kobayashi maskawa institute department of physics, nagoya university chiho nonaka

Post on 23-Feb-2016

54 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Viscous Hydrodynamics for Relativistic Heavy-Ion Collisions : Riemann Solver for Quark-Gluon Plasma. Kobayashi Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA. Hydrodynamic Model: Yukinao Akamatsu , Shu-ichiro Inutsuka , Makoto Takamoto Hybrid Model: - PowerPoint PPT Presentation

TRANSCRIPT

Viscous Hydrodynamics for Relativistic Heavy-Ion Collisions:

Riemann Solver for Quark-Gluon Plasma Kobayashi Maskawa Institute

Department of Physics, Nagoya University

Chiho NONAKA

December 5, 2013@NFQCD 2013, YITP, Kyoto

Hydrodynamic Model: Yukinao Akamatsu, Shu-ichiro Inutsuka, Makoto Takamoto

Hybrid Model: Yukinao Akamatsu, Steffen Bass, Jonah Bernhard

C. NONAKA

Numerical Algorithm• Current understanding

thermalization hydro hadronization freezeoutcollisions

hydrodynamic model hadron based event generator

fluctuating initial conditions

C. NONAKA

Numerical Algorithm• Current understanding

thermalization hydro hadronization freezeoutcollisions

hydrodynamic model hadron based event generator

fluctuating initial conditions

Initial geometry fluctuations

MC-Glauber, MC-KLN,MC-rcBK, IP-Glasma…

vn

Hydrodynamic expansion

C. NONAKAOllitrault

C. NONAKAOllitrault

Event-by-event calculation!

C. NONAKAOllitrault

Event-by-event calculation!

small structureShock-wave capturing schemeStable, less numerical viscosity

C. NONAKA

Numerical Algorithm• Current understanding

thermalization hydro hadronization freezeoutcollisions

hydrodynamic model hadron based event generator

fluctuating initial conditions

Initial geometry fluctuations

MC-Glauber, MC-KLN,MC-rcBK, IP-Glasma…

vn

Hydrodynamic expansion

numerical method

C. NONAKA

HYDRODYNAMIC MODEL

Akamatsu, Inutsuka, CN, Takamoto: arXiv:1302.1665、 J. Comp. Phys. (2014) 34

C. NONAKA

Viscous Hydrodynamic Model• Relativistic viscous hydrodynamic equation

– First order in gradient: acausality – Second order in gradient:

• Israel-Stewart, Ottinger and Grmela, AdS/CFT, Grad’s 14-momentum expansion, Renomarization group

• Numerical scheme– Shock-wave capturing schemes: Riemann problem

• Godunov scheme: analytical solution of Riemann problem • SHASTA: the first version of Flux Corrected Transport

algorithm, Song, Heinz, Pang, Victor… • Kurganov-Tadmor (KT) scheme, McGill

C. NONAKA

Our Approach • Israel-Stewart Theory

Takamoto and Inutsuka, arXiv:1106.1732

1. dissipative fluid dynamics = advection + dissipation

2. relaxation equation = advection + stiff equation

Riemann solver: Godunov method

(ideal hydro)

Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005) Two shock approximation

exact solution

Rarefaction waveShock wave

Contact discontinuity

Rarefaction wave shock wave

Akamatsu, Inutsuka, CN, Takamoto, arXiv:1302.1665

C. NONAKA

Relaxation Equation• Numerical scheme

+

advection stiff equation

up wind method

Piecewise exact solution

~constant• during Dt

Takamoto and Inutsuka, arXiv:1106.1732

fast numerical scheme

C. NONAKA

Comparison • Shock Tube Test : Molnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010)

TL=0.4 GeVv=0

TR=0.2 GeVv=0

0 10

Nx=100, dx=0.1, dt=0.04

•Analytical solution

•Numerical schemes SHASTA, KT, NT Our scheme

EoS: ideal gas

C. NONAKA

Shocktube problem• Ideal case

shockwave

rarefaction

C. NONAKA

L1 Norm• Numerical dissipation: deviation from analytical solution

Ncell=100: dx=0.1 fm

l=10 fm

For analysis of heavy ion collisions

TL=0.4 GeVv=0

TR=0.2 GeVv=0

0 10

C. NONAKA

Large DT difference • TL=0.4 GeV, TR=0.172 GeV– SHASTA becomes unstable. – Our algorithm is stable.

• SHASTA: anti diffusion term, Aad

– Aad = 1 : default value, unstable

– Aad =0.99: stable, more numerical dissipation

TL=0.4 GeVv=0

TR=0.172 GeVv=0

0 10Nx=100, dx=0.1, dt=0.04

EoS: ideal gas

C. NONAKA

L1 norm• SHASTA with small Aad has large numerical dissipation

Aad=1

Aad=0.99

TL=400, TR=200 TL=400, TR=172

l=10 fm

C. NONAKA

Artificial and Physical ViscositiesMolnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010)

Antidiffusion terms : artificial viscosity stability

C. NONAKA

Large DT difference • TL=0.4 GeV, TR=0.172 GeV– SHASTA becomes unstable. – Our algorithm is stable.

• SHASTA: anti diffusion term, Aad

– Aad = 1 : default value

– Aad =0.99: stable, more numerical dissipation

• Large fluctuation (ex initial conditions)– Our algorithm is stable even with small numerical dissipation.

TL=0.4 GeVv=0

TR=0.172 GeVv=0

0 10Nx=100, dx=0.1, dt=0.04

EoS: ideal gas

C. NONAKA

HYBRID MODEL

C. NONAKA

Our Hybrid Modelthermalization hydro hadronization freezeoutcollisions

hydrodynamic modelMC-KLN Nara

http://www.aiu.ac.jp/~ynara/mckln/

UrQMD

Cornelius Oscar samplerFreezeout hypersurface finder

Huovinen, Petersen Ohio group

Fluctuating Initial conditions Hydrodynamic expansion Freezeout process•From Hydro to particle•Final state interactions Akamatsu, Inutsuka, CN, Takamoto,

arXiv:1302.1665、 J. Comp. Phys. (2014) 34

C. NONAKA

Our Hybrid Modelthermalization hydro hadronization freezeoutcollisions

hydrodynamic modelMC-KLN Nara

http://www.aiu.ac.jp/~ynara/mckln/

UrQMD

Cornelius Oscar samplerFreezeout hypersurface finder

Huovinen, Petersen Ohio group

Fluctuating Initial conditions Hydrodynamic expansion Freezeout process•From Hydro to particle•Final state interactions Akamatsu, Inutsuka, CN, Takamoto,

arXiv:1302.1665、 J. Comp. Phys. (2014) 34

Simulation setups:• Free gluon EoS• Hydro in 2D boost invariant simulation• UrQMD with |y|<0.5

C. NONAKA

Initial Pressure Distribution• MC-KLN (centrality 15-20%)

LHC RHIC

Pressure (fm-4)

X(fm) X(fm)

Y(fm) Y(fm)

C. NONAKA

Time Evolution of Entropy• Entropy of hydro (T>TSW=155MeV)

C. NONAKA

Time Evolution of en and vn • Eccentricity & Flow anisotropy

Shift the origin so that ε1=0

C. NONAKA

Eccentricities vs higher harmonics• LHC (200 events)

en vn

C. NONAKA

Eccentricities vs higher harmonics• RHIC (200 events)

en vn

C. NONAKA

Hydro + UrQMD• Transverse momentum spectrum

LHC RHIC

C. NONAKA

Effect of Hadronic Interaction• Transverse momentum distribution

LHC RHIC

C. NONAKA

Higher harmonics from Hydro + UrQMD• Effect of hadronic interaction

C. NONAKA

Summary

• We develop a state-of-the-art numerical scheme– Viscosity effect– Shock wave capturing scheme: Godunov method

– Less artificial diffusion: crucial for viscosity analyses – Stable for strong shock wave

• Construction of a hybrid model– Fluctuating initial conditions + Hydrodynamic evolution +

UrQMD• Higher Harmonics– Time evolution, hadron interaction

Our algorithm

Importance of numerical scheme

top related