lecture 19 - numerical integration cven 302 july 22, 2002

Post on 26-Dec-2015

223 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Lecture 19 - Numerical Integration Lecture 19 - Numerical Integration

CVEN 302

July 22, 2002

Lecture’s GoalsLecture’s Goals

• Trapezoidal Rule• Simpson’s Rule

– 1/3 Rule– 3/8 Rule

• Midpoint• Gaussian Quadrature

Basic Numerical Integration

Basic Numerical IntegrationBasic Numerical Integration

We want to find integration of functions of various forms of the equation known as the Newton Cotes integration formulas.

Basic Numerical IntegrationBasic Numerical IntegrationWeighted sum of function values

)x(fc)x(fc)x(fc

)x(fcdx)x(f

nn1100

i

n

0ii

b

a

x0 x1 xnxn-1x

f(x)

0

2

4

6

8

10

12

3 5 7 9 11 13 15

Numerical IntegrationNumerical IntegrationIdea is to do integral in small parts, like the way you first learned integration - a summation

Numerical methods just try to make it faster and more accurate

Numerical IntegrationNumerical Integration• Newton-Cotes Closed Formulae --

Use both end points– Trapezoidal Rule : Linear– Simpson’s 1/3-Rule : Quadratic– Simpson’s 3/8-Rule : Cubic

– Boole’s Rule : Fourth-order

Numerical IntegrationNumerical Integration• Newton-Cotes Open Formulae -- Use

only interior points– midpoint rule

Trapezoid RuleTrapezoid RuleStraight-line approximation

)x(f)x(f2

h

)x(fc)x(fc)x(fcdx)x(f

10

1100i

1

0ii

b

a

x0 x1x

f(x)

L(x)

Trapezoid RuleTrapezoid Rule

Lagrange interpolation

010 1

0 1 1 0

0 1

( ) ( ) ( )

dxlet a x , b x , , d ;

h

0( ) (1 ) ( ) ( ) ( )

1

x xx xL x f x f x

x x x x

x ah b a

b a

x aL f a f b

x b

Trapezoid RuleTrapezoid Rule

Integrate to obtain the rule

1

0

1 1

0 0

1 12 2

0 0

( ) ( ) ( )

( ) (1 ) ( )

( ) ( ) ( ) ( ) ( )2 2 2

b b

a af x dx L x dx h L d

f a h d f b h d

hf a h f b h f a f b

Example:Trapezoid RuleExample:Trapezoid RuleEvaluate the integral

• Exact solution

• Trapezoidal Rule

926477.5216)1x2(e4

1

e4

1e

2

xdxxe

1

0

x2

4

0

x2x24

0

x2

dxxe4

0

x2

%12.357926.5216

66.23847926.5216

66.23847)e40(2)4(f)0(f2

04dxxeI 84

0

x2

Simpson’s 1/3-RuleSimpson’s 1/3-RuleApproximate the function by a parabola

)x(f)x(f4)x(f3

h

)x(fc)x(fc)x(fc)x(fcdx)x(f

210

221100i

2

0ii

b

a

x0 x1x

f(x)

x2h h

L(x)

Simpson’s 1/3-RuleSimpson’s 1/3-Rule

1 xx

0 xx

1 xxh

dxd ,

h

xx ,

2

abh

2

ba x ,bx ,ax let

)x(f)xx)(xx(

)xx)(xx(

)x(f)xx)(xx(

)xx)(xx( )x(f

)xx)(xx(

)xx)(xx()x(L

2

1

0

1

120

21202

10

12101

200

2010

21

)x(f2

)1()x(f)1()x(f

2

)1()(L 21

20

Simpson’s 1/3-RuleSimpson’s 1/3-Rule

1

1

23

2

1

1

3

1

1

1

23

0

1

12

1

0

21

1

10

1

1

b

a

)2

ξ

3

ξ(

2

h)f(x

)3

ξ(ξ)hf(x)

2

ξ

3

ξ(

2

h)f(x

)dξ1ξ(ξ2

h)f(x)dξξ1()hf(x

)dξ1ξ(ξ2

h)f(xdξ)(Lhf(x)dx

)f(x)4f(x)f(x3

hf(x)dx 210

b

a

Integrate the Lagrange interpolation

Simpson’s 3/8-RuleSimpson’s 3/8-RuleApproximate by a cubic polynomial

)x(f)x(f3)x(f3)x(f8

h3

)f(xc)f(xc)f(xc)f(xc)x(fcdx)x(f

3210

33221100i

3

0ii

b

a

x0 x1x

f(x)

x2h h

L(x)

x3h

Simpson’s 3/8-RuleSimpson’s 3/8-Rule

)x(f)xx)(xx)(xx(

)xx)(xx)(xx(

)x(f)xx)(xx)(xx(

)xx)(xx)(xx(

)x(f)xx)(xx)(xx(

)xx)(xx)(xx(

)x(f)xx)(xx)(xx(

)xx)(xx)(xx()x(L

3231303

210

2321202

310

1312101

320

0302010

321

)x(f)x(f3)x(f3)x(f8

h33

a-bh ; L(x)dxf(x)dx

3210

b

a

b

a

Example: Simpson’s RulesExample: Simpson’s RulesEvaluate the integral• Simpson’s 1/3-Rule

• Simpson’s 3/8-Rule

dxxe4

0

x2

4 2

0

4 8

(0) 4 (2) (4)3

20 4(2 ) 4 8240.411

35216.926 8240.411

57.96%5216.926

x hI xe dx f f f

e e

4 2

0

3 4 8(0) 3 ( ) 3 ( ) (4)

8 3 3

3(4/3)0 3(19.18922) 3(552.33933) 11923.832 6819.209

85216.926 6819.209

30.71%5216.926

x hI xe dx f f f f

Midpoint RuleMidpoint RuleNewton-Cotes Open Formula

)(f24

)ab()

2

ba(f)ab(

)x(f)ab(dx)x(f3

m

b

a

a b x

f(x)

xm

Two-point Newton-Cotes Two-point Newton-Cotes Open FormulaOpen Formula

Approximate by a straight line

)(f108

)ab()x(f)x(f

2

abdx)x(f

3

21

b

a

x0 x1x

f(x)

x2h h x3h

Three-Point Newton-Cotes Open Three-Point Newton-Cotes Open FormulaFormula

Approximate by a parabola

)(f23040

)ab(7

)x(f2)x(f)x(f23

abdx)x(f

5

321

b

a

x0 x1x

f(x)

x2h h x3h h x4

Better Numerical IntegrationBetter Numerical Integration

• Composite integration

– Composite Trapezoidal Rule

– Composite Simpson’s Rule

• Richardson Extrapolation

• Romberg integration

Apply trapezoid rule to multiple segments over Apply trapezoid rule to multiple segments over integration limitsintegration limits

0

1

2

3

4

5

6

7

3 5 7 9 11 13 15

Two segments

0

1

2

3

4

5

6

7

3 5 7 9 11 13 15

Four segments

0

1

2

3

4

5

6

7

3 5 7 9 11 13 15

Many segments

0

1

2

3

4

5

6

7

3 5 7 9 11 13 15

Three segments

Composite Trapezoid RuleComposite Trapezoid Rule

)x(f)x(f2)2f(x)f(x2)f(x2

h

)f(x)f(x2

h)f(x)f(x

2

h)f(x)f(x

2

h

f(x)dxf(x)dxf(x)dxf(x)dx

n1ni10

n1n2110

x

x

x

x

x

x

b

a

n

1n

2

1

1

0

x0 x1x

f(x)

x2h h x3h h x4

n

abh

Composite Trapezoid RuleComposite Trapezoid RuleEvaluate the integral dxxeI

4

0

x2

%66.2 95.5355

)4(f)75.3(f2)5.3(f2

)5.0(f2)25.0(f2)0(f2

hI25.0h,16n

%50.10 76.5764)4(f)5.3(f2 )3(f2)5.2(f2)2(f2)5.1(f2

)1(f2)5.0(f2)0(f2

hI5.0h,8n

%71.39 79.7288)4(f)3(f2

)2(f2)1(f2)0(f2

hI1h,4n

%75.132 23.12142)4(f)2(f2)0(f2

hI2h,2n

%12.357 66.23847)4(f)0(f2

hI4h,1n

Composite Trapezoid Composite Trapezoid ExampleExample

2

1 1

1dx

x

x f(x)1.00 0.50001.25 0.44441.50 0.40001.75 0.36362.00 0.3333

Composite Trapezoid Rule with Composite Trapezoid Rule with Unequal SegmentsUnequal Segments

Evaluate the integral

• h1 = 2, h2 = 1, h3 = 0.5, h4 = 0.5 dxxeI

4

0

x2

%45.14 58.5971 45.3 2

0.5

5.33e 2

0.532

2

120

2

2

)4()5.3(2

)5.3()3(2

)3()2(2

)2()0(2

)()()()(

87

76644

43

21

4

5.3

5.3

3

3

2

2

0

ee

eeee

ffh

ffh

ffh

ffh

dxxfdxxfdxxfdxxfI

Composite Simpson’s RuleComposite Simpson’s Rule

x0 x2x

f(x)

x4h h xn-2h xn

n

abh

…...

Piecewise Quadratic approximations

hx3x1 xn-1

)x(f)x(f4)x(f2

)4f(x)x(f2)f(x4

)2f(x)f(x4)2f(x)f(x4)f(x3

h

)f(x)4f(x)f(x3

h

)f(x)f(x4)f(x3

h)f(x)f(x4)f(x

3

h

f(x)dxf(x)dxf(x)dxf(x)dx

n1n2n

12ii21-2i

43210

n1n2n

432210

x

x

x

x

x

x

b

a

n

2n

4

2

2

0

Composite Simpson’s RuleComposite Simpson’s RuleMultiple applications of Simpson’s rule

Composite Simpson’s RuleComposite Simpson’s RuleEvaluate the integral

• n = 2, h = 2

• n = 4, h = 1

dxxeI4

0

x2

%70.8 975.5670

e4)e3(4)e2(2)e(403

1

)4(f)3(f4)2(f2)1(f4)0(f3

hI

8642

%96.57 411.8240e4)e2(403

2

)4(f)2(f4)0(f3

hI

84

Composite Simpson’s Composite Simpson’s ExampleExample

2

1 1

1dx

x

x f(x)1.00 0.50001.25 0.44441.50 0.40001.75 0.36362.00 0.3333

Composite Simpson’s Rule with Composite Simpson’s Rule with Unequal SegmentsUnequal Segments

Evaluate the integral

• h1 = 1.5, h2 = 0.5

dxxeI4

0

x2

%76.3 23.5413

4)5.3(433

5.03)5.1(40

3

5.1

)4(2)5.3(4)3(3

)3(2)5.1(4)0(3

)()(

87663

2

1

4

3

3

0

eeeee

fffh

fffh

dxxfdxxfI

Richardson ExtrapolationRichardson ExtrapolationUse trapezoidal rule as an example

– subintervals: n = 2j = 1, 2, 4, 8, 16, ….

j2

1jjn1n10

b

ahc)x(f)x(f2)f(x2)f(x

2

hf(x)dx

)()()()(

)()()()(

)()()()()(

)()()(

)()(

bfxf2xf2af2

hI2j

bfxf2xf2af16

hI83

bfxf2xf2xf2af8

hI42

bfxf2af4

hI21

bfaf2

hI10

Formulanj

1n1jjj

713

3212

11

0

Richardson ExtrapolationRichardson ExtrapolationFor trapezoidal rule

– kth level of extrapolation

)h(B)2

h(B16

15

1)h(C

)2

h(b)

2

h(BA

hb)h(BA

hb)h(B h4

c)h(A)

2

h(A4

3

1A

)2

h(c)

2

h(c)

2

h(AA

hchc)h(AA

hc)h(Adx)x(fA

42

42

42

42

42

21

42

21

21

b

a

14

)h(Ch/2)(C4)h(D

k

k

255

II256

63

II64

15

II16

3

II4I16h

II8h

III4h

IIII2h

IIIIIh

hOhOhOhOhO

4k3k2k1k0k

sBoolesSimpsonTrapezoid

3j31j2j21j1j11j0j01j

04

1303

221202

31211101

4030201000

108642

,,,,,,,,

,

,,

,,,

,,,,

,,,,,

/

/

/

/

)()()()()(

''

3, 2,1,k ;14

II4I

k

k,jk,1jk

k,j

Romberg IntegrationRomberg IntegrationAccelerated Trapezoid Rule

Romberg IntegrationRomberg Integration

926477.5216dxxeI4

0

x2

%00050.0%00168.0%0053.0%0527.0%66.2

95.535525.0h

68.521976.57645.0h

20.521775.525679.72881h

01.521714.522998.56702.121422h

95.521684.522468.549941.82407.238474h

)h(O)h(O)h(O)h(O)h(O

4k3k2k1k0k

s'Booles'SimpsonTrapezoid

108642

Accelerated Trapezoid Rule

Romberg Integration Romberg Integration ExampleExample

2

1 1

1dx

x

x f(x)1.00 0.50001.25 0.44441.50 0.40001.75 0.36362.00 0.3333

Gaussian QuadraturesGaussian Quadratures• Newton-Cotes Formulae

– use evenly-spaced functional values

• Gaussian Quadratures– select functional values at non-uniformly distributed

points to achieve higher accuracy

– change of variables so that the interval of integration is [-1,1]

– Gauss-Legendre formulae

Gaussian Quadrature on Gaussian Quadrature on [-1, 1][-1, 1]

• Choose (c1, c2, x1, x2) such that the method yields “exact integral” for f(x) = x0, x1, x2, x3

)x(fc)x(fc)x(fc)x(fcdx)x(f nn2211i

1

1

n

1ii

)f(xc)f(xc

f(x)dx :2n

2211

1

1

x2x1-1 1

Gaussian Quadrature on Gaussian Quadrature on [-1, 1][-1, 1]

Exact integral for f = x0, x1, x2, x3

– Four equations for four unknowns

)f(xc)f(xcf(x)dx :2n 2211

1

1

3

1x

3

1x

1c1c

xcxc0dxx xf

xcxc3

2dxx xf

xcxc0xdx xf

cc2dx1 1f

2

1

2

1

322

31

1

1 133

222

21

1

1 122

221

1

1 1

2

1

1 1

)3

1(f)

3

1(fdx)x(fI

1

1

Gaussian Quadrature on Gaussian Quadrature on [-1, 1][-1, 1]

• Choose (c1, c2, c3, x1, x2, x3) such that the method yields “exact integral” for f(x) = x0, x1, x2, x3,x4, x5

)x(fc)x(fc)x(fcdx)x(f :3n 332211

1

1

x3x1-1 1x2

Gaussian Quadrature on Gaussian Quadrature on [-1, 1][-1, 1]

533

522

511

1

1

55

433

422

411

1

1

44

333

322

311

1

1

33

233

222

211

1

1

22

332211

1

1

321

1

1

0

5

2

0

3

2

0

21

xcxcxcdxxxf

xcxcxcdxxxf

xcxcxcdxxxf

xcxcxcdxxxf

xcxcxcxdxxf

cccxdxf

5/3

0

5/3

9/5

9/8

9/5

3

2

1

3

2

1

x

x

x

c

c

c

Gaussian Quadrature on Gaussian Quadrature on [-1, 1][-1, 1]

Exact integral for f = x0, x1, x2, x3, x4, x5

)5

3(f

9

5)0(f

9

8)

5

3(f

9

5dx)x(fI

1

1

Gaussian Quadrature on Gaussian Quadrature on [a, b][a, b]

Coordinate transformation from [a,b] to [-1,1]

t2t1a b

1

1

1

1

b

adx)x(gdx)

2

ab)(

2

abx

2

ab(fdt)t(f

bt 1xat1x2

abx

2

abt

Example: Gaussian QuadratureExample: Gaussian QuadratureEvaluate

Coordinate transformation

Two-point formula

33.34%)( 543936.3477376279.3468167657324.9

e)3

44(e)

3

44()

3

1(f)

3

1(fdx)x(fI 3

44

3

441

1

926477.5216dtteI4

0

t2

1

1

1

1

4x44

0

t2 dx)x(fdxe)4x4(dtteI

2dxdt ;2x22

abx

2

abt

Example: Gaussian QuadratureExample: Gaussian QuadratureThree-point formula

Four-point formula

4.79%)( 106689.4967

)142689.8589(9

5)3926001.218(

9

8)221191545.2(

9

5

e)6.044(9

5e)4(

9

8e)6.044(

9

5

)6.0(f9

5)0(f

9

8)6.0(f

9

5dx)x(fI

6.0446.04

1

1

%)37.0( 54375.5197 )339981.0(f)339981.0(f652145.0

)861136.0(f)861136.0(f34785.0dx)x(fI1

1

SummarySummary

• Integration Techniques– Trapezoidal Rule : Linear

– Simpson’s 1/3-Rule : Quadratic

– Simpson’s 3/8-Rule : Cubic

– Boole’s Rule : Fourth-order

• Gaussian Quadrature

HomeworkHomework

• Check the Homework webpage

top related