lesson 27: integration by substitution (slides)

Post on 05-Dec-2014

2.783 Views

Category:

Technology

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Integration by substitution is the chain rule in reverse.NOTE: the final location is section specific. Section 1 (morning) is in SILV 703, Section 11 (afternoon) is in CANT 200

TRANSCRIPT

..

Sec on 5.5Integra on by Subs tu on

V63.0121.011: Calculus IProfessor Ma hew Leingang

New York University

May 4, 2011

AnnouncementsI Today: 5.5I Monday 5/9: Review in classI Tuesday 5/10: Review Sessions by TAsI Wednesday 5/11: TA office hours:

I Adam 10–noon (WWH 906)I Jerome 3:30–5:30 (WWH 501)I Soohoon 6–8 (WWH 511)

I Thursday 5/12: Final Exam,2:00–3:50pm, CANT 200

Resurrection PolicyIf your final score beats your midterm score, we will add 10% to itsweight, and subtract 10% from the midterm weight.

..

Image credit: Sco Beale / Laughing Squid

ObjectivesI Given an integral and asubs tu on, transform theintegral into an equivalent oneusing a subs tu on

I Evaluate indefinite integralsusing the method ofsubs tu on.

I Evaluate definite integrals usingthe method of subs tu on.

Outline

Last Time: The Fundamental Theorem(s) of Calculus

Subs tu on for Indefinite IntegralsTheoryExamples

Subs tu on for Definite IntegralsTheoryExamples

Differentiation and Integration asreverse processes

Theorem (The Fundamental Theorem of Calculus)

1. Let f be con nuous on [a, b]. Then

ddx

∫ x

af(t) dt = f(x)

2. Let f be con nuous on [a, b] and f = F′ for some other func onF. Then ∫ b

af(x) dx = F(b)− F(a).

Techniques of antidifferentiation?So far we know only a few rules for an differen a on. Some aregeneral, like∫

[f(x) + g(x)] dx =∫

f(x) dx+∫

g(x) dx

Some are pre y par cular, like∫1

x√x2 − 1

dx = arcsec x+ C.

What are we supposed to do with that?

Techniques of antidifferentiation?So far we know only a few rules for an differen a on. Some aregeneral, like∫

[f(x) + g(x)] dx =∫

f(x) dx+∫

g(x) dx

Some are pre y par cular, like∫1

x√x2 − 1

dx = arcsec x+ C.

What are we supposed to do with that?

Techniques of antidifferentiation?So far we know only a few rules for an differen a on. Some aregeneral, like∫

[f(x) + g(x)] dx =∫

f(x) dx+∫

g(x) dx

Some are pre y par cular, like∫1

x√x2 − 1

dx = arcsec x+ C.

What are we supposed to do with that?

No straightforward system ofantidifferentiation

So far we don’t have any way to find∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, we can be smart and use the “an ” version of one of themost important rules of differen a on: the chain rule.

No straightforward system ofantidifferentiation

So far we don’t have any way to find∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, we can be smart and use the “an ” version of one of themost important rules of differen a on: the chain rule.

Outline

Last Time: The Fundamental Theorem(s) of Calculus

Subs tu on for Indefinite IntegralsTheoryExamples

Subs tu on for Definite IntegralsTheoryExamples

Substitution for IndefiniteIntegrals

Example

Find ∫x√

x2 + 1dx.

Solu onStare at this long enough and you no ce the the integrand is thederiva ve of the expression

√1+ x2.

Substitution for IndefiniteIntegrals

Example

Find ∫x√

x2 + 1dx.

Solu onStare at this long enough and you no ce the the integrand is thederiva ve of the expression

√1+ x2.

Say what?Solu on (More slowly, now)

Let g(x) = x2 + 1.

Then g′(x) = 2x and so

ddx

√g(x) =

12√

g(x)g′(x) =

x√x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√

g(x) + C =√1+ x2 + C.

Say what?Solu on (More slowly, now)

Let g(x) = x2 + 1. Then g′(x) = 2x and so

ddx

√g(x) =

12√

g(x)g′(x) =

x√x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√

g(x) + C =√1+ x2 + C.

Say what?Solu on (More slowly, now)

Let g(x) = x2 + 1. Then g′(x) = 2x and so

ddx

√g(x) =

12√

g(x)g′(x) =

x√x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√

g(x) + C =√1+ x2 + C.

Leibnizian notation FTWSolu on (Same technique, new nota on)

Let u = x2 + 1.

Then du = 2x dx and√1+ x2 =

√u. So the

integrand becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

Leibnizian notation FTWSolu on (Same technique, new nota on)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u.

So theintegrand becomes completely transformed into∫

x dx√x2 + 1

=

∫ 12du√u=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

Leibnizian notation FTWSolu on (Same technique, new nota on)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. So the

integrand becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

Leibnizian notation FTWSolu on (Same technique, new nota on)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. So the

integrand becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

Leibnizian notation FTWSolu on (Same technique, new nota on)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. So the

integrand becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

Useful but unsavory variationSolu on (Same technique, new nota on, more idiot-proof)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. “Solve for dx:”

dx =du2x

So the integrand becomes completely transformed into∫x√

x2 + 1dx =

∫x√u· du2x

=

∫1

2√udu

=

∫12u

−1/2 du =√u+ C =

√1+ x2 + C.

Mathema cians have serious issues with mixing the x and u like this.However, I can’t deny that it works.

Useful but unsavory variationSolu on (Same technique, new nota on, more idiot-proof)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. “Solve for dx:”

dx =du2x

So the integrand becomes completely transformed into∫x√

x2 + 1dx =

∫x√u· du2x

=

∫1

2√udu

=

∫12u

−1/2 du =√u+ C =

√1+ x2 + C.

Mathema cians have serious issues with mixing the x and u like this.However, I can’t deny that it works.

Useful but unsavory variationSolu on (Same technique, new nota on, more idiot-proof)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. “Solve for dx:”

dx =du2x

So the integrand becomes completely transformed into∫x√

x2 + 1dx =

∫x√u· du2x

=

∫1

2√udu

=

∫12u

−1/2 du =√u+ C =

√1+ x2 + C.

Mathema cians have serious issues with mixing the x and u like this.However, I can’t deny that it works.

Useful but unsavory variationSolu on (Same technique, new nota on, more idiot-proof)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. “Solve for dx:”

dx =du2x

So the integrand becomes completely transformed into∫x√

x2 + 1dx =

∫x√u· du2x

=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

Mathema cians have serious issues with mixing the x and u like this.However, I can’t deny that it works.

Useful but unsavory variationSolu on (Same technique, new nota on, more idiot-proof)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. “Solve for dx:”

dx =du2x

So the integrand becomes completely transformed into∫x√

x2 + 1dx =

∫x√u· du2x

=

∫1

2√udu

=

∫12u

−1/2 du =√u+ C =

√1+ x2 + C.

Mathema cians have serious issues with mixing the x and u like this.However, I can’t deny that it works.

Theorem of the DayTheorem (The Subs tu on Rule)

If u = g(x) is a differen able func on whose range is an interval Iand f is con nuous on I, then∫

f(g(x))g′(x) dx =∫

f(u) du

Theorem of the DayTheorem (The Subs tu on Rule)

If u = g(x) is a differen able func on whose range is an interval Iand f is con nuous on I, then∫

f(g(x))g′(x) dx =∫

f(u) du

That is, if F is an an deriva ve for f, then∫f(g(x))g′(x) dx = F(g(x))

Theorem of the DayTheorem (The Subs tu on Rule)

If u = g(x) is a differen able func on whose range is an interval Iand f is con nuous on I, then∫

f(g(x))g′(x) dx =∫

f(u) du

In Leibniz nota on: ∫f(u)

dudx

dx =∫

f(u) du

A polynomial exampleExample

Use the subs tu on u = x2 + 3 to find∫

(x2 + 3)34x dx.

Solu onIf u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So∫

(x2 + 3)34x dx

=

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

A polynomial exampleExample

Use the subs tu on u = x2 + 3 to find∫

(x2 + 3)34x dx.

Solu onIf u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So∫

(x2 + 3)34x dx

=

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

A polynomial exampleExample

Use the subs tu on u = x2 + 3 to find∫

(x2 + 3)34x dx.

Solu onIf u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So∫

(x2 + 3)34x dx =∫

u3 2du = 2∫

u3 du

=12u4 =

12(x2 + 3)4

A polynomial exampleExample

Use the subs tu on u = x2 + 3 to find∫

(x2 + 3)34x dx.

Solu onIf u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So∫

(x2 + 3)34x dx =∫

u3 2du = 2∫

u3 du

=12u4

=12(x2 + 3)4

A polynomial exampleExample

Use the subs tu on u = x2 + 3 to find∫

(x2 + 3)34x dx.

Solu onIf u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So∫

(x2 + 3)34x dx =∫

u3 2du = 2∫

u3 du

=12u4 =

12(x2 + 3)4

A polynomial example (brute force)Solu on

∫(x2 + 3)34x dx =

∫ (x6 + 9x4 + 27x2 + 27

)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do subs tu on.

A polynomial example (brute force)Solu on∫

(x2 + 3)34x dx

=

∫ (x6 + 9x4 + 27x2 + 27

)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do subs tu on.

A polynomial example (brute force)Solu on∫

(x2 + 3)34x dx =∫ (

x6 + 9x4 + 27x2 + 27)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do subs tu on.

A polynomial example (brute force)Solu on∫

(x2 + 3)34x dx =∫ (

x6 + 9x4 + 27x2 + 27)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do subs tu on.

A polynomial example (brute force)Solu on∫

(x2 + 3)34x dx =∫ (

x6 + 9x4 + 27x2 + 27)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do subs tu on.

A polynomial example (brute force)Solu on∫

(x2 + 3)34x dx =∫ (

x6 + 9x4 + 27x2 + 27)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?

I It’s a wash for low powersI But for higher powers, it’s much easier to do subs tu on.

A polynomial example (brute force)Solu on∫

(x2 + 3)34x dx =∫ (

x6 + 9x4 + 27x2 + 27)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powers

I But for higher powers, it’s much easier to do subs tu on.

A polynomial example (brute force)Solu on∫

(x2 + 3)34x dx =∫ (

x6 + 9x4 + 27x2 + 27)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do subs tu on.

CompareWe have the subs tu on method, which, when mul plied out, gives∫

(x2 + 3)34x dx =12(x2 + 3)4

+ C

=12(x8 + 12x6 + 54x4 + 108x2 + 81

)

+ C

=12x8 + 6x6 + 27x4 + 54x2 +

812

+ C

and the brute force method∫(x2 + 3)34x dx =

12x8 + 6x6 + 27x4 + 54x2

+ C

Is there a difference? Is this a problem?

No, that’s what+Cmeans!

CompareWe have the subs tu on method, which, when mul plied out, gives∫

(x2 + 3)34x dx =12(x2 + 3)4 + C

=12(x8 + 12x6 + 54x4 + 108x2 + 81

)+ C

=12x8 + 6x6 + 27x4 + 54x2 +

812

+ C

and the brute force method∫(x2 + 3)34x dx =

12x8 + 6x6 + 27x4 + 54x2 + C

Is there a difference? Is this a problem? No, that’s what+Cmeans!

A slick exampleExample

Find∫

tan x dx.

(Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx

= −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

A slick exampleExample

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx

= −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

A slick exampleExample

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx

= −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

A slick exampleExample

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx

= −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

A slick exampleExample

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx

= −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

A slick exampleExample

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx = −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

A slick exampleExample

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx = −∫

1udu

= − ln |u|+ C

= − ln | cos x|+ C = ln | sec x|+ C

A slick exampleExample

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu onLet u = cos x . Then du = − sin x dx . So∫

tan x dx =∫

sin xcos x

dx = −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

Can you do it another way?Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu on

Let u = sin x. Then du = cos x dx and so dx =ducos x

.∫tan x dx =

∫sin xcos x

dx =∫

ucos x

ducos x

=

∫u ducos2 x

=

∫u du

1− sin2 x=

∫u du1− u2

Can you do it another way?Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu on

Let u = sin x. Then du = cos x dx and so dx =ducos x

.

∫tan x dx =

∫sin xcos x

dx =∫

ucos x

ducos x

=

∫u ducos2 x

=

∫u du

1− sin2 x=

∫u du1− u2

Can you do it another way?Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solu on

Let u = sin x. Then du = cos x dx and so dx =ducos x

.∫tan x dx =

∫sin xcos x

dx =∫

ucos x

ducos x

=

∫u ducos2 x

=

∫u du

1− sin2 x=

∫u du1− u2

For those who really must know allSolu on (Con nued, with algebra help)

Let y = 1− u2, so dy = −2u du. Then∫tan x dx =

∫u du1− u2

=

∫uy

dy−2u

= −12

∫dyy

= −12ln |y|+ C = −1

2ln∣∣1− u2

∣∣+ C

= ln1√

1− u2+ C = ln

1√1− sin2 x

+ C

= ln1

|cos x|+ C = ln |sec x|+ C

There are other ways to do it, too.

Outline

Last Time: The Fundamental Theorem(s) of Calculus

Subs tu on for Indefinite IntegralsTheoryExamples

Subs tu on for Definite IntegralsTheoryExamples

Substitution for Definite IntegralsTheorem (The Subs tu on Rule for Definite Integrals)

If g′ is con nuous and f is con nuous on the range of u = g(x), then∫ b

af(g(x))g′(x) dx =

∫ g(b)

g(a)f(u) du.

Why the change in the limits?I The integral on the le happens in “x-land”I The integral on the right happens in “u-land”, so the limits needto be u-values

I To get from x to u, apply g

Substitution for Definite IntegralsTheorem (The Subs tu on Rule for Definite Integrals)

If g′ is con nuous and f is con nuous on the range of u = g(x), then∫ b

af(g(x))g′(x) dx =

∫ g(b)

g(a)f(u) du.

Why the change in the limits?I The integral on the le happens in “x-land”I The integral on the right happens in “u-land”, so the limits needto be u-values

I To get from x to u, apply g

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)

I Let u = cos x . Then du = − sin x dx and∫cos2 x sin x dx

= −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)

I Let u = cos x . Then du = − sin x dx and∫cos2 x sin x dx

= −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I First compute the indefinite integral

∫cos2 x sin x dx and then

evaluate.I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx

= −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I First compute the indefinite integral

∫cos2 x sin x dx and then

evaluate.I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx

= −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I First compute the indefinite integral

∫cos2 x sin x dx and then

evaluate.I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx

= −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I First compute the indefinite integral

∫cos2 x sin x dx and then

evaluate.I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx = −∫

u2 du

= −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I First compute the indefinite integral

∫cos2 x sin x dx and then

evaluate.I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx = −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx = −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0

= −13((−1)3 − 13

)=

23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx = −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0= −1

3((−1)3 − 13

)

=23.

Example

Compute∫ π

0cos2 x sin x dx.

Solu on (Slow Way)I Let u = cos x . Then du = − sin x dx and∫

cos2 x sin x dx = −∫

u2 du = −13u

3 + C = −13 cos

3 x+ C.

I Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0= −1

3((−1)3 − 13

)=

23.

Definite-ly QuickerSolu on (Fast Way)

Do both the subs tu on and the evalua on at the same me. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So∫ π

0cos2 x sin x dx

=

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3∣∣∣∣1−1

=13(1− (−1)

)=

23

Definite-ly QuickerSolu on (Fast Way)

Do both the subs tu on and the evalua on at the same me. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So∫ π

0cos2 x sin x dx

=

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3∣∣∣∣1−1

=13(1− (−1)

)=

23

Definite-ly QuickerSolu on (Fast Way)

Do both the subs tu on and the evalua on at the same me. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So∫ π

0cos2 x sin x dx

=

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3∣∣∣∣1−1

=13(1− (−1)

)=

23

Definite-ly QuickerSolu on (Fast Way)

Do both the subs tu on and the evalua on at the same me. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3∣∣∣∣1−1

=13(1− (−1)

)=

23

Definite-ly QuickerSolu on (Fast Way)

Do both the subs tu on and the evalua on at the same me. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3∣∣∣∣1−1

=13(1− (−1)

)=

23

Compare

I The advantage to the “fast way” is that you completelytransform the integral into something simpler and don’t haveto go back to the original variable (x).

I But the slow way is just as reliable.

An exponential exampleExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu on

An exponential exampleExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u = e2x, so du = 2e2x dx. We have∫ ln

√8

ln√3

e2x√e2x + 1 dx =

12

∫ 8

3

√u+ 1 du

About those limits

Since

e2(ln√3) = eln

√32

= eln 3 = 3

we have ∫ ln√8

ln√3

e2x√e2x + 1 dx =

12

∫ 8

3

√u+ 1 du

An exponential exampleExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onNow let y = u+ 1, dy = du. So

12

∫ 8

3

√u+ 1 du =

12

∫ 9

4

√y dy =

12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

About those fractional powers

We have

93/2 = (91/2)3 = 33 = 2743/2 = (41/2)3 = 23 = 8

so12

∫ 9

4y1/2 dy =

12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

An exponential exampleExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onNow let y = u+ 1, dy = du. So

12

∫ 8

3

√u+ 1 du =

12

∫ 9

4

√y dy =

12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

Another way to skin that catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u = e2x + 1,

so that du = 2e2x dx. Then∫ ln√8

ln√3

e2x√e2x + 1 dx =

12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94=

13(27− 8) =

193

Another way to skin that catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u = e2x + 1,so that du = 2e2x dx.

Then∫ ln√8

ln√3

e2x√e2x + 1 dx =

12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94=

13(27− 8) =

193

Another way to skin that catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u = e2x + 1,so that du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√e2x + 1 dx =

12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94=

13(27− 8) =

193

Another way to skin that catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u = e2x + 1,so that du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√e2x + 1 dx =

12

∫ 9

4

√u du =

13u3/2

∣∣∣∣94

=13(27− 8) =

193

Another way to skin that catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u = e2x + 1,so that du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√e2x + 1 dx =

12

∫ 9

4

√u du =

13u3/2

∣∣∣∣94=

13(27− 8) =

193

A third skinned catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u =

√e2x + 1, so that u2 = e2x + 1

=⇒ 2u du = 2e2x dx Thus∫ ln√8

ln√3

e2x√e2x + 1 dx =

∫ 3

2u · u du =

13u3∣∣∣∣32=

193

A third skinned catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u =

√e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx

Thus∫ ln√8

ln√3

e2x√e2x + 1 dx =

∫ 3

2u · u du =

13u3∣∣∣∣32=

193

A third skinned catExample

Find∫ ln

√8

ln√3

e2x√e2x + 1 dx

Solu onLet u =

√e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx Thus∫ ln

√8

ln√3

e2x√e2x + 1 dx =

∫ 3

2u · u du =

13u3∣∣∣∣32=

193

A Trigonometric Example

Example

Find ∫ 3π/2

π

cot5(θ

6

)sec2

6

)dθ.

Before we dive in, think about:I What “easy” subs tu ons might help?I Which of the trig func ons suggests a subs tu on?

A Trigonometric Example

Example

Find ∫ 3π/2

π

cot5(θ

6

)sec2

6

)dθ.

Before we dive in, think about:I What “easy” subs tu ons might help?I Which of the trig func ons suggests a subs tu on?

Solu on

Let φ =θ

6. Then dφ =

16dθ.

∫ 3π/2

π

cot5(θ

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φ dφ

= 6∫ π/4

π/6

sec2 φ dφtan5 φ

Solu on

Let φ =θ

6. Then dφ =

16dθ.

∫ 3π/2

π

cot5(θ

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φ dφ

= 6∫ π/4

π/6

sec2 φ dφtan5 φ

Now let u = tanφ. So du = sec2 φ dφ, and

Solu onNow let u = tanφ. So du = sec2 φ dφ, and

6∫ π/4

π/6

sec2 φ dφtan5 φ

= 6∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3=

32[9− 1] = 12.

The limits explained

tanπ

4=

sin(π/4)cos(π/4)

=

√2/2√2/2

= 1

tanπ

6=

sin(π/6)cos(π/6)

=1/2√3/2

=1√3

The limits explained

6(−14u−4

)∣∣∣∣11/

√3=

32[−u−4]1

1/√3 =

32[u−4]1/√3

1

=32

[(3−1/2)−4 − (1−1/2)−4

]=

32[32 − 12] =

32(9− 1) = 12

Graphs

.. θ.

y

..π

..3π2

.

∫ 3π/2

π

cot5(θ

6

)sec2

6

)dθ

. φ.

y

..π

6

..π

4

.

∫ π/4

π/66 cot5 φ sec2 φ dφ

The areas of these two regions are the same.

Graphs

.. φ.

y

..π

6

..π

4

.

∫ π/4

π/66 cot5 φ sec2 φ dφ

. u.

y

.

∫ 1

1/√36u−5 du

..1√3

..1

The areas of these two regions are the same.

u/du pairs

When deciding on a subs tu on, look for sub-expressions whereone is (a constant mul ple of) the deriva ve of the other. Such as:

u xn ln x sin x cos x tan x√x ex

constant× du xn−1 1x

cos x sin x sec2 x1√x

ex

SummaryI If F is an an deriva ve for f, then:∫

f(g(x))g′(x) dx = F(g(x))

I If F is an an deriva ve for f, which is con nuous on the rangeof g, then:∫ b

af(g(x))g′(x) dx =

∫ g(b)

g(a)f(u) du = F(g(b))− F(g(a))

I An differen a on in general and subs tu on in par cular is a“nonlinear” problem that needs prac ce, intui on, andperserverance.

I The whole an differen a on story is in Chapter 6.

top related