธsin 5โŽนt โŽธfor all t

Solution:

Given x(t) = eโˆ’โŽนtโŽธsin 5โŽนt โŽธfor all t

i.e. x(t) = ๐‘’๐‘ก๐‘ ๐‘–๐‘›5 โˆ’๐‘ก = โˆ’๐‘’๐‘ก๐‘ ๐‘–๐‘›5๐‘ก ๐‘“๐‘œ๐‘Ÿ ๐‘ก < 0

๐‘’โˆ’๐‘ก๐‘ ๐‘–๐‘›5 ๐‘ก = ๐‘’๐‘ก๐‘ ๐‘–๐‘›5๐‘ก ๐‘“๐‘œ๐‘Ÿ ๐‘ก > 0

i.e. x(t) = โˆ’๐‘’๐‘ก๐‘ ๐‘–๐‘›5๐‘ก ๐‘ข(โˆ’๐‘ก) + ๐‘’๐‘ก๐‘ ๐‘–๐‘›5๐‘ก ๐‘ข(๐‘ก)

โˆดX(๐œ”) = 1

2j [โˆ’

โˆž

โˆ’โˆžet ej5t โˆ’ eโˆ’j5t u โˆ’t + eโˆ’t(ej5t โˆ’ eโˆ’j5t)u(t)] eโˆ’jฯ‰t dt

= โˆ’1

2j [

0

โˆ’โˆže[1โˆ’j ฯ‰โˆ’5 ]t โˆ’ e[1โˆ’j ฯ‰+5 ]t]dt +

1

2j [

โˆž

0eโˆ’[1+j ฯ‰โˆ’5 ]t โˆ’ eโˆ’[1+j ฯ‰+5 ]t]dt

= โˆ’1

2j [

โˆž

0eโˆ’[1โˆ’j ฯ‰โˆ’5 ]t โˆ’ eโˆ’[1โˆ’j ฯ‰+5 ]t]dt +

1

2j [

โˆž

0eโˆ’[1+j ฯ‰โˆ’5 ]t โˆ’ eโˆ’[1+j ฯ‰+5 ]t]dt

= โˆ’1

2j

eโˆ’[1โˆ’j ฯ‰โˆ’5 ]t

โˆ’[1โˆ’j ฯ‰โˆ’5 ]โˆ’

eโˆ’[1โˆ’j ฯ‰+5 ]t

โˆ’[1โˆ’j ฯ‰+5 ]

0

โˆž

+ 1

2j

eโˆ’[1+j ฯ‰โˆ’5 ]t

โˆ’[1+j ฯ‰โˆ’5 ]โˆ’

eโˆ’[1+j ฯ‰+5 ]t

โˆ’[1+j ฯ‰+5 ]

0

โˆž

= โˆ’1

2j

1

[1โˆ’j ฯ‰โˆ’5 ]โˆ’

1

[1โˆ’j ฯ‰+5 ] +

1

2j

1

[1+j ฯ‰โˆ’5 ]โˆ’

1

[1+j ฯ‰+5 ]

= 5

(1โˆ’jฯ‰)2 + 25+

5

(1+jฯ‰)2 + 25 [neglecting impulses]

Problem 7: Find the Fourier transform of the signals eat u(-t)

Solution:

Given x(t) = eat u(-t)

โˆด X(๐œ”) = F[eat u(-t)] = eat u(โˆ’t)โˆž

โˆ’โˆžeโˆ’jฯ‰t dt

= e(aโˆ’jฯ‰)t0

โˆ’โˆž dt = eโˆ’(aโˆ’jฯ‰)tโˆž

0 dt =

eโˆ’(aโˆ’jฯ‰ )t

โˆ’(aโˆ’jฯ‰)

0

โˆž

= 1

aโˆ’jฯ‰

Problem 8: Find the Fourier transform of the signals teat u(t)

Solution:

Given x(t) = teat u(t)

โˆด X(๐œ”) = F[teat u(t)] = teat u(t)โˆž

โˆ’โˆžeโˆ’jฯ‰t dt

= teโˆ’(a+jฯ‰)tโˆž

โˆ’โˆž dt = ๐‘ก

eโˆ’(a +jฯ‰ )t

โˆ’(a+jฯ‰)

0

โˆž

โˆ’ eโˆ’(a +jฯ‰ )t

โˆ’(a+jฯ‰)

โˆž

0 dt = ๐‘ก

eโˆ’(a +jฯ‰ )t

โˆ’(a+jฯ‰)

0

โˆž

โˆ’ eโˆ’(a +jฯ‰ )t

(a+jฯ‰)2 0

โˆž

=

1

(a+jฯ‰)2

Problem 9: Find the inverse Fourier transform of X(๐œ”) = ๐‘—๐œ”

(2+๐‘—๐œ” )2

Solution:

We know that F[teโˆ’at u(t)] = 1

(๐‘Ž+๐‘—๐œ” )2

โˆด F[teโˆ’2t u(t)] = 1

(2+๐‘—๐œ” )2

Let teโˆ’2t u(t) = x1(t)

Then 1

(2+๐‘—๐œ” )2 = X1(๐œ”)

Using differentiation in time domain property [ i.e. ๐‘‘

๐‘‘๐‘กx(t)

๐น๐‘‡ j๐œ”X(๐œ”)], we have

F ๐‘‘

๐‘‘๐‘ก๐‘ฅ1(๐‘ก) = j๐œ”๐‘‹1(๐œ”)

๐นโˆ’1 j๐œ”๐‘‹1(๐œ”) = ๐‘‘

๐‘‘๐‘ก ๐‘ฅ1(๐‘ก) =

๐‘‘

๐‘‘๐‘ก teโˆ’2t u(t)

Problem 10: Find the Fourier transform of the Gaussian signal x(t) = ๐‘’โˆ’๐‘Ž๐‘ก2

Solution:

Given x(t) = ๐‘’โˆ’๐‘Ž๐‘ก2

The Fourier transform of the given signal is:

X(๐œ”) = F[๐‘’โˆ’๐‘Ž๐‘ก2] = ๐‘’โˆ’๐‘Ž๐‘ก2

๐‘’โˆ’๐‘—๐œ”๐‘กโˆž

โˆ’โˆždt = ๐‘’โˆ’(๐‘Ž๐‘ก2+๐‘—๐œ”๐‘ก )โˆž

โˆ’โˆždt = ๐‘’โˆ’๐œ”2/4๐‘Ž ๐‘’

โˆ’[๐‘ก ๐‘Ž+ ๐‘—๐œ”

2 ๐‘Ž ]2โˆž

โˆ’โˆždt

Let p = ๐‘ก ๐‘Ž + ๐‘—๐œ”

2 ๐‘Ž

โˆด dp = ๐‘Ž dt

โˆด X(๐œ”) = ๐‘’โˆ’๐œ” 2/4๐‘Ž

๐‘Ž ๐‘’โˆ’๐‘2โˆž

โˆ’โˆždp

= ๐‘’โˆ’๐œ” 2/4๐‘Ž

๐‘Ž ๐œ‹ โˆต ๐‘’โˆ’๐‘2โˆž

โˆ’โˆždp = ๐œ‹

= ๐œ‹

๐‘Ž๐‘’โˆ’๐œ”2/4๐‘Ž

โˆด F[๐‘’โˆ’๐‘Ž๐‘ก2] =

๐œ‹

๐‘Ž๐‘’โˆ’๐œ”2/4๐‘Ž or ๐‘’โˆ’๐‘Ž๐‘ก2 ๐น๐‘‡

๐œ‹

๐‘Ž๐‘’โˆ’๐œ”2/4๐‘Ž

The graphical representation of Gaussian signal and its spectrum are shown in below figure:

Assignment Problems:

1. Find the Fourier transform of the following:

(a) eโˆ’at u(t) (b) teโˆ’2tu(t) (c) ej2tu(t)

2. Find the Fourier transform of the following:

(a) ej2tcos๐œ”๐‘œ๐‘ก u(t) (b)ej2tsin๐œ”๐‘œ๐‘ก u(t)

3. Find the Fourier transform of the Gaussian modulated signal x(t) =๐‘’โˆ’๐‘Ž๐‘ก2cos๐œ”๐‘ t

4. Find the Fourier transform of the signal x(t) = ๐‘’โˆ’๐‘ŽโŽน๐‘กโŽธsgn(t).

5. Find the inverse Fourier transform of X(๐œ”) = ๐‘—๐œ”

(3+๐‘—๐œ” )2

6. Find the inverse Fourier transform of X(๐œ”) = ๐‘’โˆ’4๐œ”๐‘ˆ(๐œ”)

7. Find the Fourier transform of x(t-4)+x(t+4).

8. Find the Fourier transform of ๐›ฟ ๐‘ก + 4 + ๐›ฟ ๐‘ก + 2 + ๐›ฟ ๐‘ก โˆ’ 2 + ๐›ฟ ๐‘ก + 4

9. Find the Fourier transform of the signal x(t) shown in below figure:

10. Determine the inverse Fourier transform of the spectrum given in below figure:

Simulation:

The function โ€žfftโ€Ÿ is used to find the fourier transform of discrete samples of any signal x(n) and

its magnitude is plotted using the function โ€žabsโ€Ÿ. Fourier transform of a gate pulse is sinc

function.

Program:

Fs = 150; % Sampling frequency

t = -0.5:1/Fs:0.5; % Time vector of 1 second

w = .2; % width of rectangle

x = rectpuls(t,w); % Generate Square Pulse

nfft = 512; % Length of FFT

% Take fft, padding with zeros so that length(X) is equal to

nfft

X = fft(x,nfft);

% FFT is symmetric, throw away second half

X = X(1:nfft/2);

%Take the magnitude of fft of x

mx =abs(X);

% Frequency vector

f = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.

figure(1);

plot(t,x);

title('Square Pulse Signal');

xlabel('Time (s)');

ylabel('Amplitude');

figure(2);

plot(f,mx);

title('Magnitude Spectrum of a Square Pulse');

xlabel('Frequency (Hz)');

ylabel('Power');

OUTPUT:

References:

[1] Alan V.Oppenheim, Alan S.Willsky and S.Hamind Nawab, โ€œSignals & Systemsโ€, Second

edition, Pearson Education, 8th

Indian Reprint, 2005.

[2] M.J.Roberts, โ€œSignals and Systems, Analysis using Transform methods and MATLABโ€,

Second edition,McGraw-Hill Education,2011

[3] John R Buck, Michael M Daniel and Andrew C.Singer, โ€œComputer explorations in Signals

and Systems using MATLABโ€,Prentice Hall Signal Processing Series

[4] P Ramakrishna rao, โ€œSignals and Systemsโ€, Tata McGraw-Hill, 2008

[5] Tarun Kumar Rawat, โ€œSignals and Systemsโ€, Oxford University Press,2011

[6] A.Anand Kumar, โ€œSignals and Systemsโ€ , PHI Learning Private Limited ,2011

top related