kinetic architecture

Post on 28-Mar-2016

253 Views

Category:

Documents

9 Downloads

Preview:

Click to see full reader

DESCRIPTION

DIssertation Kinetic Architecture

TRANSCRIPT

 

 

 

 

KinMode

Carlo

netic eling de

Roussee

Master

Archesign an

euw

A

r in de in

hitectnd beha

Academi

ngenieur

tureavior

ejaar 20

rswetens

Tbehalein de

10 – 201

schappe

Thesis vooen van de

e ingenieur

Bouw

P

11

en: archi

orgedragengraad van

rswetenschArch

wtechnisch

ProProf. Vande

AssProf. Van

BegelProf. Bo

tectuur

n tot het Master

happen: hitectuur he Optie

omotor: e Moere

sessor: Broeck

leiders: oeykens

 

 

 

 

 

 

 

KinMode

Carlo

netic eling de

Roussee

Archesign an

euw

A

hitectnd beha

Academi

tureavior

ejaar 20

Tbehalein de

10 – 201

Thesis vooen van de

e ingenieur

Bouw

P

11

orgedragengraad van

rswetenschArch

wtechnisch

ProProf. Vande

AssProf. Van

BegelProf. Bo

n tot het Master

happen: hitectuur he Optie

omotor: e Moere

sessor: Broeck

leiders: oeykens

    ii 

©CopyrightbyK.U.LeuvenZondervoorafgaandeschriftelijketoestemmingvanzoweldepromotor(en)alsdeauteur(s)isovernemen,kopiëren,gebruiken of realiseren van deze uitgave of gedeelten ervan verboden. Voor aanvragen tot of informatie i.v.m. hetovernemen en/of gebruik en/of realisatie van gedeelten uit deze publicatie, wend u tot de K.U.Leuven, FaculteitIngenieurswetenschappen –KasteelparkArenberg1,B‐3001Heverlee (België).Telefoon+32‐16‐321350 &Fax.+32‐16‐321988.Voorafgaandeschriftelijketoestemmingvandepromotor(en) iseveneensvereistvoorhetaanwendenvandeinditafstudeerwerk beschreven (originele) methoden, producten, schakelingen en programma’s voor industrieel ofcommercieel nut en voor de inzending van deze publicatie ter deelname aan wetenschappelijke prijzen ofwedstrijden.©CopyrightbyK.U.LeuvenWithoutwrittenpermissionofthepromotorsandtheauthorsitisforbiddentoreproduceoradaptinanyformorbyany means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of thispublication shouldbe addressed toK.U.Leuven, FacultyofEngineering–KasteelparkArenberg1,B‐3001Heverlee(België).Telefoon+32‐16‐321350&Fax.+32‐16‐321988.A written permission of the promotor is also required to use the methods, products, schematics and programsdescribedinthisworkforindustrialorcommercialuse,andforsubmittingthispublicationinscientificcontests.

    iii 

Preface TheideaforthisresearchcametomewhenIwasfirstintroducedtothenotionofInteractiveArchitecture:anewkindofarchitecture,previouslyunknowntome,butwhichgrabbedmyattention.Variousprojectsinthecurrentlandscapeintriguedmeandcausedmetodivedeeperintothisnewandupcomingfield.Themainfocusformewastogaininsights,informationandtobeabletopassthisontootherstoo.Thisfocussometimesledtoquantityoverquality,whichIamnotashamedtosay.Itistheintentofthisresearchtodrawthebiggerpictureandintroducethisnewskillsettoallwhowanttoknow.Itwasnevertheintentiontolurepeopleintoanarrowmindset,onlytointroducethemtothisnewsandboxwheretheycanplaythemselves.Anotherdifficultyformepersonallywastheabsenceofpreviouslocalresearchandthepossibleprejudicesthatothersmighthavetowardsthisresearch.ThisresearchdidnottakeformasfastasIwouldhavelikedandwasnoteasytocompletebutthesupervisingprofessorswerealwayspositiveandguiding,whichallowedmetokeepongoing.Athanksgoesouttopeoplewhoinspiredme,familyandfriendswhosupportedmeandhelpinghandsthatguidedthisresearchintotherightdirection.

CarloRousseeuw

    iv 

Tableofcontents

Preface .................................................................................................................................................... iii 

Tableofcontents .................................................................................................................................... iv 

Abstract ................................................................................................................................................. vii 

ListofFigures ....................................................................................................................................... viii 

ListofTables ........................................................................................................................................ xiv 

Nomenclature ........................................................................................................................................ xv 

Chapter1:Introduction ......................................................................................................................... 1 

InteractiveArchitecture ................................................................................................................ 1 

PhysicalCounterpart ..................................................................................................................... 4 

IntelligenceCounterpart ............................................................................................................... 5 

PracticalKnowledge ...................................................................................................................... 7 

Motivation ...................................................................................................................................... 8 

Objectives ....................................................................................................................................... 9 

Significance ..................................................................................................................................... 9 

Chapter2:Background ........................................................................................................................ 11 

2.1EarlierWorks ............................................................................................................................. 11 

2.2Literaturestudy ......................................................................................................................... 12 

2.2.1Timeline ............................................................................................................................... 15 

2.2.2ProjectLocation .................................................................................................................. 16 

2.2.3ProjectMechanism ............................................................................................................. 16 

2.2.4ProjectTypologies .............................................................................................................. 18 

2.2.5ProjectApplicationKinetics............................................................................................... 18 

2.2.6ProjectTimespan ................................................................................................................ 19 

2.2.7ProjectStructuralbehavior ................................................................................................ 20 

2.2.8ProjectIntelligence ............................................................................................................. 21 

2.2.9ProjectSensorvalues ......................................................................................................... 21 

    v 

2.2.10Web‐BasedLiterature ...................................................................................................... 22 

Chapter3:Methodology&Results ..................................................................................................... 23 

3.0Methodology .............................................................................................................................. 23 

3.0.1TheSimulationSoftware,Grasshopper ............................................................................ 23 

3.0.2Themicrocontroller,Arduino ............................................................................................ 26 

3.1Simulatingdesign ...................................................................................................................... 28 

3.1.1Simulations,CaseStudies ................................................................................................... 28 

3.1.2NumericalValidation .......................................................................................................... 41 

3.1.2.1DefaultScenarioResults ................................................................................................. 42 

3.1.2.2ActuatedScenarioResults............................................................................................... 43 

3.2Simulatingbehavior .................................................................................................................. 44 

3.2.1TheSimulationSoftware .................................................................................................... 44 

3.2.2LinkingDataMethods ........................................................................................................ 45 

3.2.3Simulations .......................................................................................................................... 46 

3.2.4Emotivebehavior ................................................................................................................ 53 

3.3DesignIssues .............................................................................................................................. 55 

3.3.1Joints .................................................................................................................................... 56 

3.3.2.12DJoint ............................................................................................................................. 56 

3.3.2.23DJoint ............................................................................................................................. 58 

3.2.1Members .............................................................................................................................. 61 

3.3.2Cladding ............................................................................................................................... 62 

3.3.3Actuatordesign ................................................................................................................... 67 

3.3.5PrototypeDesign ................................................................................................................ 74 

3.3.5.1Introduction ..................................................................................................................... 74 

FlexibleSkin ................................................................................................................................. 74 

Biomimicry ................................................................................................................................... 75 

3.3.5.2Results .............................................................................................................................. 76 

Design ........................................................................................................................................... 76 

Polyp ............................................................................................................................................. 78 

Truss ............................................................................................................................................. 80 

Cladding ........................................................................................................................................ 83 

Behavior ....................................................................................................................................... 86 

Chapter4:Evaluation&Discussion ................................................................................................... 90 

4.1Evaluation&DiscussionSimulatingDesign ............................................................................ 90 

    vi 

4.1.1SimulationCaseStudies ..................................................................................................... 90 

4.1.2Numericalvalidation .......................................................................................................... 92 

4.2Simulatingbehavior .................................................................................................................. 94 

4.3DesignIssues .............................................................................................................................. 96 

4.3.1Joints .................................................................................................................................... 96 

4.3.2.12DJoint ............................................................................................................................. 96 

4.3.2.23DJoint ............................................................................................................................. 97 

4.3.3Members .............................................................................................................................. 98 

4.3.4Cladding ............................................................................................................................... 99 

4.3.5Actuatordesign ................................................................................................................. 100 

4.3.6PrototypeDesign .............................................................................................................. 102 

Design&Polyp ........................................................................................................................... 102 

Truss&Cladding ........................................................................................................................ 104 

Behavior ..................................................................................................................................... 106 

Chapter5:Conclusion ....................................................................................................................... 108 

5.1SimulatingDesign ................................................................................................................ 108 

5.2SimulatingBehavior. ........................................................................................................... 110 

5.3PracticalIssues .................................................................................................................... 111 

5.3.2Cladding ............................................................................................................................. 112 

5.3.3ActuatorDesign ................................................................................................................ 113 

5.3.4Prototype ........................................................................................................................... 115 

Appendices ......................................................................................................................................... 118 

AppendixA ..................................................................................................................................... 119 

AppendixB ..................................................................................................................................... 123 

Bibliography ....................................................................................................................................... 127 

FicheMasterproef .......................................................................................................................... 131 

    vii 

AbstractThewayweuseandexperienceobjectsinourdailylivesisconstantlybeingimprovedwithincreasinguser‐interactivity.Fromourcarswhicharefilledwithsensorstoenrichourdrivingexperiencetotheautomatedshadingofourwindowswhichdisappearswhenweneedtogetoutofbedinthemorning.Architecturetodayontheotherhandisstatic,itsstructuralformdoesnotinteractwithitsusersoritschangingenvironmentalfactors.Insteadofshieldingtheinhabitantsfromthesefactors,thesefactorscanberespondedtoandinteractedwithtochangetheinhabitant’sperceptionofthisnewspace,InteractiveArchitecture.Inthedesignofinteractivearchitecturewithstructuralkineticchanges,KineticArchitecture,thesimulationofastructureanditsbehaviorplaysavaluableroleinitsoveralldesignandproduction.Beingabletoconnectawiderangeofsensordatawiththisdesign‐softwarewecrossthebridgenecessaryforcompletelysimulatinginteractivearchitecture,whichinturnhasaneffectonthefinaldesign.RecentdevelopmentsandcommunityeffortsinpluginsfordrawingsoftwarelikeGrasshopperforRhinoceroshavegivenustheseabilities.Everyprojectisuniquebyitsowncontextandusageandthereforeuniquebyitsmeanstointeract.ThisthesissimulatesdifferentexistingstructuresinthecurrentlandscapesandteststhescopeofcurrentsimulationpackagesandtheirusetodesignerswithregardstoKineticArchitecture.AlsotheintelligencewhichcontrolsthisKineticArchitectureandthedifferentkindsofdatastreamsareaddressedtogetherinthecontextofthesimulationsoftware.Besidestheresearchintermsofsimulation,thisthesisalsodiscussespracticalissuesofKineticStructuresinageneralwaybeforebuildingaworkingprototype.ThisresearchwillactasacatalysttoprovidearchitectswiththenecessaryskillsettodevelopanddesigninteractivearchitecturebutalsotoprovideamutualgoalforotherdisciplineslikeroboticsandmaterialengineerstoformandresearchdifferentendproductswithenhanceduserinteractivitywhichcouldbeusedinthisnewbreedofInteractiveArchitecture. 

    viii 

ListofFiguresFigure1:BurbleattheSingaporeBiennale(Haque2006)...............................................................................2 

Figure2:InteractiveWall  (FestoCorporate2009)..........................................................................................3 

Figure3:Tesselate(Lab[au]2010)............................................................................................................................3 

Figure4:FabricDome(Hoberman1997)...............................................................................................................4 

Figure5:PneumaticMuscle...........................................................................................................................................4 

Figure6:VisualizingWifiStrength,Immaterials(Arnalletal.2011)..........................................................5 

Figure7:Pixelskin2.0(Orangevoidn.d.).................................................................................................................5 

Figure8:Flockofbirds(NationalGeographicn.d.).............................................................................................6 

Figure9:HighTechTeamworkofswarmrobots(NationalGeographicn.d.)..........................................6 

Figure10:BallJoint,3D‐Print.......................................................................................................................................7 

Figure11:StiffCladdingConnection.........................................................................................................................7 

Figure12:ErnstingWarehouseGate,SantiagoCalatrava,1983(Tzonis&Lefaivre1997).............11 

Figure13:ScaleModel,SantiagoCalatrava(Tzonis&Lefaivre1997).....................................................11 

Figure14:InteractiveArchitectureCategorization+Dissertation............................................................14 

Figure15:TimeversusBookContents..................................................................................................................15 

Figure16:LocationversusBook..............................................................................................................................16 

Figure17:MechanismversusBook........................................................................................................................17 

Figure18:TypologyCategorization........................................................................................................................18 

Figure19:ApplicationCategorization...................................................................................................................19 

Figure20:LoadBearingcategorization................................................................................................................20 

Figure21:IntelligenceCategorization...................................................................................................................21 

Figure22:SensorValuesCategorization..............................................................................................................21 

Figure23:InteractiveArchitecturedotorg,Wordle(Glynn2005)..........................................................22 

    ix 

Figure24:Actuators,SpringImplementation.....................................................................................................24 

Figure25:Trussmember,SpringImplementation..........................................................................................24 

Figure26:KangarooComponentsinGrasshopper...........................................................................................24 

Figure27:GrasshopperEnvironment....................................................................................................................25 

Figure28:TestingtheArduino,LED‐bar..............................................................................................................26 

Figure29:ScalemodelType3(D’EstreeSterk2003).....................................................................................28 

Figure30:SimulationActuatedTensegrityType1..........................................................................................29 

Figure31:SimulationActuatedTensegrityType2...........................................................................................30 

Figure32:SimulationActuatedTensegrityType3..........................................................................................30 

Figure33:WhoWhatWhenAir,FlexibleTower(Kilianetal.2006)...........................................................31 

Figure34:MuscleTowerII,Hyberbody(Oosterhuis2000).........................................................................31 

Figure35:SimulationFlexibleTower....................................................................................................................32 

Figure36:TESSEL(Lab[au]2010)..........................................................................................................................33 

Figure37:RoboticMembrane(Orangevoidn.d.)..............................................................................................33 

Figure38:SimulationRoboticMembrane............................................................................................................34 

Figure39:Excerptfromdissertation,ResponsiveActuatedTruss(Merali&Long2009)..............35 

Figure40:SimulationActuatedResponsiveTruss...........................................................................................36 

Figure41:SimulationKineticCircle........................................................................................................................37 

Figure42:ExpandingGeodesicDome(Hoberman1997).............................................................................38 

Figure43:StrataModule(AdaptiveBuildingInitiative2006).....................................................................38 

Figure44:SimulationoftheExpandingGeodesicDome................................................................................39 

Figure45:AddingacolorscaleinGrasshopper.................................................................................................41 

Figure46:SimulationGrashopper,5kN,NotActuated,DeformationScale1:1....................................42 

Figure47:SimulationANSYS,5kN,NotActuated,DeformationScale1:1..............................................42 

Figure48:SimulationGrasshopper,0kN,Actuated,DeformationScale1:1..........................................43 

Figure49:SimulationANSYS,0kN,Actuated,DeformationScale1:1.......................................................43 

Figure50:ArduinoSend/ReceiveimplementationinGrasshopper.........................................................44 

Figure51:ManipulatingandvisualizingSensorDatainGrasshopper.....................................................45 

    x 

Figure52:Optimization,KineticArchtowardspoint......................................................................................46 

Figure53:IRsensorconnectedtotheArduino..................................................................................................47 

Figure54:Manipulating&visualizingSensorDatainGrasshopper.........................................................47 

Figure55:PushsensitivesensorconnectedtotheArduino.........................................................................48 

Figure56:ImplementingSensorData....................................................................................................................48 

Figure57:Optimization,KineticArchminimizingstresses..........................................................................49 

Figure58:PachubereceiveimplementationinGrasshopper......................................................................51 

Figure59:Pachube,Livesensorstreamingandstreaminformation.......................................................51 

Figure60:FiducialimplementationinGrasshopper.......................................................................................52 

Figure61:Sensors..........................................................................................................................................................53 

Figure62:Grasshopper/KinectSensor(AndyPayneetal.2010)..............................................................53 

Figure63:Dune4.0Maastunnel(Roosegaarde2011).....................................................................................54 

Figure64:Laser‐cuttingandengravingasheetofMDF.................................................................................55 

Figure65:2DTurningJoint,witheccentricity...................................................................................................56 

Figure66:2DTurningJoint,withouteccentricity.............................................................................................56 

Figure67:2DJointUnstable......................................................................................................................................57 

Figure68:Intersecting2Djoints,Snap‐Fit...........................................................................................................57 

Figure69:ParametricalModelUniversalJoint2...............................................................................................58 

Figure70:3D‐printUniversalJoint2.....................................................................................................................58 

Figure71:CardboardSpaceframe;RingPass,Delft(Octatube2010).....................................................59 

Figure72:ParametricalBallJoint............................................................................................................................59 

Figure73:SectionParametricalBallJoint............................................................................................................60 

Figure74:3DPrintedBallJoint.................................................................................................................................60 

Figure75:3DprintedBallJoint,Section...............................................................................................................60 

Figure76:TrussMember............................................................................................................................................61 

Figure77:TrussMember............................................................................................................................................61 

Figure78:Textilemembrane,Unstretched.........................................................................................................62 

Figure79:Textilemembrane,Stretched...............................................................................................................62 

    xi 

Figure80:KineticBox,DefaultScenario...............................................................................................................64 

Figure81:KineticBox,Scenario1...........................................................................................................................64 

Figure82:KineticBox,Scenario2...........................................................................................................................64 

Figure83:ExpansionjointWoodencladding.....................................................................................................65 

Figure84:Balljoint(KejiaIndustryn.d.)..............................................................................................................65 

Figure85:LivingGlass(TheLivingn.d.)...............................................................................................................66 

Figure86:XeromaxEnvelope(FutureCitiesLab2010)................................................................................66 

Figure87:Rectangle,DiagonalActuation.............................................................................................................67 

Figure88:MuscleWireActuation............................................................................................................................68 

Figure89:ScrewLinearActuator............................................................................................................................69 

Figure90:CrankshaftLinearActuator..................................................................................................................69 

Figure91:Gear‐PinionLinearActuator................................................................................................................69 

Figure92:MuscleProject(FestoCorporate2009)...........................................................................................70 

Figure93:McKibbenPrinciple(Daerden&Lefebern.d.)..............................................................................70 

Figure94:TestSetup.....................................................................................................................................................71 

Figure95:McKibbenairmusclesetup....................................................................................................................71 

Figure96:3/2AirValveFesto...................................................................................................................................72 

Figure97:ArduinoController...................................................................................................................................72 

Figure98:Elongation/OriginalLength[%].........................................................................................................73 

Figure99:UnderwaterPolyps(NationalGeographicn.d.)...........................................................................75 

Figure100:AxonometricViewPrototype............................................................................................................76 

Figure101:Prototype,3DSketch............................................................................................................................77 

Figure102:ScotchYokeMechanism(Mechanisms101n.d.)......................................................................78 

Figure103:PolypActuation,3DSketch................................................................................................................78 

Figure104:PolypActuator.........................................................................................................................................79 

Figure105:Polyp,Uppernodeconnection..........................................................................................................79 

Figure106:2DSimulation,Design1.......................................................................................................................80 

Figure107:3Dsimulation,Design1.......................................................................................................................80 

    xii 

Figure108:2Dsimulation,Design2.......................................................................................................................81 

Figure109:3Dsimulation,Design2.......................................................................................................................82 

Figure110:Trussassembly........................................................................................................................................82 

Figure111:LasercutVacuumFormingMolds....................................................................................................83 

Figure112:VacuumFormerwithmold................................................................................................................84 

Figure113:Vacuumformingresultwithhighmold........................................................................................84 

Figure114:Cladding,UpperView...........................................................................................................................85 

Figure115:Cladding,LowerView...........................................................................................................................85 

Figure116:Built‐InOpto‐Resistor..........................................................................................................................87 

Figure117:Built‐InPiezoElement.........................................................................................................................87 

Figure118:Built‐inIRSensor...................................................................................................................................87 

Figure119:PrototypeSide‐View.............................................................................................................................88 

Figuur120:PrototypeSide‐View.............................................................................................................................88 

Figure121:PrototypePerspectiveView...............................................................................................................89 

Figure122:PrototypeUpperView..........................................................................................................................89 

Figure123:SimulationFlexibleTower..................................................................................................................91 

Figure124:SimulationoftheExpandingGeodesicDome.............................................................................91 

Figure125:SimulationGrasshopper,0kN,Actuated,DeformationScale1:1.......................................93 

Figure126:SimulationANSYS,0kN,Actuated,DeformationScale1:1....................................................93 

Figure127:Optimizatin,Kineticarchmovingtowardspoints....................................................................94 

Figure128:2DTurningJoint,withouteccentricity..........................................................................................96 

Figure129:2Dunstablejoint....................................................................................................................................96 

Figure130:3D‐printUniversalJoint2...................................................................................................................97 

Figure131:3DprintedBallJoint,Section............................................................................................................98 

Figure132:TrussMember..........................................................................................................................................98 

Figure133:KineticBox,Scenario2.........................................................................................................................99 

Figure134:ExpansionjointWoodencladding...................................................................................................99 

Figure135:McKibbenairmusclesetup.............................................................................................................100 

    xiii 

Figure136:Elongation/OriginalLength[%]...................................................................................................101 

Figure137:SketchesPolyp,Design1..................................................................................................................102 

Figure138:PolypActuator......................................................................................................................................103 

Figure139:PrototypePerspectiveView............................................................................................................103 

Figure140:CladdingHinge,Trussmemberconnection.............................................................................104 

Figure141:VacuumFormingresultswithhighmold..................................................................................105 

Figure142:ArduinopoweredbyUSBand9Vbattery.................................................................................107 

Figure143:SimulationGrasshopper,0kN,Actuated,DeformationScale1:1....................................109 

Figure144:SimulationANSYS,0kN,Actuated,DeformationScale1:1.................................................109 

Figure145:CentralIntelligenceversusSwarmintelligence,Simulation1.........................................110 

Figure146:3DprintedMultiplememberBalljoint......................................................................................111 

Figure147:KineticBox,Scenario2......................................................................................................................112 

Figure148:ExpansionjointWoodencladding................................................................................................112 

Figure149:Linearactuators,ShrinkRate.........................................................................................................113 

Figure150:Airmuscle,Elongationrate[%]....................................................................................................114 

Figure151:Prototype,Perspectiveview...........................................................................................................115 

Figure152:PrototypeUpperView.......................................................................................................................116 

Figure153:PrototypeSideview...........................................................................................................................116 

Figure154:3DTrussSimulation...........................................................................................................................117 

    xiv 

ListofTablesTable1:LegendTimeversusBookContents......................................................................................................15 

Table2:LegendBooks..................................................................................................................................................16 

Table3:ErrorMargin%,Default5kN

Table4:Errormargin%,Default10kN................................................................................................................42 

Table5:ErrorMargin%,0kN

Table6:ErrorMargin%,5kN.....................................................................................................................................43 

Table7:Intelligent‐versusSwarmBehavior......................................................................................................47 

Table8:ComparisonDifferentiterationprocesses..........................................................................................49 

Tabel9:LinearActuators,ShrinkRate..................................................................................................................69 

Table10:MuscleElongation[%]..............................................................................................................................73 

Table11:PolypsBehavioralScheme......................................................................................................................86 

Table15:ErrorMargin%,Default5kN

Table16:ErrorMargin%,5kN..................................................................................................................................92 

Tabel17:Optimizationresultsversusswarmimplementation,Simulation1......................................95 

Tabel18:Optimizationresults,Simulation2......................................................................................................95 

Tabel19:ShrinkRatesofdifferentactuators...................................................................................................100 

Table20:MuscleElongation[%]...........................................................................................................................101 

Table21:ErrorMargin%,Default5kN

Table22:ErrorMargin%,5kN...............................................................................................................................109 

    xv 

NomenclatureIA InteractiveArchitectureKA KineticArchitectureFE FiniteElementsKDGKineticDesignGroupF ForceE Young’sElasticitymodulusx DisplacementinxDirectiony DisplacementinyDirectionk (Elasticity)StiffnessGH GrasshopperFF FireflyKG Kangaroo

    1 

Chapter1:IntroductionInteractiveArchitecture

Architecturetodayismonotoneandstatic.Imaginearchitecturehowevertobealive,tobeabletopartakeinadiscussionwithitsinhabitantsortheenvironmentinwhichithasbeenplaced.Theseinhabitantsandenvironmentalfactors,likesunlightandwind,aredynamic:theyarenotstaticormonotoneandtheydeservetobeacknowledgedandinteractedwith.Whenreactingandinteractingwiththesefactors,architecturechangestheinhabitant’sperceptionofspaceandletsthemliveinsymbiosiswitharchitectureratherthanonlyinhabitingarchitecture.Thisnewkindofarchitecturehastobedynamic,responsiveandinteractive.

“Onewaytobeginexploringthedynamicsisthroughrethinkingarchitecturebeyondconventionalstaticandsingle‐functionspatialdesign.”(Fox&Kemp2009)

Letusforexamplethinkofapavilion,apavilionthatcanchangeitsshellformtoautomaticallyusethebestformforminimizingthedisplacementsorstressesinitsstructure.Apavilionthatcanbraceitselffortheincomingimpactofanearthquakeorapavilionthatbreathes,ventilates,andcatchesrenewableresourcesforitsinhabitantsandtheircurrentactivity.BuckminsterFullerevencoinedthisas“Ephemeralization”(Fox&Kemp2009),beingabletobuildastrongerformwithminimalmaterialusingactivemeasures,similartothehumanbodywhereafixedamountofmusclesandbonescanprovidevariousstancesforvariouspositionsandactions.“Perhapsthemostapplicableresearchtodrawuponindesigningintelligentsystemslies

inanareaofstudycalledactivecontrolresearch,whichfocusesontheuseofactivecontroltomodifythestructuralbehaviorinabuilding”(Fox&Kemp2009)

 

 

Usmresdesincwittele

Figu

 

manHaque,searchofthesignedandcludingBurbthlightsandevisionrem

Withrinteraction

intera

ure 1: Burble 

,founderofeseinteractconstructedble,amassivdinfraredrmoteusedby

regardstoIAnascircularctwitharch

at the Singap

f HaqueDesiivearchitecdvariousintveinstallatireceiversbeythepeople

A,UsmanHaqr,ortheyarehitecturethey

pore Biennale

 

ign+Reseacturesystemteractiveinsonconsistiningabletorewhocame

questates:“emerely“reaeyshouldnot

(Haque 2006

rch,specialms.Togetherstallationsongofmultipreceivesigntoseethein

“Suchsystemacting”andntbethought

“particip

6) 

izesinthedrwithhisenonvariousspleballoonsnalsfromasnstallation.

mmustutilizenot“interact ofas“userspants”.”(Fox

designandntouragehecales,embeddedsimple

eadefinitiocting”.Aspeos”butinsteadx&Kemp20

nofopledas009)

 

 

RessocamknoThesocleavthisThibuibuiintrFesconinte“T

Figu

Figu

       

 

searchinvolciologicalasmorepracticowledge.

eBurblebycialbehaviovetheirhomsnewkind

isresearchhildingjointsildinganderoducedasstoCorporatntrolledenveraction.

Thephysicalfacilitate,d

ure 2: Interact

ure 3: Tessela

               

lvingIAcanspects,chancalwayofbu

UsmanHaqrthroughIAmesandpoiofarchitect

howeveradsandbuildinxperimentinasocialexptionortheTvironmentw

architecturdissipate,orfworld,inter

tive Wall (Fes

ate (Lab[au] 20

nbeapproacgeinsocialuilding,mod

queisanexaA.HisBurblinttheirteleure.

ddressesthengaprototyngonasmaperiment.FoTesselateprwithminima

ecanbeusefocuscrowdractivepubli

sto Corporate

010) 

 

chedthrougbehaviorandelingands

ampleofresleandSkyEevisionrem

emorepractype.Thisisallscalegainorexampletrojectbylabaldocument

edtoincludedsofpeople.icspacescan

e 2009)   

ghdifferentndthepercesimulatingI

searchingsoEarprojectsmotecontrol

ticalissuesacommonrnspracticaltheinteractb[au]arebotationinvolv

orexcludepInthisway,nhaveaprof

intera

viewpoints,eptionofspAdesignto

ociologicalamadeavarintheskyt

suchassimresearchmeinsightbutivewallcreathinstallativingtheiref

peoplefromintherealmfoundspaceactions.”(Fox

,suchasthepacebutalsogainpractic

aspectsandrietyofpeoptointeractw

mulatingIA,ethodwhereisnotatedbytheionsinaffectonsoci

oneanothermofthephyseeffectonsox&Kemp20

eoincal

dplewith

e

ial

r,tosicalcial009)

 

Phy

TheKinKin200inbexaWaThethethismaapBotsimofpme

Figu

Figu

      1Licha

“Thecurre

ysicalCoun

ephysicalcneticArchite

neticstructu09)The“wabothsizeanamplecanexarehousegat

e“means”oe“ways”oftsthesis.Actagneticallydneumaticall

thcategoriemulatesdiffepresenttooleansofkinet

ure 4: Fabric D

ure 5: Pneuma

                      

inkageMechain.”(Wikip

Toguidetentlandscap

conve

nterpart

ounterpartecture(KA)

urescanbeays”ofakinndshapelikexpanditssttebySantia

ofakineticsthekineticstuatorscandriven.Theplydrivenac

esareneceserentkineticlsbutalsofaticstructure

Dome (Hober

atic Muscle 

                      

hanism:“Asedia2011a)

thereaderineofinteractergenceofem

nowadaystodepictIA

categorizedneticstructuefolding,extructureusinagoCalatrav

structureisstructure.Thbemechanipneumaticmctuator.

sarywhentcmechanismabricateslines.

man 1997) 

          

seriesofrig)

nthisreseartivelandscapmbeddedcom

coun

isthatofkiAthatutilize

dbytheir“wurecanbethxpandingorngascissorvaopenswit

formulatedhesearealsical,pneumamusclerese

talkingaboums,ways,dunearactuato

idlinkscon

rch,IAiscutpeorinteracmputation(interpart(kin

netics.Weteskineticsa

ways”and“mhevariousmrsliding.Thrmechanismthalinkage

asthedrivisonamedacatically,natuearchedinth

utthekinetiuringacaseorstogaini

nnectedwith

tupintotwoctivespaceisintelligence)netics).”(Fox

hereforeutiasaphysica

means”.(FoxmethodsofseHobermanmandtheErmechanism

ingmechanctuatorsinthurally,chemhisthesisis

iccounterpae‐study,tofinsightinto

hjointstofo

ocounterpaisbuiltupon)andaphysx&Kemp20

tilizethenamalcounterpa

x&Kempspatialchanndomeforrnstingm1.

ism(s)behithescopeofmicallyoranexample

art.Thistheindthescopthedifferen

ormaclosed

arts: thesical009)

meart.

nge

ndf

eof

esispent

d

 

Int

Thecomope“A

EmeledevmicdatTheconfroUndvarmeinteHucallscanottoi

Figu

Figu

telligenceC

esecondcomputation.TeratesourK

kineticenvir

mbeddedcomctroniccomvicesandarcrocontrolleta.

eintelligencntrolstheacmpragmati

derpragmarietyofdataeasuresWIFeractivesha

manbehaviledhumaniale.Sensorstyetavailabimplementt

ure 6: Visualiz

ure 7: Pixelski

Counterpar

unterpartoTheintelligeKA.

ronmentwit

mputationismponentsthreabletodoersthatena

ceofIAisdectuationofticdatatohu

aticdatafallathatistangFIstrengthinadingreacti

iorandemosticdata,whwhichcanableonalargtheminthe

zing Wifi Stren

in 2.0 (Orange

rt

ofIAisintellenceofastr

thoutthecom

sthetermtatareembeoonlyacoupblethebuil

efinedasththekineticcumanisticda

valuessuchgibleinnumnthefield,ongtodaylig

otionshoweherepragmaccuratelysgescale.Thissimulation

ngth, Immate

evoid n.d.) 

ligenceundructureisth

mputationis

thatdepictsedded,implepleofdedicdingtorece

heprogrammcounterpartata.

hasthedaymbers.Projeor“Pixelskinghtlevels,ar

evercannotmaticsensorssensehumansresearchwofKA.

erials (Arnall e

ertheformhecentraln

slikeabodyofm

thenumeroemented,incatedfunctioeive,proces

ming,thatut.Thesestre

ylightlevel,wectssuchasn”byOrangreexamples

bemeasuresarealreadnmovemenwilladdress

et al. 2011) 

ofembeddeervoussyste

ywithoutabmoving.”(Fox

ousmicrocontoday’seleons.InIAthsandactup

ndertheinfeamsofdata

windspeed“PaintingWgevoid,whicofusingpr

edinnumbeyavailableotoremotionsbothdatat

edemthat

brain:incapax&Kemp20

ontrollersorectronicheseareponincomin

fluenceofdacanvary

orawideWifi”,whichchisanragmaticdat

ers.Thesearonawidenhoweveratypesandh

able009)

r

ng

ata

ta.

re

areow

 

IntintebasTheofdowenvcellinteandCenhumusastcellcoominbut

res

Figu

Figu

thisresearcelligence.Bsicnumerica

etermswardifferentcelwnactuatorsvironment.Plswhichactelligenceisdflocksofb

ntralintelligmanbrain.Wtouseourotheactuatinlsorevenoordinatedacnimalizedfutcollectsthi

“Thebesourcesofa

ure 8: Flock of

ure 9: High Te

hthereisaothofthesealcomparis

rmintelligenlls.Cellswh,meaningthProjectssuctonthespealsodirectlybirds.

genceistheWhenahairothermusclngenvironmff‐sitedatact.Apracticurther.Thisisdatatoan

nefitofananumberofsyorsystems

f birds (Natio

ech Teamwork

differencebeareaddresson.

nceisusedhichhavetheheirsensorychasthe“Picificvaluegylinkedtot

oppositeofrparticleselestoact.Hment.Physiccanbeusedalexamplestructurennalyzeand

activesustainsystemssothsachievemo

nal Geograph

k of swarm ro

betweenswssedherean

inthisthesieirownsenyenvironmixelskin”solgiventothemthebehavio

fswarminteensesvibratencethesencallythismedtoactuatecanbeastrnotonlymeactuateacco

nablesystemhatwhenwoorethanthe

hic n.d.) 

obots (Nation

warmintelligndcompared

iswhenastnsorsbutcanentisequallarshadingmbytheiroorscienceof

elligenceantionourbrainsoryenvireansallofththeentiresructurewheeasuresthefordinglywi

misthatitcaorkingtogethsumoftheir

al Geographic

genceandcedtoeachot

tructureiscnalsoonlyaltotheiractarecomprisownsensor.fswarmslik

ndworksmuinisalertedonmentisnhesensordastructureusereminimalforceappliethitsentire

anintelligenher,theindivrparts.”(Fox

c n.d.) 

entraltherusinga

comprisedoactuatetheituatingsedoftheseSwarmkebees,ants

uchlikethedwhichallonotthesameatafromthesingastressesaredtoanodeestructure.

ntlycombinevidualelemex&Kemp20

outir

e

s

owsee

ee

theents009)

 

 

 

Pra

po

ThibroetcphyTecconwilintThi

Figu

 

Figu

 

acticalKno

“Architectsotentialsofh

isresearchwokendowni.andresearysicallybuil

chniquesusntrol(CNC)llkeepimprtheproductishoweveri

ure 10: Ball Jo

ure 11: Stiff C

owledge

neednotbehowthisnew

willuseabointovariousrchedassucltandassem

edinthisthmillingandrovingdurinionofbuildisnottheca

oint, 3D‐Print 

ladding Conn

comespeciawareaofdes

ottom‐downspartssuchch.Atfirstinmbleaproto

hesisare3Dvacuumforngtheupcomingcomponaseatthem

ection 

 

alistsinthisasigncouldim

napproachascladdingnageneralwotypeofaco

Dprinting,larming.Itistmingyears,nentssuitabmomentofth

areabutshompactand/o

aredes

whereanidg,connectinwaybeforeonceptualde

aser‐cuttingthewriter’ssothatthebleforcarryhisresearch

ouldclearlyrenhancethigning.”(Fox

dealkineticgmembers,usingthiskesign.

g,computeropiniontheywilleventyingthecalc.

understandheprojectstx&Kemp20

structureis,actuators,knowledget

numericalhatthesetootuallybeusculatedload

thethey009)

s

to

olsedds.

 

 

    8 

Motivation

“Theuseoftoolswithreal‐timefeedbackforprototypingbehaviorscangreatlyinfluencetheoverallprocessofdesignandhaveaprofoundeffectuponthefinalendproduct.”

(Fox&Kemp2009)

TryingtovisualizeaKAdesign,thedesignerneedsthetoolstosimulate,calculateandanimatethemovementofitsstructure.The2Dor3Ddrawingsoftwarecommonlyusedarenotyetreadytogeneratethisforhim.Theydeliver,justlikeourcurrentperceptionofarchitecture,staticdrawings.Designtoolsforkineticsystemsdoexistinspecializedsoftwarepackages(Fotiadou2007),designedformechanicalengineersandanimatorsinthemediaorentertainmentsector.Theyutilize“skeleton”toolstosimulatetheirdesignbasedonstiffmembersandactuatorsthatbringmovementinthesystem.Butevenwhensoftwarethatcanhandleskeletonanimationisavailablewelackeasy‐to‐usereal‐timecalculationofstressesanddisplacementsinthestructureduringitsanimation.Whatwegaininsimulationofthekineticsweloseinstructuralinsightoftheglobalstructure.Doesthekineticstructureforexampledecreaseitsinternalforcesbymovinginthatspecificstanceordoesitincreasethem?Evenwhentalkingaboutsmallerscalekineticstructureswithoutsimulationtoolsathoroughknowledgeandstructuralinsightisneededtonoticeproblematicpointsintheentirestructure.

“Theintegrationofcomputationaltools,suchas3Dmodelingsoftwareforreal‐timesimulationandactualphysicaltestingintotheprocessofdesigningalsoallowsdesigners

toconfrontandanticipatemanyoftheissuesthatoccurwhenbuildingatfullscale.”(Fox&Kemp2009)

DesigningandconstructingIAalsoinvolvesaspecificskillsetinmicrocontrollers,sensorsandactuatorstomakethedesigncometolife.Thisskillsetisnotpartofthebasiccurriculumofanarchitect.Butwithoutabasicnotionoftheseskills,thearchitectcannotconstructKA.ThesesimulationtoolsandspecificskillsdonotexistbecauseKAexistsbutbecausetheywillcomplementeachothertoproducebetter(andparametrical)KAwhenintroducedinanearlyphaseofdesign.“Whenthetoolsevolvewiththedesign,theheuristicsarefacilitatedbythetools,andnotnecessarilylimitedbytheirparameters.Thedesignprocessesassociatedwithinteractivesystemsdesignareconstantlyevolvingandarefosteredbytheconsequentdevelopment

ofnewtools.”(Fox&Kemp2009)

 

    9 

Objectives

Theaimofthisresearchconsistsofresearchingtoday’ssimulationtoolstosimulatethephysicalcounterpart,researchingthevarioussensorsandactuatorswhilealsolinkingthemtooursimulationandgainingpracticalknowledgeinthisfieldbyaddressingdifferentgeneralsolutionsandconstructingaworkingprototype.Whenresearchingthechosensimulationsoftware,itsworkingrangeisfoundbyimplementingdifferentcase‐studiesanddocumentingwherethesimulationsoftwareexperiencesproblems.ThesimulationsoftwareisalsovalidatedbycomparingitnumericallytoacommonFEsoftwarepackage.Varioussensorsandactuatorsareresearchedtogainpracticalknowledgeonhowtooperateandimplementthembutarealsolinkedtothesimulationsoftwaretotestitsrangeagaininthisaspect.DesignissueswhenphysicallybuildingKAareaddressedusingabottomdownapproachinvolvingdifferentgeneralaspectslikeactuation,claddingandnodes,butalsobybuildingaprototype.

Significance

“Architectsareeagertoembracetechnologythatcanincreaseoptimizationthroughadaptationwithrespectbothtotheenvironmentanduserneeds,yettheymustlearnto

recognizetheinterdisciplinaryneedsthatsuchtechnologieshaveensnared.”(Fox&Kemp2009)

ThisresearchisgoingtoactasacatalysttoinspirenewdesignsorresearchinthemultidisciplinaryfieldofIA.ItwillprovidethenecessaryskillsforarchitectstogetherwithmeanstobeginsimulatinganddesigningKA.ButwillalsoprovidetheconceptofIAintheformofEphmeralizationtostructuralengineerswhocanproducefurthercalculationsandcanthusdeveloplighterandstrongerstructuresusingactivecontrolmeasurements.Engineersstudyingtheindoorbuildingclimatecandevelopstrategiesthatformthebasisforarchitectsandtheirdesignsforinteractivefaçades2. 

                                                            2InteractiveFacades:Interactivecomponentsembeddedinalargerstructure(façade)interactingwithbuildingphysicsbehaviorandappearance.Theseincludesunlight,temperature,ventilationandalsoappearanceinallkindofforms.

    10 

Mechanical,chemicalandelectricalengineerscanalsofindinspirationfornewmechanisms,smartmaterialsorelectronicstoupgradecurrentversionsofIA,likeactuatorsthatarepoweredbythesunortextilemembranesthatcanchangecolorlikeachameleon.Thiscommongoalisthecomplementaryinspirationforbothpartiesfordesigninganddiscoveringnewapplications.EvensocialsciencescanobserveprototypesofIAinasocialcontexttoseewhatkindofimpactithasonhumanandsocialbehavior,whichinreturnformsthebasisforarchitecturalcritiqueandthebranchingoutofIAindifferentdirections.Notonlycantheyobservedirectconfrontationbetweenthebuiltenvironmentandtheirusersbuttheycanalsointerpretthevaststreamofpragmaticandhumanisticdatathatwillsoonbeavailablefromeverycornerofthisnewsentientcity,comprisedofInteractiveArchitecture. 

 

C

2.1

ThearcprocoubeaWaopithaBesIns(Fototear

Figu

Figu

hapt

1EarlierW

econceptofchitectshaveominentfiguupleofkinetamswheretarehouseGainionthatthattime.

sidestheindstituteofTecox1995a)cathenbytheirlierworks.

ure 12: Ernstin

ure 13: Scale M

er2:

Works

fKineticArceincorporaureofthemticprojectsthekineticsateandthedhisisdirectl

dependentwchnologywaategorizeddirmechanis

ng Warehous

Model, Santia

Back

chitectureistedKAinthisSantiagowhichcontcouldstillbdesignforthlylinkedto

workofCalaascommissdifferentintm(s)andis

e Gate, Santia

ago Calatrava

kgrou

sayoungcoheirownoeuCalatrava(tainlinkagebecalculateheMilwauketheabsence

atrava,aressionedarounteractivestrthusagrea

ago Calatrava

a (Tzonis & Lef

und

oncept.LessuvrebeforeCalatravansystemswitedbyhand.FeeArtMuseeofmoreco

searchground1995.Thructuresthaatwayofcap

a, 1983(Tzonis

faivre 1997)

sthanahan1990.Them.d.).HehasthasetofnForexampleeum.Itistheomplexsimu

pattheMasheKineticDathadbeencpturingmos

s & Lefaivre 1

ndfulofmostdesignedanon‐bearingehisErnstinewriter’sulationtool

ssachusettsesignGroupconceivedustofthe

1997) 

11 

ng

sat

spup

    12 

2.2Literaturestudy

Fromtheearlierworksupto1990therewasstillnolargescaleinterestininteractivearchitecture.ThebackgroundworksofWilliamJ.Mitchell(Mitchelln.d.)weretheonlyonespublisheduntilthe21stcentury.ThesepavedthewayforIAbyintroducingthebiggerpictureregardingthechangingsocialrolesthankstoupcomingphenomenaatthattimesuchastheinternetandthedigitalrealm.Around2000differentarchitectsandarchitecturalfirmsbegantoexperimentwithanddocumentIA:Anewgenerationwhonowhadthemeansandskillstodoso.ThemagazineiAforexamplewaspublishedbyKasOosterhuiswhoisstillthecurrentdirectoroftheHyperbodyworkgroup(Oosterhuis2000)attheTechnicalUniversityofDelft.Thesemagazinesthereforeconsistofmanystudentprojectsandprototypestogetherwithpartsoftheoreticaltheory.Around2009anelaborateworkofMichaelFoxandMilesKemptitled“InteractiveArchitecture”waspublished.MichaelFox,founderoftheKineticDesignGroupatMITcanbeconsideredasthepersonwiththelargesthistoricalexperienceinthefieldandmakesthebook“InteractiveArchitecture”(Fox&Kemp2009)aprominentpieceinthisliteraturestudyaswellastheentirefieldofIAatthemomentofwriting. 

    13 

ThefollowingbooksregardingIAweretakenintoaccountwhileconductingthisliteraturestudy:

1. W.J.Mitchell,CityofBits,Space,PlaceandtheInfobahn,MITPress,1996,pp.224(Mitchell 1996) 

2. W.J.Mitchell,e‐topia,UrbanLife–Butnotasweknowit,MITPress,2000,pp.184(Mitchell 2000) 

3. W.J.Mitchell,ME++,TheCyborgSelfandtheNetworkedCity,MITPress2004,pp.259 (Mitchell 2004) 

4. K.Oosterhuis;X.Xia,iAn°1–InteractiveArchitecture,JapSamBooks,2007,pp.96(Oosterhuis & Xia 2007) 

5. K.Oosterhuis;X.Xia,iAn°2–InteractiveArchitecture,JapSamBooks,2008,pp.112(Oosterhuis & Xia 2008) 

6. M.Fox;M.Kemp,InteractiveArchitecture,PrincetonArchitecturalPress,2009,pp.225(Fox & Kemp 2009) 

ThefollowingmagazineshavebeenreadbutintheopinionofthewritertheydonotfitinsidethecategoryofKAsincemostoftheprojectsinthesemagazineshavenokineticcounterpartintheirinteractivedesign.Nonethelesstheseprojectsarepartofthecurrentinteractiveprojectlandscapeandformasourceofinspirationandknowledge.

7. K.Oosterhuis;X.Xia,iAn°3–EmotiveStyling,JapSamBooks,2010,pp.128 (Oosterhuis & Xia 2010) 

8. LucyBullivant,4Dspace–InteractiveArchitecture,AcademyPress,2005,pp.128 (Bullivant 2005) 

9. LucyBullivant,4Dsocial–InteractiveDesignEnvironments,AcademyPress,2007,pp.127(Bullivant 2007) 

   

    14 

 

 

 

 

 

 

Figure 14: Interactive Architecture Categorization + Dissertation 

The entire written IA landscape has been split up into different categories by the writer. Abstracting their quantity, each of these categories contribute to the domain of IA. Each book has been mapped on its categorization in relationship to the other categories, most fitting for its content in the  opinion of the writer. The contents of this dissertation have also been categorized to visualize the content in relationship to the existing landscape.   This study also states that simulation tools are still not yet widely documented or actively used. Except for some projects in the magazine iA, KA and IA in general are not simulated in current projects. The majority of the project landscape arise from a practical knowledge and heuristic production methods of building prototypes and scale models.  The majority of the projects in the above books have been documented3 and categorized in the following sections. By doing this, the research compares the books based on their vision on the current IA landscape/projects.  

                                                            3 Appendix A: Project Landscape Raw Data 

Background

Theory

Protype

Simulation

Build Projects

K. O

osterh

uis, IA

 nr3 

 

2.2

TowasumacctriloveAnoprothe

 

 

Figu

Tab

2.1Timelin

visualizethsroughlydimofthecatecounttheamlogyofW.J.ertogetherwotherremarototypes,meeirwayinto

ure 15: Time v

BackIATSimu

ble 1: Legend T

W.J. M

itchell, C

ity of B

its 

ne

hechangingividedbythegoriesatamountofliteMitchellthewithaboomrkisthesmeaningthatsomespeci

versus Book C

kgroundheoryulationsTime versus B

W.J. M

itchell, E‐to

pia 

rolesofthehewriterintnyonetimeeratureataneoverallbacmofprototyallriseinsithesimulatficworks.

Contents 

Book Content

WJMitch

ellE‐to

pia

esecategorietopercentageistherefornyonetimeckgrounddypesandsimimulationptionpackage

ts 

W.J. M

itchell, M

E++ 

esinsidethgesandplotre100%ande.Itisobvioisappearsamulationsinrojectsrathesarerelati

PrototypeRealLife

eIAlandscattedonatimdthuswillnustoseethndtheIAthntheprojecterthanrealivelynewan

esProjects

Kas O

osterh

uis, IA

 nr1 

apeeachbomeline.Thenottakeintohataftertheheorytakestlandscape.lprojectsanndhavemad

Fox&

Kem

p, In

teractive Arch

itecture 

Kas O

osterh

uis, IA

 nr2 

15 

ok

oe

.ndde

Kas

Oosterh

uis

IAnr2

 

2.2

Figu

Tab

CatnotArcproTheprores

2.2

BasthevalsamItisprowhendThekincat

2.2Project

ure 16: Locati

IAn°1(O

IAn°2(

ble 2: Legend 

tegorizingthticeablethachitecturehojectsinWe

eearlierwoominentfiguspectivepie

2.3Project

sedonacateaforementuebutshowmecolorcod

sshownthaojectstendthichareinted‐andstart

esemechanneticstructutegorieswas

Location

on versus Boo

Oosterhuis

Oosterhuis

Books 

heexamplestthemagazhasawidersternEurop

orks,ascateureslikeSanchartstells

Mechanism

tegorizationionedprojewingtheirredeisusedfo

attheKDGhtoavoidtherestingbutpoint.

nismsarethures.The“wstoohigh,o

ok 

&Xia2007)

&Xia2008)

sfoundinlzineiAmainscope,notpeaswell.

gorizedbytntiagoCalatusthatnew

m

ninmechanictsareputiespectiveboortherespe

hasmadeanearlierlinkonlyhavea

esamecateways”havenonlyproving

)

)

literaturepenlydepictsnonlyshowin

theKDG,ortravaandOtwerprojects

ismsmadebintogroupsookinastacectivebooks

nddocumenkagesystemalimitedsco

egoriesasthnotbeendocgtheenorm

InteractivKemp20KineticD1995a)

erbookandnationalworngnational

riginatedfrottoFrei.Altsaremorep

bytheKDGswhileabstrckedcolumnsasthegeog

ntedavarietsorNurnbeopeofusabi

heaforemencumentedsiousamount

veArchitect009)DesignGroup

dgeographicrk.Thebookprojectsbu

omthehomethoughthespresentinqu

atMIT(Foxractingtheirn.Keepingigraphicloca

tyofmechanergscissorslityandapr

ntioned“meincetheamotsofactuato

ture(Fox&

pMatrix(Fo

clocationitkInteractivutconceptua

ecountriessizeoftheiruantity.

x1995b),alrabsoluteinmindtheation.

nisms.Newmechanismredetermin

eans”oftheountoforsavailable

16 

ox

isveal

of

lof

wermsed

e.

 

Figu

 

ure 17: Mechaanism versus Book 

 

17 

 

2.2

IntkinmaDynDepincsetDynbutvenEmstruand

Figu

2.2

AnoKemConsolMuwaSpabaswil

2.4Project

thebookIntneticalcountajorityofpronamicorEm

ployablestrludemilitartupbutthee

namicsystetwhoarestntilationsys

mbeddedsysuctureanddembedded

ure 18: Typolo

2.5Project

othercategomp2009),i

ntextualAdaarposition,

ulti‐functionllsormulti‐

atialoptimizsketballgamlloptimizea

Typologies

teractiveArterpartindojectsfoundmbedded.

ructuresarery,nonmilitendposition

emsaresysttillonlyapiestems,etc.

stemsarelikspace.Itcandstructures

ogy Categoriz

Applicatio

orizationalsthatofthe

aptabilityinwindveloc

ndesignfun‐functionfu

zationseeksmeisbeingpacousticsan

s

rchitecture(ifferenttypdintheliter

econceivedtaryandcrisnofthebuil

temsthatareceofabigg

kedynamicnbeseenthsinsteadoft

ation 

nKinetics

socoinedbyeapplication

ncludesstrucityonthesc

ctionsonanrniture.

stooptimizplayedinasndlightingt

(Fox&Kemologies.Theratureintoo

asstructuresisrelieftenldingsisstil

reinteractivgersystem.

systemsbuhatthenewetheearlierd

ytheauthonofkinetic

ucturesreaccaleofourb

ninteriorsc

zethestructspaceorourtoourchang

p2009)theefollowingoneofthree

eswithasmnts:verykinllstatic.

veandhaveTheseinclu

tformaninerprojectstdeployables

rsofInteracsystems.W

ctingtoourbuilding.

cale:Positio

turetoitsurofficesaregingneeds.

eauthorselacategorizatietypes:Dep

mallsetuptineticsystem

aphysicalcudesolarsh

ntegralparttendtowardstructures.

ctiveArchithatisaproj

changingen

ningofmov

sage.Whetheplacedther

aboratetheionputstheployable,

ime.Thesemsduring

counterparthading,

ofthedsdynamic

tecture(Foxjectusedfo

nvironment

vabledividin

herare,thespac

18 

e

,

&r?

t,

ng

e

 

Figu

2.2

Whtobhasthe 

ThecuraccDirofotheOrglaStimconstrustreOveinachaareItisincday

ure 19: Applic

2.6Project

hendividingbeseen.Evesbeenveryeirwork.

econceptofrrentIAprocountthree

rectinteractobjectsorpereisalotoitcanevenreoroverhe

mulioverwnditionslikeuctureandwessesandd

ermonthsmacertainresangetheirsiestayingint

sthewriterorporatediylightandve

“Perhapsthmoderato

cation Catego

Timespan

geachprojeeryproject’sfeworeven

ftimeisnotjectlandscalevelsofint

tivityinvolveople.Abuifnoisetomchangetheeatingwillo

weekscanbeerisingwatewilltherefoisplacemen

morehumanstaurantsoizeaccordinthevicinity.

r’sopiniontneachotheentilationca

hemostimporresponding

rization 

ctbythespstimespanwnnoproject

tyetwidelyape.Itisforteractivityin

vesstimuliliildingcanfomaintainanoshapeofwioccur.

ephenomenerlevels.Thorechangethts.

nisticvaluesitcanadjusngtotheam.

thatdiffereneronatechnannotcoinc

ortantgoalgtochange

peedoftheirwasdirect,itsordesigne

ydocumentethisreasonntime:Dire

ikedaylightorexampleoptimalspaindowssoth

nasuchaschheseinvokethestructure

scanchangesthisspatiamountofchil

ntlevelsofinicalscale.Fcidewithop

ofaninterabetweenhu

rmovementimplyingmiersprototyp

edandtakennthatthewrect,Medium

tlevels,sounchangeitssacefortheohatthespac

hangingwinachangeine’soptimal

e.Likethealconfiguratldrenbetwe

nteractivityForexampleptimalstruct

ctivesystemmanneedsa

cond

t,therewasinutes.Thispingthisbig

nintoaccouriterexpliciandLongti

ndlevelsanskin,thickenccupanttorceisequally

ndpatternsntheappliedformversus

averageamotion.Orplayeentheage

ycannotalwetheinhabituralbehavi

todayshoulandexternalditions.”(Fox

nodifferensmeanstherggerpicture

untintheitlytakesinttimespans.

ndthepreseningitwherreaditsbooylitandno

orgeologicdloadsontsinternal

ountofvisitygroundscaof3‐15whi

waysbetant’sneedior.

ldbetoactalenvironmenx&Kemp20

19 

ncereein

to

ncereok.

calhe

torsnich

for

asantal009)

 

2.2

ThithalevThinotHigcarNointeAswinrein

Figu

 

2.7Project

isthesismaattheselevevelsreacttoiscategoriztbeableto

ghstructurarryloadson

structuralceractivitylik

mallstructund,snowannforcedeno

ure 20: Load B

Structural

adeadivisioelscannotbdifferentdaationhowevbeloadbea

alabilitydepalargescal

capacitymekeinteractiv

uralcapacitndrain.Thosough.

Bearing categ

behavior

oninvariouseputtogethata,thereforveralsoimpring;struct

pictskineticle.Theseinc

eanstheprovefacadeso

yimpliesasestructure

orization 

stimespansherinasingretheactuapliesthatfoturesinterac

cstructurescludedome

ojectisproborinstallatio

normalresiescouldbeh

sofIA.Bydogleworkingationcannotrexampleinctingwitha

whichareleroofsormo

bablycombinons.

istancetoenhighloadbe

oingsothewmechanismtcouplethesnteractivefappliedload

loadbearingovingfloors

nedwithsm

nvironmentearingifthe

writerimplm.Differentsetwolevelfacadesshoudshouldbe.

gandablets.

mallscale

talfactorslieywere

20 

lies

ls.uld

to

ke

 

2.2

Figu

TheinteinteswaExadep

2.2

CatPravalaccsenthis

Figu

2.8Project

ure 21: Intellig

efirstpartoelligence.Inelligenceimarmbehavio

aminingallpictedinthe

2.9Project

tegorizingthagmaticvaluuesarevalucordingly.Wnsorsarenoswillchang

ure 22: Senso

Intelligenc

gence Catego

ofIAinthedntelligencecmpliesacentorimplieslo

oftheliteraeaboveVen

Sensorval

heabovepruesarevaluuesthatareWenoticethaotyetavailabgedrasticall

r Values Cate

Sw

ce

orization 

definitionocanfollowdtralmicrocoocalmicroc

atureprojectnnDiagram.

ues

rojectsbythesliketempabletosenatpragmaticbleonalargyinthenex

egorization 

warm

Prag

ofthebookIdifferentpatontrolleranontrollersw

tswenotice

heirsensorvperature,prseapersoncsensorsargescale.Itxtdecade.Th

Ce

gmatic

InteractiveAthstoachievndextensivewithsimple

eanequald

valueswehroximityorl’sbehavior,rewidelyavisthewritehescaleoft

entral 

Humanistic

Architectureveitsgoal.Cprogrammiprogrammi

distribution

avetwoextlightlevel.Hmoodoracvailablebutr’sopinionthedistribu

ewasthatoCentralingwhereasing.

of8‐6‐10a

tremes.Humanisticctivityandahumanistichoweverthutionis18‐4

21 

of

s

s

actat4‐1.

 

2.2

BecthrproMoothbecThe“Inthethe“reInt

Figu

 

2.10Web‐B

causeoftheroughvariouojectsorare

ostofthemaherpartofthcauseofitsl

eexceptionteractiveArecurrentIAepostsandasearch”anderactiveArc

ure 23:  Intera

BasedLitera

enatureanduswebsite’sefromarchi

areaddresseheweb‐baslargeextent

isthefollowrchitecturedlandscape.arrangesthd“students”chitecturea

active Archite

ature

dageofIAas.Thesecantecturalpra

edthroughedliteraturt.

wingvisualidotorg”,anThevisualizembyquanhaveanacttthetimeo

ecture dot org

andKA,alotnprovideadacticesresea

thebibliogrreisnotdisc

ization,whiindependenzationshowntity.Surpristiveroleintofwriting.

g, Wordle (Gly

toftheliterdatabasecoarchingIA.

raphyandilcussedinth

chwasmadntblogdescwstherelatisinglyenougthiscurricu

ynn 2005) 

aturecanalntainingdif

lustrations.isliterature

debasedoncribingvarioonshipofkeghkeywordlum,provin

lsobefoundfferent

.Howevertestudy,

thewebsiteousprojectseywordsofdssuchasngtheyouth

22 

d

he

esinall

hof

 

    23 

Chapter3:Methodology&Results

3.0Methodology

Beforetalkingaboutthedifferentpackagesofthemethodologythisthesiswillfirstelaborateontheusedsimulationsoftware,Grasshopper,andtheusedArduinomicrocontroller.

3.0.1TheSimulationSoftware,Grasshopper

Researchinsimulationsoftwareledtoagrowingusercommunityinvolvingtheadd‐on“Grasshopper”(Davidsonn.d.)forRhinoceros4SR8.Thegrasshopperadd‐ongivesusavisualcodingenvironmentwhereparametricaldesignisthemaintopic.Rhinocerosisnotdevelopedforskeletonstructuresthough.Thecommunitygroupshavedevelopedpiecesofcode,visualizedas“components”inGrasshopper,whichallowustosimulaterealphysicalbehavior.Afterreadingacomparisonthesisoncommercialskeletontools(Fotiadou2007),togetherwiththedocumentationonRhinocerus+Grasshopper(Davidsonn.d.),Kangaroo(Piker2011b)andFirefly(Andy&Johnson2010),thisresearchhastakenGrasshopperasprimarysimulationtool.Thisismainlybecauseoftheavailablecomponents,FireflyandKangaroo,whichallowustomanipulatedataandsimulatekinetics,thetwobasicneedsinthisIAresearch.Kangarooisaphysicsenginebasedontheuseofaparticle‐springsystem.ForabetterunderstandingofthesystemanditsimplementationwerefertotheKangarooManual(Piker2011c).Butthisbasicallymeansthatinthisthesisstructuralnodeswillbemodeledasparticlesandinterconnectingbeamsortrussmemberswillbemodeledasa“spring”connectionbetweentwoparticles.Thesespringshaveacertainstiffnessdefinedbyfollowingformulasofgeneralstructuralengineering,inaccordancewiththeircompatibleunits:

 

Lindiffvaractadjjusact

Figu

Figu

Figu

 

nearactuatoferentwaytriablerestletuatorthatcustableslidtlikeinreatuatorands

ure 24: Actuat

ure 25: Truss 

ure 26: Kanga

ors,anintegthanthestifength.Variacouldbeusederswhichclity.Whenwimulatethe

tors, Spring Im

member, Spr

aroo Compone

ralpartofKffbeams.Acablelengthwedinrealitycanbeusedweadjustthekineticsof

mplementatio

ing Implemen

ents in Grassh

 

KA,arehowctuatorsarewhichislinky.Theresulttocontroltheseparamethestructu

on 

ntation 

hopper 

weverbeingieimplementkedtothesttofasuccesthestrokeoetersweadre,whichth

implementetedasspringtrokeofthesfulsimulatfeverysingjustthelenghisresearch

edinagswithaespecifictionwillhavgleactuator,gthofthehislookingf

24 

ve

for.

 

 

Figuure 27: Grasshhopper Enviroonment 

25 

 

3.0

ForDudevproanalighEthnot

 

Figu

 

0.2Themic

rreceivingaemilovemicvelopingOpogrammingaloganddightsormotorhernetconntresearched

“Arduinoisausehardw

i

ure 28: Testin

crocontroll

andsendingcrocontrollepen‐Sourcehlanguagebagitalsignalsrs.Differentectionport.d/usedinth

anopen‐souareandsoftinterestedin

ng the Arduino

er,Arduino

gdigitalander.TheArduhardware.ItasedonProbutisalsoatmodelsdif.Thelatterhisthesis.

rceelectrontware.It'sinncreatingin

o, LED‐bar 

o

danalogsignuinowasdevtcanbeprocessing.Thabletosendfferintheamisnotimple

nicsprototyptendedforateractiveobj

nalsthisresvelopedaspogrammedueArduinohddigitalsignmountofpoementedon

pingplatformartists,designjectsorenvi

searchusespartofastuusingtheArdhastheabilitnalstoactuaortsaswelltheDuemil

mbasedonflners,hobbyiironments.“(

anArduinoudentprojecduinotytoreceiveatorslikeashavingaloveandthu

flexible,easyists,andany(Arduino20

26 

ct

e

nus

y‐to‐yone005)

 

    27 

Totacklethesubjectspokenofintheintroductionithasbeenbrokendownintothreepackages:

1. SimulatingDesignThefirstpackageisacompilationofdifferentcasestudies.TheseinvolvepracticalcaseswhichcanbefoundinthecurrentKAlandscape.Aninformation‐orientatedsamplinghasbeenusedtofinddifferentatypicaldesignstotesttheabilitiesofthesimulationsoftware,Grasshopper.ThispackagewillalsocontainacomparisonstudybetweenGrasshopperandaFiniteElements‐softwarepackage,ANSYS,fornumericalvalidation.

2. SimulatingBehaviorThefollowingpackagewillimplementdifferentlowcost,highlyavailablesensorsinsomeofthepreviouscasestudies.Thisagaintotesttheabilitiesofthesimulationsoftware,Grasshopperandtofindthescopeofitsabilitytolinkthephysicalsensoryenvironmenttothesimulation.Notonlythepragmaticbutalsohumanisticsensorswillbeaddressedhere,togetherwiththenumericaldifferencesofswarmandcentralintelligence.

3. PracticalDesignIssuesInthepracticaldesignpackage,anidealkineticstructurewillbebrokendownintoitsdifferentpartslikecladding,connectingmembers,actuators,etc.Differentgeneralsolutionswillfirstbeanalyzedandproducedinapracticalstudyofbuildingandusing.TheendofthispackagewillcontainaworkingprototypeofaconceptualKAdesign. 

 

3.1

3.1

TheinsinteresInoablillu

Figu

Figu

1Simulati

1.1Simulat

1. ORAMBa.

eOfficeforshortORAMerestedin“sponsivesys

oneofhisfiletomultiplustrationas

ure 1: Actuate

ure 29: Scale m

ingdesign

tions,Case

BRA,TristanIntroductio

RoboticArcMBRAwasforethinkingtstems”.(D’Es

rstpublicatlyindifferenelasticmem

ed tensegrity:

model Type 3

n

Studies

nD’EstreeSon

chitecturalMoundedbyTtheartofcostreeSterk2

tionshesetsntfashionsmbers.

: Type 1,2,3 (D

3 (D’Estree Ste

Sterk

Media&BurTristanD’Esonstruction2003)

supabasic(type2&3)

D’Estree Sterk

erk 2003) 

reauforRestreeSterk.Talongsideth

actuatedte.Actuatorsa

k 2003) 

sponsiveArcThissmallbheemergen

ensegritymoareshowni

chitecture,obureauisnceof

odule(typeinhis

28 

or

1)

 

 

Figu

b.

ure 30: Simula

Simulation

ation Actuate

ns

ed Tensegrity Type 1 

29 

 

Figu

Figu

ure 31: Simula

ure 32: Simula

ationActuated

ation Actuate

d Tensegrity T

ed Tensegrity 

Type 2 

Type 3

30 

 

ar

Durthiswemasup

Figu

Figu

   

2. Hyberba.

“HyperbodyTechnologyretoexplore

andinter

ringtheirwsresearchwreheldtogeadeavailablepervisionof

ure 33: WhoW

ure 34: Muscl

body,TUDelIntroductio

isaresearchydirectedbyetechniquesractivearchi

worktheycowillsimulateetherbyoutebytheFesfAxelKillian

WhatWhenAir

e Tower II, Hy

lft,KasOoston

hgroupatthyprof.ir.Kasandmethoditectures.Cu

appli

ollectedmuleisthefirstteractuatortoCorporatnetal.thatg

r, Flexible Tow

yberbody (Oo

terhuis

theFacultyofsOosterhuisdsfordesignuttingedgetiedbyresea

ltipleexamptMuscleTowrs.Actuatorstion.Asimilgoesbythe

wer (Kilian et 

osterhuis 2000

ofArchitectus.Thegoalssingandbuiltechniquesarchersands

plesandstuwer.StiffintswerepneularprojectwnameofWh

al. 2006) 

0) 

ureattheDesetforthegrldingnon‐stndmethodsstudents.”(Oo

dentprojecterconnectinumaticmuscwasrealizedhoWhatWh

elftUniversityroup’sreseatandard,virtaretaughtosterhuis20

cts.TheonengcrystalsclesthatwedunderenAir.

31 

tyofarchtualand000)

ere

 

 

Figu

b.

ure 35: Simula

Simulation

ation Flexible

n

e Tower 

32 

 

OraandtriaWitmeHowmethepic

Figu

Figu

 

3. ORANGa.

angevoidisdroboticmeangulatedmthoutdeclarerelytechnic

weverTESSembranewiteceiling.Thikuponthe

ure 36: TESSE

ure 37: Robot

GEVOID,RobIntroductio

anconceptuembranes.Omembranethringthesencal.

SELisanintththesameisinstallatiomembrane

L (Lab[au] 201

tic Membrane

boticMembon

ualarchitecOneoftheirhatcanmovnsoryinputs

teractiveinsappearanceonmovesac.

10) 

e (Orangevoid

 

brane

cturalfirmsrremarkableveduetopns,onlythek

stallationalsebutactuatccordingto

d n.d.) 

pecializingeprototypeneumaticactkineticcount

soconsistintedbyretrasoundwave

inIA,interasisthatofatuatorsattaterpart,this

ngofatriangctablecableesthatacou

activefacadaroboticachedtoit.sdesignis

gulatedesattachedupleofsens

33 

es

toors

 

Figu

 

b.

ure 38: Simula

Simulation

ation Robotic

n

c Membrane

34 

 

AcenguppEacsenstreupwheicon

Figu

 

4. Actuatea.

collaborationgineer,cameperbeamco

chtrianglepnsorswhichessthetrianwardsforceighttothefonstantlyopt

ure 39: Excerp

edTrussIntroductio

nattheUnieupwithanonnectedby

pointeddowhcanmeasungleelongateandbendinorcesapplietimal.

pt from disser

on

versityofTnresponsiveyhingedtru

wnwardsisarepressuretes,stretchingresistancedtoit.The

rtation, Respo

Toronto,betwetruss(Merussmembers

asinglecellintheuppeingthesteelcetothebeausableheig

onsive Actuat

weenanarcrali&Longsandsteelt

.Eachcellherbeam.Delcablesbutam.Thebeaghtofthesp

ted Truss (Me

chitectanda2009)consitensionedca

hasembeddpendingonaddingmormwillthuspacebelowi

erali & Long 20

anaerospacistingofanables.

edforcentheinternarereactionadjustitsistherefore

009) 

35 

ce

al

 

Fig 

b.

gure40:Sim

Simulation

mulationAct

n

uatedRespo

onsiveTruss

36 

 

Destheheithacirc

Figu

 

5. Kinetica.

signedbythelowercirclightenitsupathasnotbecletoavoid

b.

ure 41: Simula

cCircleIntroductio

hewriterhimle.Basedonppercircleieenmodeledtheupperc

Simulation

ation Kinetic C

on

mself,aKinnthemechannsteadofcldisthecolucirclemovin

n

Circle 

neticCircletnismofanalosingittowumnthathangfromthe

thatcanchaaperturethiwardstheceastobeplaccenter.

angeitsheigismechanisenter.Theonedinthemi

ghtbyrotatimwillnlymemberiddleofthe

37 

ing

r

 

ChuthetoyBesexpAdathe

Figu

Figu

6. Nurnbea.

uckHobermeexpandingy,isoneofthsidestheexpandingstruaptableBuieirpatented

ure 42: Expan

ure 43: Strata

ergscissorsIntroductio

man,ArchiteGeodesicDhefirstinthxpandingdouctureslikeldingInitiatdStrataSyst

ding Geodesi

 Module(Ada

s,Hobermanon

ectandfounDome.ThedheeraofKAmetheHobthehelicoidtiveorABIhemanddiff

c Dome (Hob

ptive Building

nn

nderofHobedome,whichAbasedonthbermanAssodsandhypahasalsomaferentadapt

berman 1997)

g Initiative 20

ermanAssohhasevenbheNurnberociateshavears.Asisterdedifferenttableglassf

006) 

ciates,istheeenchangedgScissormeedevelopedprogramcatkineticmofritting’s.

einventorodintoachilechanism.ddifferentalledtheodelsincludi

38 

ofld’s

ing

 

 

Figu

  

ure 44: Simulaation of the Expanding Geo

 

odesic Dome

39 

 

 

MocanBenontru

Figu

IssorstellKanThesupkinintrsureas

Figu

Isscaniterthainfoma

7. Results

odelscompilnbesimulat

ndingcanalanodeandussesorbeam

ure 2: Bending

ue1‐1:Modsurface,arelsthecommngarooexpe

egeodesicdpposedtostneticcirclewroducinganrfaces,cuttinsilymodeled

ure 3: Geodes

ue1‐2:Whnnothandlerationhastoathappenbeormationabanual.(Piker

s

ledfromnoted.

lsobeaccurtwoofitscmscanthus

g validation K

delsinvolvinotyetimp

munitythattectedlate20

domeforextayonacertwasabletodnewforcecanginthecendbyananch

sic Dome Simu

henintroducthishigh,vobechosenetweenplotboutthecal2011c)

des,beams

ratelyincorponnectingmsbemodele

Kangaroo (Pik

ngrollingaplemented.thesefeatur011.

amplecanntainlineanddefinearollalculatedbynterpoint.Ahorpointby

ulation 

cingtheexaverystiff,valnwhichcanttingthestrculationsof

andanchor

poratedinKmembers.Dedwiththis

ker 2011a) 

nchorpointHoweverDareswillbea

notbepropedareunablelingguideuyitsdisplacAverycompylineifavai

ctstiffnesslue.Therefobecamoufluctureinthftheengine

rpointswhi

Kangaroobyifferentstruoption.

ts,meaninganielPiker,availableint

erlysimulatetomovefrupwards.Thcementfromplicatedsolulable.

inKangaroooreasmalleagedbyincrheKangaroocanbefoun

charecons

yaddingbenucturalnode

anchorpointhecreatorthenextver

ed.Rollinggromit.Theeishowever

mtwoperpeutionwhere

o,theiteratirtimestepreasingtheoengine.MondintheKa

stantinspac

ndingstiffneslikehinge

ntsonalineofKangarorsionof

guidesareexampleoftbyndiculareasitcanbe

ionengineofthesubiteratiooreangaroo

40 

ce,

esses,

eo,

the

e

ons

 

3.1

GrathiscaltheBotequtheIssweresneeAsHoinAappsca

Figu

 

1.2Numeri

asshopperissvalidationculationmaeirpercenta

thmodelshualsthestanetrussmem

ue1‐3:Thiassumethasults.Itispoededinthes

mentionedoke’sLaw.SANSYS,wecpropriatestaleandprev

ure 45: Addin

calValidat

svalidatedtnthedisplacadeinANSYgesareshow

havethesamndardconstmbersisequa

svalidationatthesuperossibletoacsestagesof

beforeKAdSincewekncansimplydtiffnesstofinviewedonth

g a color scale

ion

throughthecementsofaYS.Thedifferwnnexttoe

mematerialtructionsteealto2500m

nisbasedonrpositionofccountfornthevalidati

describesthowthestiffndividethemndtheinterhestructure

e in Grasshop

esimulationallthenoderencesindieachotherf

propertieselvalueof2mm²,consist

nalinearcadifferentloon‐linearbeion.

hetrussmemfnessusingtmember’sstrrnalforces.Te.

pper 

nofa2Dtruswillbecomisplacementforcompari

anddimens200000MPatentwithas

alculationinadcaseswiehaviorofth

mbersasspthesameparaininthesTheseforce

ussconfinedmparedtoatwillbecalcson.

sions.Young.Thecrossssquaresecti

nANSYS.Inollleadtothheconstruc

rings.Sprinarametersfosimulationwsareprojec

datitsends.anFEculatedand

g’sModulus,sectionofaionof50mm

otherwordesameendctionbutisn

ngsthatfolloorcalculatiowiththeirctedonaco

41 

.In

d

,E,llm.

s

not

owons

lor

 

 

3.1

Theasaand

Figu

Figu

Tab

No

1.2.1Defau

edefaultsceameanstocd10kNload

ure 46: Simula

ure 47: Simula

ble 3: Error Ma

ode X Dire

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ltScenario

enarioisthacalculatedidswereapp

ation Grashop

ation ANSYS, 

argin %, Defa

ection Y D

0,0

0,0

0,1

0,1

0,1

0,0

0,1

0,1

0,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

oResults

atofnoactusplacementliedtotheu

pper, 5kN, No

5kN, Not Act

ult 5kN           

Direction

0,0

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,0

0,0

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,0

0,1

uationanditsandinternuppernodes

ot Actuated, D

uated, Deform

                 Tab

N

isusedtovanalforcesins.

Deformation S

mation Scale 

ble 4: Error ma

Node X Dir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

alidatetheGnanormals

Scale 1:1 

1:1 

argin %, Defa

rection Y Di

0,0

0,1

0,1

0,1

0,2

0,0

0,2

0,1

0,1

0,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,1

Grasshoppesituation.5k

ult 10 kN 

irection

0,0

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,0

0,0

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,0

0,1

42 

rkN

 

3.1

Theandkin

Figu

Figu

Tab

 

No

1.2.2Actuat

eactuatedsdapply0kNneticsrespec

ure 48: Simula

ure 49: Simula

ble 5:Error Ma

de X Dire

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

tedScenar

scenariowilNand5kNloctivelytoget

ation Grassho

ation ANSYS, 

argin %, 0kN   

ection Y Dire

0,0

‐106,4

‐111,8

317,3

247,8

206,8

158,8

127,6

106,0

90,1

0,0

0,0

63,0

70,9

79,3

‐132,1

‐120,8

‐112,0

‐104,6

‐97,7

‐91,0

0,0

32,8

ioResults

llshortenthoadsontheutherwithap

opper, 0kN, A

0kN, Actuate

                        

ection

0,0

21,6

9,5

‐2,7

‐17,4

‐28,0

‐32,9

‐38,0

‐45,2

‐59,2

0,0

0,0

31,1

13,6

17,7

‐18,8

‐29,0

‐33,6

‐38,9

‐46,7

‐65,2

0,0

‐20,1

he4thverticuppernodeppliedloads

Actuated, Defo

ed, Deformati

                 Tab

No

altrussmemesforvalidas.

ormation Scal

on Scale 1:1

le 6:Error Ma

ode X Dire

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

mbertohalftingthekin

e 1:1 

rgin %, 5kN 

ection Y Dire

0,0

‐105,7

‐111,2

316,2

247,3

206,7

159,0

128,0

106,4

90,6

0,0

0,0

62,6

70,5

79,0

‐132,0

‐120,8

‐112,2

‐104,8

‐97,9

‐91,4

0,0

32,8

fofitslengtneticsandth

ection

0,0

21,3

9,4

‐2,7

‐17,4

‐28,0

‐33,0

‐38,1

‐45,4

‐59,7

0,0

0,0

30,8

13,4

17,6

‐18,8

‐29,1

‐33,7

‐39,0

‐46,9

‐65,7

0,0

‐20,3

43 

thhe

 

3.2

3.2

ThaArdinteconItisforsim

Figu

2Simulati

2.1TheSim

ankstotheduinomicroeractivearcnstructingit

sevenpossvalidationb

mulationofK

ure 50: Arduin

ingbehav

mulationSo

plugin,Fireocontroller.chitecturewt.

ibletocompbeforeconsKAiscompl

no Send/Rece

vior

oftware

fly,GrasshoBydoingsowitharealse

parethephytructingtheeteandthe

eive implemen

oppercaninothispluginensoryenvir

ysicalwithteentiredesphysicalde

ntation in Gra

nputandoutnisthemissronmentwi

thesimulateign.Withthesigncanbe

asshopper 

tputdatafroinglinkforithoutphysi

edmodelonhesefinalsteebuilt.

omtheobservingoically

nasmallscaepsthe

 

44 

our

ale

 

3.2

SwwayuposenSwsensmwavcerIfomadracen

Figu

ThiProstaProcanreqGraAnointrforthegroThestro

2.2Linking

1. Swarm

armbehaviytocontrolonaccordinnsoryenviro

armbehavinsorscanbeoothingovevefunctionsrtainthresh

onlyremappathematicalasticwaythantralintellig

ure 51: Manip

2. Centra

isresearchcogrammingndardGalap

ogrammingnanticipatequirestimeaasshoppera

otherwaytroducinganexamplebeeinternalstrowtowards,

eoptimizatioke,tomini

DataMeth

mIntelligenc

or,asaforemlintelligencngtoitsprogonmentand

orisimplemeremappederanumberscanbeimpoldofappli

pingthesenoperationsaninmathegence.

pulating and v

lIntelligenc

considerstwinanexternpagosEvolu

ispossibleivarioussceandprogramasacompon

osimulateanendvaluewethesumofresses.Orth,ormaximiz

ionsolverGimizeorma

hods

ce

mentioned,e.Sensordagramming.Tdtheactuati

mentedwithdtotherangrofintervalsplementedtedpressure

sordataisntomanipulaematicalope

visualizing Sen

ce

womethodsnallanguageutionarysolv

inC++orVBenariosandmmingskillnenttoactw

acertainactwhichcanbfinternalfohedistanceze,growaw

Galapagoswaximizethee

canbeseenataisinterpThereforeswionenvironm

heaseinGrgeoftheactstoavoidsutosimulateeoracoustic

nolongerenatethedataerations,thi

nsor Data in G

sofimplemeandimpleverinGrass

B.Whileproimplementsfromthedwiththeinco

tionistousbeminimizercesmultipbetweena

wayfrom.

willthenoptiendvalue.

nasthesimppretedbyaswarmbehavmentareth

asshopper.Ttuator’sstrouddenspikeaswayingmcwaves.

nough,Grasa.Ifthedataisthesisref

Grasshopper

entingcentmentinginshopper.

ogrammingthemtohisdesigner,buomingdata.

eanoptimiedormaximliedbyitsbpointanda

imizeeachp

plestbutalssinglecell,wviorentailsesame.

Therawdatoke.Functioesaswellasmovementr

shoppersuismanipulaerstothisin

ralintelligeGrasshoppe

intelligenceschoosing.Tutcanbeimp

zationsolvemized.Thesebeamlengthstructureto

parameter,a

sothefasteswhichitactsthatthe

tavaluesofonssuchassdampenedrespondingt

upportsbasiatedinamontelligence

ence:erorusingt

ethedesignThishoweveplemented

er.Meaningevaluescouhtominimizominimize,

actuator

45 

sts

dtoa

coreas

the

nererin

uldze,

 

3.2

Imaarcto2ApinteGrasurmeGaliterdisevoTheoft[0;‐mic

Figu

 

2.3Simulat

1. Kinetic

agineakinechhasperpe20%.

pointisdesieresttotheasshoppererfaceoftheaeasureandm

lapagos,anrativelyfindtancebetweolutionaryo

ecomparedthearchand‐0,2].Theswcrocontrolle

ure 52: Optim

tions

cArchexpan

eticarchwhendicularac

gnatedontarch.Apoinenvironmenarch.Thispminimizeits

multiparamdtherighteeenthepoinoptimization

dmethodisdremappingwarmmetherperformin

mization, Kinet

ndingtowar

hichisa2Dsctuatorsinh

heexteriorntwherethtcancalculapointcanalssdisplaceme

meteroptimlongationfontandtheansandonec

aswarmbegthosenumodisdirectngacumber

tic Arch towa

 

rdsaspecifi

sectionofahisstructure

ofthearchhearchcangatethedistasobethestaents.

mizationsolvoreveryactarch.Inthiscomparison

ehaviorcalcumberstotheandcanbersomeitera

rds point 

icpoint.

nactuatedtewhichcan

tovisualizegrowtowardancebetweeartingpositi

ver,builtinttuatortomiobservationswarmmet

ulatingthedeintervalofperformedativecalcula

tensegrityhnshrinkthei

eacertainpdsorstayawenthepointionofaspec

toGrasshopnimize,ormnaretheresthod.

distancetoactuatormowithoutaction.

halfpipe.Thirlengthby

pointofwayfrom.Ttandthecificnodeto

per,canmaximizethsultsof3

eachdivisioovement,e.central

46 

hisyup

The

o

he

ong.

 

Infthuthetoa

Figu

Figu

Tab

IssaccphydisItcTheeac

Act

Diff

fraredsensusbeimplemedatacanbeavoidunwan

ure 53: IR sen

ure 54: Manip

ble 7: Intellige

ue2‐1:Thecuratelythanysicalmeanadvantagec

canalsobesereforethechiterativep

tuator

ference

sorsareablementeddireesmoothedntedspikes

sor connecte

pulating & vis

ent‐ versus Sw

esecomparenaswarmmstoconneccomparedto

seenthatvaendresultsprocess.

Inte

1

2

3

4

5

6

7

8

9

CP

etomeasurectlyfromthd,meaningta.

d to the Ardu

ualizing Senso

warm Behavio

edresultsshmethod.Howteverysensotheswarm

ariousactuaarenotpre

elligent 1

0,5655

reacertainhesensorinakinganav

uino 

or Data in Gra

or 

howthatanweverthelosoryinputtmmethod.

atorcombinaedetermined

Intelligent

0

0

18

20

19

0

7

10

0

594

0

distanceawnthesimulaerageofac

asshopper 

nintelligentongcalculatoacentralm

ationsofferdbutdepen

t 2

0

0

20

20

20

0

9

4

0

0,565594

0

wayfromthetion.Likeafoupleofpre

designcantionmethodmicrocontro

anoptimaldonthepro

Intelligent 3

0,5655

emandcanforementioneviousvalue

actuatemodandtheollergivesit

solution.oceedingso

Swarm

0 7

0 12

8 17

20 20

19 16

0 11

3 7

0 3

0 0

594 0,565

0 9,8E

47 

nedes,

re

ta

of

7,93

2,58

7,68

0,00

6,76

1,51

7,12

3,25

0,00

5692

E‐05

 

TheprasenJusactwemoindCurdigonl

Figu

Figu

 

2. Actuate

eresponsiveagmaticsennsoroutputs

tliketheintuatorstrokreinGrasshostcellinthdependents

rrentArduingitalinputs.lythreeinpu

ure 55: Push s

ure 56: Implem

edTruss

eactuatedtsorvalueliksavaluebe

fraredsenserange.Thehopperearlietruss.Simensorvalue

nomicroconThispracticutslotsfora

sensitive sens

menting Sens

trussassimkethatofaptween0and

orsthevalueseinputsaier.Thefollo

mulating5cees.

ntrollerboacalproblemarangeof8

sor connected

sor Data 

 

mulatedinthpushsensid1024,whi

uesaresmoaredirectlyowingillustellsalsoimp

ardshaveonmcanbesolv8independe

d to the Ardui

heprevioustivesensorichisnorma

othedandminputtedliktrationusedpliesthatth

nly6analogvedbyusingentinputs.

ino 

chaptercanr.Inthisexaalforanalog

mappedtofiketheparamdthevaluefoereneedto

slotsand1gshiftregist

nbelinkedtamplethegsensors.

fitinthemetricalslidfortherightbe5

14ormoreterstouse

48 

toa

derst

 

 

 

TheinteeacForleftandproInrappmobeinte 

Issactiter  

Figu

 

Tab

  

Act

3. Kinetic 

esamekineernalforceschbeam.Ga

rthissimulat.Usingthisddisplacemoductsum.

realitytheapliedtoeveronitoringofusedtomakelligence.

ue2‐2:Ifwtuatorvaluerativeproce

ure 57: Optim

ble 8: Compar

uator

Arch minimi

eticarchasssbydefininglapagoscan

ationadowdownward

ments.Theca

appliedforcrybeamintthestrainakeitpossibl

wecompareesoccurineessdelivers

mization, Kinet

ison Different

Intell

1

2

3

4

5

6

7

F*L

izing interna

spokenofingthesumofnthenminim

nwardforcedforceandsalculatedfo

esarenotkthestructurandinternalletooptimi

threedifferveryprocesthesamere

tic Arch minim

t iteration pro

 

igent 1

1

0

‐3

0

0

0

0

0,000033

l stresses 

nthefirstsiftheproducmizethissu

ehasbeenpstructure,Karcesandlen

knownintimre,providinforcesinitszeitsstruct

rentiteratioss.Howeveresults,assh

mizing stresse

ocesses 

Intelligent 2

mulationcactsofinternmtocalcula

placedonthangaroocalngthswillth

me.Straingagthestructsmembers.tureusingit

onprocessesrthisdoesnowninissu

es 

Inte

1

0

‐3

0

0

0

0

0,000033

analsomininalforceandateitsoptim

hethirdnodculatesthehenbeused

augeswouldurewithreaThesevalutsprogramm

sweseethanotprovethe1.

 

elligent 3

1

0

‐3

0

0

0

0

0,000033

imizeitsdlengthofmalform.

defromtheinternalfordinthe

dthereforealtimeeswouldthming

attheexacthatevery

49 

rces

be

hen

 

 

AnSomandFisSenimpandthe

Theactphycompro

 

4. Remara.

enormousamecanevendAdamSomcher2005)

nsorsworthplantedinadRFIDanteenecessary

b.

eadd‐onFirtuatorsfromysicalmodemparingtheoducingonl

ksSensors

amountoflnberecupermial‐Fischer

hmentioningaworkingsinna.TheRFprogrammi

Actuators

reflyforGramGH.Thiswel.Thisisusemodelstolargescale.

owcostsenratedlikeshr:“Low‐tech

gthathavemulationarFIDantennang,whereas

asshoppercwayGHcaneefulforexameachotherf

nsorsareavahowninthehsensorsan

beenuseddre:Flex‐benacannotbesalltheoth

canalsooutpevenbeusemplewhenforresearch

ailableasaninformalhandactuators

duringthisrndresistor,Odirectlyimpherscanbed

putvaluestdtosyncthworkingonhorvalidati

nelectricalcandbookof”.(Haque&

researchbuOpticalresisplementedidirectlyrem

oservo’s,mhesimulationaprototypingtheprot

componentUsmanHaq

&Somlai‐

uthaven’tbestor,tiltseninGHwithomapped.

motororothonmodeltopeorwhentotypebefor

50 

t.que

eensorut

hera

re

 

OthPacuplwewevarlets

Figu

Figu

c.

herremarkachube(Haquloadanddoresetuptoredownloaryingfromasactuators

ure 58: Pachu

ure 59: Pachu

Protocols

ablefunctiouen.d.).PacwnloaddatuploaddatdedintoGrasinglesensrespondto

ube receive im

ube, Live senso

nsareimplechubewascastreams.FatoPachubasshopper.Tsorontopodatafroma

mplementatio

or streaming 

ementedincreatedbyUForthisthesbe.FromtheThisprotocofabuildinganothercont

n in Grasshop

and stream in

Firefly,likeUsmanHaqusisatemperePachubepoolcanbeusgthatcontrotinentforva

pper 

nformation 

etheabilityueandoffersratureandlortalthestrsedinvariouolstheentirariousdesig

tolinkGHtsaplacetoightsensorreamsofdatussituationrefaçadeorgnreasons.

51 

to

tans

 

Firfirsusestaformapeointe

Figu

eflyalsointstusedbyaeinmultitondardshapasimpletra

akesthisprooplecanthuelligence.

ure 60: Fiduci

troducestheteam(reacT

ouchtables.esandevenackingalgorotocolahumusbeusedfo

al implement

efiducialprTIVisionn.dUsingthispnthedirectirithmforusmanisticsenoractuating

tation in Gras

rotocolinGHd.)whichwaprotocolastontheyareseinIA.Linnsor.Coordingthestructu

sshopper

H.Thisprotasintroducitandardcampointedin.kingthesesnatesfromtureusingsw

ocolwasdeingarecognmeracannoThiscanfoshapestodithemovemewarmorcen

evelopedannitiontoolfooticedifferenormthebasiifferentpeoentofdifferntral

52 

dorntisplerent

 

 

3.2

TheprahowdecstaRFIwhski

Figu

MicgamcanpoiexpOSC

Figu

 

2.4Emotive

a.

esensorsavagmaticvaluweverthatscideonwhanceorfacia

IDcomponehicharegettn,addressin

ure 61: Senso

crosoftlaunming,thatmncaptureouintscanbelperimentsaCprotocol.

ure 62: Grassh

ebehavior

Humanisti

vailabletodaueslikeappseeingthecatactivitywalexpression

entsarealretingsmallerngsomekey

rs 

nchedits“Kimakesuseofurskeletonblinkedtoourebeingset

hopper/Kinec

cSensors

ayaremereliedpressururrentpaceearecondun:humanist

eadyabletoandwhichyissuessuch

inect”sensofacontrollebedecidingurmoodoratuptosend

ct Sensor (And

 

elyanalogorre,daylighteofevents,suctingorhowticvalues.

osenseinforcanevenbehasprivacy

orthisyear.erobsolete.gacoupleofactivity.AttKinectdata

dy Payne et a

rdigitaldevlevel,etc.Itsensorswillwwearefe

rmationstoeimplantedythough.

AmotioncaTheKinectfkeypointsthetimeofwatoGrassho

l. 2010) 

viceswhocatisthewritelbedesigneelingbyloo

redinpassisub‐derma

apturedevicisasmall3inourstancwritingthirpperusing

anoutputer’sopinionedthatcanokingatour

iveRFIDtagally,undero

ceforconsoDscannertce.Theserdpartytheunivers

53 

n

gsur

olethat

al

 

AnopraithhavspePeoaswembehSturesAcccanstronecinteLogInt  

Figu

 

b.

othertopicagmaticorhhaveto?Keevedifferenteed,accurac

oplereactanwayingmov

mpathizewithaviorandcudioRoosegsponsiveenv

curacy,asdenbeadesignongerandmcessarytosuelligence.

giccanbeinelligencem

ure 63: Dune 4

Behavior

istheactuahumanisticdepinginminbehaviors.cyandlogic.

ndexperienveorsuddenththekineticanaltertheaardechangvironment.

epictedinonissue.Maymoreexpensuccessfully

ntroducedwaketheirw

4.0 Maastunn

ationofadedataasitcondthatthereBehaviorsa.

ncespacedinlyshakesticstructure.eperceptiongesthespac

urcomparisybewewantsivebuildincompleteit

whenmoreaaytothepu

nel(Roosegaa

esign.Wetakomesalongpearediffereasdiscussed

ifferentlywhtoitsendpo.Theplacernofspace.Fceofasteril

sonbetweetabuildingngs.Ormaybtsbasicgoal

accessiblevublic.Thisis

rde 2011) 

keitforgrapersecond,entlevelsofdhereareth

henthestruosition.PeopreceivesitsForexamplelepedestria

nintelligengthatdoesnbeincreasedls,hencesw

versionsoflesnotthecas

ntedthatIAminuteorhf interactivithestructure

ucturemoveplecanstartowncharacetheDune4antunnelint

tandswarmnotdoaswedaccuracyjuwarmversus

earningartiseatthetim

Acanfollowhour.Butdoty,theycane’sreaction

esgentlywitleorevencterand4.0projectbtoaliving,

mbehavior,ellasbigger,ustisnotscentral

ificialmeofwriting

54 

woesall

th

by

,

g.

 

 

3.3

SimstruposverforAndooprotecsho 

Figu

  

3DesignI

mulatingamuctureandssibletodetrytimeconslargescale

neweraofCorstep.Partoducedparahnologiestoouldbetake

ure 64: Laser‐

Issues

modelofyouitsbehaviortailasimulasumingandapplication

NCmilling,tswithdiffeametricallytogetherwitenintoacco

cutting and e

urdesignisr.Onlyanabationmodelwithoutthens.

3Dprintingrentlengthstobeinstallthexistingmuntinthep

engraving a sh

agreatwaybstractlevelltotheleveleuseofpar

gandlasercs,butthesaledinafinameansshoulprimarydesi

heet of MDF  

yofgettingtlofdetailislofconstrucametricald

cuttinghowamecharactldesignasaldbeincorpignphases.

toknowthenecessarytction.Thisiesignalmos

weverhascoteristics,canapuzzle.Thporatedinou

eglobaltodoso.Itiishoweverstun‐existin

ometoournnoweasilyhesenewurdesignsa

55 

is

ng

ybe

and

 

 

3.3

JoinindmehavpoiIngmospaand

3.3

ThecontoeconIssmothisproLimlen

Figu

Figu

3.1Joints

ntsaredefindifferentdirember.Sincevetobedevintsthatmig

generalitcaorememberacerequire,dproductio

3.2.12DJoi

econnectionnectingmeeachother.nnection.

ue3‐1:Thiovementoutsthememboblemofecc

mitingfactorngthofitsco

ure 65: 2D Tu

ure 66: 2D Tu

nedasthenrectionsandedifferentpvelopedandghtcausefa

anbesaidths,arerelativevenwithontime.

int

npointofthembers.UsinThisconnec

sobvioussotofthe2Dpbercanbecocentricity.

rsofthesenonnectingpi

rning Joint, w

rning Joint, w

nodesbetwedallowsdiffushandpulcreatedtobailure.

hatnodesonvelyeasytoonlytwome

henodeiscngatransvectionalsore

olutionhowplaneifthesonnectedwi

nodesarethin.

with eccentrici

without eccent

eenmemberferentdegrellforcescombeabletow

nlymovingoproduce.Nembers,ane

calculatedbyersepindiffesistsmovem

weverintrodstructurehaithasymme

hethickness

ity 

tricity 

rs.Ajointcoeesoffreedomeintocontwithstandth

inthe2DplNodesconneenormousa

ytheintersferent2Dmmentoutof

duceseccentaslargeforcetricalendp

softhenode

ouplesdiffeomforeachtactwiththhemwithmi

lane,involviectingmembamountofex

ectionpointemberscanftheplaned

tricity,whiccesworkingpoint,which

eandthest

erentmembhseparateejoints,theinimalweak

vingtwoorbersin3Dxtradesign

tofthenbeattacheduetoits

chcreatesgonit.Toavhavoidsthe

trengthand

56 

ers

eyk

d

voide

 

 

 

Issthethuand

 

Figu

3Dconthecondoemeafo

      4 Sn

sna

Figu

ue3‐2:Whesamepointusnotcorredcannotbe

ure 67: 2D Joi

nodescomnnectedmemesingle2Djnnectedmemesnotfallinemberstostorementione

                      nap‐Fit Design

p‐fit involves 

ure 68: Interse

hendesignint.Nodesdesct.Evenwhusedassuc

nt Unstable 

prisedoftwmbersishooint.Meanimbersmoventheintersetabilizethened.

                      : Using a hoo

extensive calc

ecting 2D join

ngthese2Dsignedinanenweconnch.

wo2Djointsweveronlyngthis3Dneoutoftheectingpointnodeinspa

Thofinsstrsnpare 

          k‐like mechan

culations in m

ts, Snap‐Fit

jointstheirnearlierstanectmultiple

sarealsopointhosetwnodeisnotutwointersetthereneedce,insteado

hemodelprf partswhichsertedintoructure.Thenap‐fit4desigartscouldnoleasingthe

nism parts can

material streng

intersectiogeasdepictemembers

ossible.Thewoplanes,wusefulinapectingplanedtobeatleaoftheunsta

roducedinthwerelasereachothereconnectiongnsothatthotbepulledsnap‐fit.

n be locked int

gth and applie

nlinealwaytedinthelothenodeis

movementhichisaninplicationsws.Becausetastthreeconable2Dnode

hisresearchr‐cutandcoformingapnwasmodehetwoperpdapartbefor

 

to position. Th

ed forces. 

yshastofalowerfigurestillunstab

ofthentegralpartwherethetheconnectnnectinge

hconsistedouldbeperpendiculaeledwithapendicularrefirst

he design of a

57 

linareble

 

 

tof

ion

out

ar

 

3.3

DesbastheIsscondirdirconTheholdurina

Figu

Figu

 

3.2.23DJoi

signof3Djosicconnectietransmissi

ue3‐3:Thennectedwithectionsandection.Durinnections.

efirstmodeldingthemiringcreatioasecondmo

ure 69: Param

ure 70: 3D‐pri

int

ointsdepenonofonlytonofboats

euniversaljhamiddlecdevenabletingthisrese

elthatwaspiddlepinsinn.Thishowodel.

metrical Mode

int Universal J

dsgreatlyowomemberandcars.

ointorCardcrossconnetotransmitaearchapara

printedwasnitslocationweverhasbe

el Universal Jo

Joint 2 

onthenumbrshasbeen

dan‐jointisectingboth.arotatingmametricalm

notcorrectn,causingiteenadjusted

oint 2 

berofattachusedinma

madeoftwThisnodeimotioninthmodelwasde

tlydesignedttofalloutodbyadding

hedtrussmnyapplicati

wosymmetristhusabletememberinesignedto3

d.Therewasofplacebutacircleinth

embers.Thionssuchas

icalpinstomoveintnanother3Dprintthe

snostructutalsobreaktheinnercro

58 

es

two

se

ure

oss

 

 

 

Issuplameconimp

Figu

IntwitattaplacalThiangsysconThiHowhigpro

Figu

ue 3‐4: A balne. An obviombers. A pansists of a meplemented to

ure 71: Cardb

thescopeofthinternalbachedtotheacementoftculatedand

isdesignisgleofmovemstemforstatnsistentwith

isnodeisobweveritistgherstrengtojectsinthe

ure 72: Param

ll joint is anoous limitationtented nodeetal sphere wo connect sp

oard Space fr

fthisresearballjointsinebeamobsotheballjointdcanbetake

notbetteriment,develticspacetruhitscalcula

bviouslylimthewriter’sthanddensienextfewde

metrical Ball Jo

ther methodn when usinge system for swhere threadpace truss me

rame; Ring Pa

rchthewriteneverycardolete.Paramt.Withthesenintoacco

ntheeconoopedespeciusses,whichations.

mitedinstreopinionthaitytoevenpecades.

oint 

d linking twog 1 ball is thespace trusseded ball jointembers. 

ass, Delft (Oct

erdesigneddinaldirectimetersarethseparameteount.

omicalsenseiallyforKA,honlyrequi

engthtotheattheseprinprintready‐

o members ae inability to es, that goes ts attached t

tatube 2010)

dasimilarpon,whichmhegeneralderstheangle

eofmateria,andcannotireacertain

specificationterswillbeto‐usenode

ble to rotateconnect moby the nameto the beam 

arametricalmakesthebadimensionseoffreedom

lusebuthatbecomparndegreeoff

onsofthe3Deabletouseesforrealst

e in the 3D ore than two e “Tuball”, can be 

lballjointoalljointaswellast

misalso

asawiderredtothenofreedom

Dprinter.eplasticoftructural

59 

only

he

ode

 

Figu

Figu

Figu

A3Whwhimpstru 

ure 73: Sectio

ure74: 3D Prin

ure 75: 3D pri

3Dprinterwhenstiffeninhichlatercanplementbalucture.The

on Parametric

nted Ball Join

nted Ball Join

worksbylayngstructurenberemovelljointsinthballpinsar

al Ball Joint 

nt, Section 

yeringhotpleisneededtedinaNaOHhespherewrethusable

lasticontopthe3DprintHbath.Thiswithouthavitohandlet

pofeachothtercanprinsabilitywasingtouseanensionand

hertomaketadissolvabsusedinthinyotherholpullforces.

eamodel.bleplasticismodeltolding

60 

 

3.2

IssnotrubotFrostrutheintForusiapp

Figu

Figu

 

      5 Ex

the 

stre

2.1Member

ue3‐5:Whneedforstiussesorbeamthdirection

omabasicmuctureismaenodes.Mortheendpoin

rthisresearnganexactplications.It

ure 76: Truss 

ure 77: Truss 

                      xact‐fit metho

laser‐cut line

ength to the c

rs

henconstruciffnessinthmstheyshos,consideri

mechanicaliaximalinthreheightisnts.

rchpartswefitmethod5

tsconnectio

Member 

Member 

                      d: The metho

e of 0.1mm. In

onnection (th

ctingatrusseperpendicouldhavestingthemom

insightwelehemiddleofthereforen

erelaser‐cu5.Theresultonhowever

          od of  laser‐cut

terconnecting

hicknesses cha

smemberocularplane.tiffnessinbomentofinert

earnthatthfthemembeneededinth

tfromplasttisabidirecisstillonly

tting connect

g pieces will t

ange  accordin

rbeaminaHoweverwothdirectiotiaofbeams

hebendingmerwhereasemiddleof

tictobeinsectionalstiffyinone2D‐p

ing parts with

hen fit perfec

ng to the spec

2Dplanethwhentalkingns,meanings.

momentimpitisflexiblythemembe

ertedintoebeam,idealplane.

h attention to 

tly and provid

cific model). 

hebeamhasgabout3Dgheightin

pliedintheyconnectedersratherth

eachotherlfor3D

the thickness

de a certain 

61 

s

tohan

s of 

 

3.3

Whinsnewappbehprastru

TexstrucomprotraNeg Texmestruthe 

Figu

Figu

  

3.2Claddin

hentalkingaulationandwmaterialsplications,chind.Howevacticalexpeructures.

1. Textile

xtilemembructure,canmpositeinsuotectedbytwnsmission,sgativepoint

xtile membrambrane will ucture expane space. 

ure 78: Textile

ure 79: Textile

g

aboutviabledairtightnesandflexibleconnectiondveritistherienceisha

membrane

ranes,whichbeinsulatedulatedmemwolayersofstrongresistsmightstil

anes can  alsbe more trands its surfac

e membrane,

e membrane,

espaceswessthatisavaeinsulationdetailsandpwriter’sopirvestedwith

s

hareanobvd.Tensothe

mbranecompfPTFEfiberstancetoimlbetheinab

o be used asnsparent thace, the memb

Unstretched

Stretched 

 

ecannotabsailableintonsaremakinproperspecinionthatthhregardsto

viouschoicerm(Birdairposedoutorglasstextilempactdamagbilitytowit

s a means to an an un‐strebrane will be

 

stracttheneday’sperfongtheirwaycificsealanthesemateriocladdings

eforwaterprn.d.)forexfalayerofNe.Ithasaregeandaverthstandvan

manipulate etched meme stretched, 

eedforasuirmingskinsyintolargessseemtobealswillfolloystemsonk

roofingourxampleisafNanogelinsemarkableloylowownwdalismorcu

light levels. mbrane. For ethus letting m

itables.Whereasscaleelaggingowwhenmkinetic

rkineticflexiblesulationowheatweight.utting.

A stretched example whemore light in

62 

ore

en a nto 

 

 

    63 

2. StiffCladdingIssue3‐6:Stiffcladdinglikewoodenormetalpartscanalsobeconstructed.Howeverwhenworkingina3Dplanethiscladdinghastobeconstructedisostatic.Whenacladdingmaterialmovesoutofhisplane,asaresultofthestructuralframedeforming,itintroduceshyperstaticforcesinthepanelswhentheyaresimplyfixedtoastructure.Thenewconnectionissimilartoanexpansionjointformetalcladdingsystemswhichareinfluencedbytheirheatexpansioncoefficient. 

Toresearchthesephenomenaakineticboxwassimulatedconsistingofoneactuatorineachhorizontalfaceofthebox.Scenario1showswhathappenswhenthecladdingplaneismovedandscenario2showsuswhathappenswhenthecladdingmaterialsmoveoutoftheplanbutstayconnectedtobothupperandlowerpointsontheframe. 

 

ScetherubtheInstha18,30%

Figu

Figu

Figu

 

enario1shoeabilitytofobberfittingseirlineands

scenario2tatthecladdi,9mm,or2%%ofitsown

ure 80: Kineti

ure 81: Kineti

ure 82: Kineti

owsusthatsollowthedesshouldbestillapplysu

thestripsweingstripsha%ofitslengnlength.

c Box, Defaul

c Box, Scenar

c Box, Scenar

stiffcladdineformingsuappliedbetwufficientclo

erefixedtoavemovedugth,upwards

t Scenario 

rio 1 

rio 2 

 

ngmadeofvurfacewhenweentwososingpressu

thelowerfrupwards,inswhenthe

verticalorhnitmovesintripswhichure.

framemembthisexampactuatorin

horizontalstnitsownplaareableto

ber.Instantlylethemiddtheotherfa

tripscanhaane.Suitablemovealong

ycanbeseedlestripmovaceshrinks

64 

aveeg

enves

 

 

ItismosimwaupppinThiabthathe 

Figu

Figu

 

sthusimpoovementsdumulatethiscspossibleinperbeamoun.

iscanbesolalljointwitatthecladdieplaneofth

ure 83: Expan

ure 84: Ball jo

ortantthatcuringtheactconnection.nthesameputofthepla

lvedbyreplthattachedbinghastohahecladdingt

sion joint Wo

oint (Kejia Ind

onnectionstuationofthWhenoperaplane.Howeane.Thisdu

lacingthetrbolttoapplavemovingtoallowthis

ooden claddin

ustry n.d.) 

 

aremadewheentirestratingthismeverthisjoietothestra

raversepinlyanuttofaspacebetwsmovement

ng 

whichareabructure.Ammodelthemointstillresisaightconne

byaknucklastenthisclweentheplat.

bletowithstmodelhasbeovementofstedmovemctionofthe

ejoint.Aknadding.Thisneofthestr

tandtheseeenmadetothecladdin

mentofthetransverse

nucklejointsalsoimpliructureand

65 

ong

tisesd

 

 

Intorfmoconknostru 

Proproliviwri 

Figu

Figu

 

3. Interact

eractiveclaflexible.Diffostlywithounnectionishowledgelikeuctureitself

ojectssuchaoximity,orting,self‐repiter’sopinio

ure 85: Living 

ure 86: Xerom

tive cladding

ddingsfolloferentexamutdiscussinghoweveraneaforementfisstatic.

asLivingGlathexeromaxlicatingskinon.

Glass (The Liv

max Envelope 

owthesamemplesarealrgtheattachimportanttioned.This

ass,whichoxenvelope,wn,areprojec

ving n.d.) 

(Future Cities

 

eupperprinreadyavailamenttoaloaspectwhicsishowever

openscreaswhichisanctswhereth

s Lab 2010) 

ncipleswhetableinthecuoadcarryingchinvolvesarobsoleteif

esinitscladelaboratechisisnotful

therthecladurrentIAlagstructure.alotofpracftheloadca

ddingasaronceptualdllyelaborate

ddingisstifandscape,Thiscticalarrying

responsetodesignforaedinthe

66 

ff

 

 

 

3.3

ActbeamemeActoretor

Figu

 

 

3.3Actuato

tuatorsinthamsthatcanechanism.Thechanisms,b

tuatorshaveevenchemicrquetheyca

ure 87: Rectan

rdesign

histhesisarncontractohisismainlybutdoesnot

eawidescocalprocesseanresistand

ngle, Diagona

remostlydeorexpandthysufficienttimplythat

opeofdrivines.Adefinindhowlongt

al Actuation 

esignedasliheirownlenwhendescrtotheractua

ngmechanisngcharactertheycanshr

inearmotionngthtoactuaribingkinetiatorsmustd

smsinvolvinristicofthesrinkorelon

nmechanismatetheentiricspacetrudothesame

ngpneumatseactuatorsgatetheirle

ms,meaninrestructurausse.

tic,electricasiswhatength.

67 

ngal

al

 

 

 

MuwirheaIssreawirpasMumaoutstruTheuse 

Figu

 

RotgenserThimemeareprotha 

1. Muscle

usclewirestresbasedonatedorcond

ue3‐6:Theactstoheatarethankstossiveactuat

usclewiresaakesthemustdoorandlaucturalbuil

ephysicaleeofthesew

ure 88: Muscl

2. Rotatio

tationalactunerationofmrvoandstep

iscircularmechanisms.Techanism,aealsowidelyocessengineateverymec

eWire

thatgobythnaNickelalductingelec

esewiresshanditsuseiothesunwitionbutism

alsohaveapsefulincontargeappliedldingconcep

nvironmentiresthusno

e Wire Actua

onalActuato

uatorsareamotioninelppermotors

motionhoweThemostposcrewmechyavailableieeringmanuchanismsha

heproductiolloywhichcctricity.

houldhowevinforexampthoutprogrmainlyuncon

pullstrengthtrolledsmadforcesapppts.

talfeatureson‐existingi

tion 

or

alreadywidelectricalmescontrolled

evercanbeopularhavehanismandindifferentufacturers.Tasitsownli

 

onnamesStcancontract

verbeavoidpleaninterramming.Thntrollableby

thofmultiplllscaleapplplicationsuc

andthesminthefieldo

elyavailableechanisms.Randfedby

changedinbeenresearagear‐pinioshapesandThankstothimitingtorq

tabinol,Flextupto3‐5%

dedmostofractivefaçadhiscouldbeyothermea

letimesthelications.Hochasbuildin

allabsoluteofKA.

ebecauseoResearchedtheArduino

tolinearmorched,incluonsystem.Tstrokelenghisresearchqueandelon

xinolandNi%ofitslengt

thetime.Adewillactuaimplementans.

irownweigowevernotngskinsand

epullstreng

fthenaturemodelsareomicrocont

otionthanksudingacranThesebasicgthsavailablhitbecamengationrate

itinolarethwhen

musclewiratethemustedasa

ghtwhichinlargescadother

gthmakethe

eofthesmall‐scaletroller.

stovariousnkshaftmechanismlethroughveryobvioue.

68 

ecle

ale

e

 

e

s

ms

us

 

IsstheconAcdiaallooftFormeTheThemoForallo

Figu

Figu

Figu

Tab

Me

Cra

Ge

Scr

Pn

ue3‐7:Asceirtotallengnstruction.I

crankshaftmameterofthowsthemovtheactuator

revenlargeethodofast

etorqueistereisalargotorthereforrtheseexpeowsustoco

ure 89: Screw

ure 90: Cranks

ure 91: Gear‐P

bel 9: Linear A

echanism

ankshaft

ear Pinion

rew

eumatic mu

crewandgegth.InpractInthispract

mechanismcerotationlevementofthr.Theelonga

ractuation,tring,which

theforcemuedifferencerehastobeerimentsmoompareelon

w Linear Actua

shaft Linear A

Pinion Linear 

Actuators, Shr

S

uscle

ear‐pinionaticethough,ticalresearc

cantheoretiever.Thereheexpandinationofthe

,possibilitiearenotres

ultipliedwiteinpriceancalculatedotorswherengationrate

tor 

Actuator 

Actuator 

ink Rate

Shrink Rate 

actuatorcanallactuatorchtherates

icallyexpanishoweverngarmandtestmodel

esaretelescearchedint

ththeleverndavailableontheappleusedwithtes.

[%]

ntheoreticalrsdependowererespe

ndavalueeqneedforagthereforeliisequalto

copicallylinthisthesis.

whichisintorqueofseiedloadorthesamech

 

23

48

28

11

llyshrinkbyntheirpracectively28%

qualto2timguidethatstmitsthetot23%.

earactuato

stalledonthervomotorspracticallyrharacteristic

 

yupto50%ctical%and48%.

mesthetiffensandtalelongatio

rsorawind

heservomos.Therightresearched.cs,which

69 

%of

on

dup

otor.

 

ThewhhowopiAgainaPne

Figu

AftdifftypandForthechaofBIssressilitighfailwhbefapp

Figu

3. Hydrau

efinalgrouphichcanconweverareabinion,make

ain,mechanallshapesaneumaticmu

ure 92: Muscl

terreadingaferentpneupesavailabledpositiveas

rthisresearemostwidearacteristicsBrusselson

ue3‐8:Thesistdeformaconerubbehtenswhenlingundereherethebraiforesnappinplications.

ure 93: McKib

ulic&Pneum

pconsistsotractduetobletowithssthemidea

nicalprocessndforms.TuscleoftheF

e Project (Fes

adissertatiomaticmusce.Differenttspects.

rchtheMcKspreadmuss.PleatedAiatheoretic

eMcKibbenationwhileur.Abraidedstretched.Tevenasmallidedsievingngisenorm

bben Principle

maticactuat

ofpneumaticoanairpresstandgreatpalforKA.

sengineerinhisthesiswFestoCorpo

sto Corporate

onontheancleitwasqutypesofmu

Kibbentypescle,thathairMuscles(alandpract

airmuscleunderpressdsievingwilThiswillkelairpressurgisidealforous(depen

e (Daerden & 

tors

candhydrassureorcompressureor

ngfirmshavwillonlyreseoration.

e 2009) 

nalysis(Daeuiteobvioususcleshavet

airmusclewsaneasyin(PAM’s)havticallevel(V

consistsofsure.Themallhoweverbeptheinnereof3bar.Trresistingpdentontyp

Lefeber n.d.)

aulicactuatompressedliqrtensionfor

velargelineearchoneex

erden&Lefethatthesemtheirownch

waschosennstallationaebeenreseVanMele20

asuppleinnaterialusedbeputontortubefromThetotalairpullforces.Tpe),making

 

ors.Thesearquid.Theserces,which,

escontaininxamplebase

ebern.d.)inmusclesweharacteristi

.TheMcKibndstillhasarchedatth008).

nertubethadinthisresepoftheinndeformingrmuscleisaThetotalpulitidealfors

reactuatorsactuatorsinthewrite

ngbothtypeedonthe

nvolvingerenottheoics,negative

bbentypeisperformingheUniversit

atdoesnotearchisnertubewhilocallyandacompositellresistancestructural

70 

s

er’s

es

onlye

gty

ich

ee

 

Thetheair1kgthic

Figu

 

Figu

 

eMcKibbenemuscle.Thpressure.Dgto5kg.Thcknessof2m

ure 94: Test S

ure95: McKib

nairmuscleheelongatioDifferentweesiliconetumm.

etup 

ben air muscl

hasbeenrenofthemuightswerecubingusedh

le setup 

 

esearcheduusclewasdoconnectedthadatotald

usingabasicocumentedwtotheendodiameterof

csetuptoapwitheverysfthemuscle15mmand

pplyloadsostepof0.5berangingfrawall

71 

onbarom

 

TheeithvalvresArdTheweonlTesrelaeacact 

Figu

Figu

 

emuscleisherthepresveon12V,wsultsonlyavduinomicro

emaximumakpointsinlyaslightch

stresultsonativetoitsochloadcasetuatedstanc

ure 96: 3/2 Ai

ure 97: Arduin

controlledbssuredairtawhichonlyhvailablefromocontrollerw

mpressureranthesetup,hangenotice

nthenextpaoriginallenge.Resultsvace.

ir Valve Festo

no Controller 

bya3/2waankortheohasapropermthatpointwasablecon

angewasprtheycouldseableinthe

ageshowusgth.The“Torybetween

 

 

ayFestoairvoutsideair.Trworkingrton.Usingantroltheva

racticallychsuddenlybrechangeofl

stheelongaotalRange”rn9‐11%ofa

valvewhichThisvalvewangeof2‐8aHuntingtonalveusingap

hosenat5bareakwithoulengthafter

ation(positirowshowsuactuationbe

connectsthwassteeredbbar,whichnarrayasapressurekn

ar.Sinceconutnotice.Tharound5b

ve)orshrinustheactuaetweenitsst

hemuscletobyasolenoimakesthetarelaythenobortimer

nnectionsaherewasalsbar.

nk(negativeationrangetretchedan

72 

oidtest

r.

areo

e)ofd

    73 

 Figure 98: Elongation/Original Length [%] 

 

 Table 10: Muscle Elongation [%] 

   

0,92

0,94

0,96

0,98

1,00

1,02

1,04

1,06

1,08

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 5,00

Length/ Original length [/]

Air Pressure [bar]

Elongation[/] vs. Air Pressure[bar]

1kg

2kg

3kg

5kg

4kg

Druk(Bar) 1 kg 2 kg 3 kg 4 kg 5kg

0,00 0,35 2,04 3,73 4,74 5,42

0,50

1,00

1,50

2,00 ‐3,03 ‐2,35 ‐0,66 1,36 2,04

2,50 ‐4,72 ‐4,04 ‐1,68 0,35 0,69

3,00 ‐5,73 ‐5,05 ‐3,36 ‐1,34 ‐0,32

3,50 ‐6,74 ‐5,73 ‐4,38 ‐2,35 ‐1,34

4,00 ‐7,42 ‐7,08 ‐5,73 ‐3,36 ‐2,69

4,50 ‐8,09 ‐7,42 ‐6,74 ‐4,72 ‐3,36

5,00 ‐8,43 ‐7,76 ‐7,42 ‐5,39 ‐4,38

Total Range 8,78 9,80 11,15 10,14 9,80

    74 

3.3.5PrototypeDesign

3.3.5.1Introduction

FlexibleSkin

AsasummarizationofpracticalknowledgethisresearchendswiththedesignandcreationofanInteractiveKineticStructure.Thisprototypedoesnotfocusondocumentingthesocialinteractionwiththestructure,henceitssocialaspects,butdocumentsitsdesignprocess,productionprocessandproblematicissues.Theprimeconceptualideabehindtheprototypeisthatofaflexibleskin.Askinwhichisabletodefinearchitecturalspaceonitsown.Askinthatrespondstopragmaticdatasuchassunlight,proximityandtouch.Bydoingsotheinhabitantisnolongershieldedfromtheoutside,passersbyorsunlightbyabrickwallbutperceivesthespaceinaninteractiveway,constantlychangingintime.WhileexistingprototypesinthefieldofIAdonotspecificallymentionthedifferentlevelsofinteractivityinvolvingtimespan,thisresearchdoes.Thisresearchstatesthattherearethreedifferentlevelsofinteractivity:Direct,WeeksandMonths.Mostoftheprojectsinthecurrentlandscapeonlyinvolvedirectinteractivity.Thisprototypeskiniscomprisedofthetwofirstlayersofinteractivity,meaningdirectinteractivitysuchasdaylightentranceandventilationaswellasdefiningitsownbehaviorlikeshynessandaggressivenessbaseduponthesepragmaticvaluessuchasproximityandtouch.Thesecondlayerofinteractivity,meaningthestructurallayerinthiscase,canformitselfintoanoptimalspaceaccordingtominimalinternalstressesorspatialoptimization.Bothlayersareaestheticallywovenintoeachotherunlikeprojectsinthecurrentlandscapewhichmainlyintroduceeitherstructuralordirectinteractivity.Issue3‐8:Anotherfactthatthisresearchspecificallymentionsistheoverallinabilitytoincorporatetwodifferentlevelswhiletheyarelinkedtogetherwithonlyoneactuator.Meaningoneactuatorcannotberesponsiblefortwolevelsofinteractivity.Forexample,ourneedfordaylightandventilationdoesnotcoincidewithourneedforanoptimalstructurewithminimaldisplacements.Thisinsightonlycameafterthepracticalissuesduringtheactuatordesign. 

 

Bio

“Ban

ThecorchatouThivenproofa

Figu

omimicry

Biomimicryndelementstermsbiommimesis,m

edesignwaralsandundangetheirshuchedbyan

islikeourflntilationbutoximity.Itisapolypand

ure 99: Under

orbiomimettoemulateoimicryandbmeaningtoi

asinspiredbderwaterpohapeandfounknowne

lexibleskintalsointrigsforthisreadeliversthe

rwater Polyps

ticsistheexaortakeinspibiomimeticsmitate.Othe

bynatureinolyps.Seemiormunderdentityorcan

thatalsohauespeoplewasonthattheprimaryla

s (National Ge

aminationofirationfromscomefromertermsofte

nthesensetinglymonotdifferentconnopenupto

astocatchswithitsinteedesignofayerofinter

eographic n.d

ofnature,itsinordertotheGreekwenusedareb

bio

thatthedesitoneandstanditions.Polocatchsuste

sustenanceleractivityantheactuatoractivity.

.) 

models,systsolvehumanordsbios,mbionics,bio‐ignosis.”(Wi

ignerwasinaticthesepolypscanretenance.

likedaylightndresponserisbasedu

tems,procesnproblems.meaninglife,inspiration,aikipedia201

ntriguedbyolypscantractwhen

tandetotouchoruponthefor

75 

sses,Theandand1b)

rm

 

3.3

De

ThepolTheactsurThestruintovenspa

Figu

3.5.2Result

sign

eaxonometlyps,layer1etrussactutualbehaviorfacetoprov

ecladdingtuctureofpooitsform.Wntilation.Daace.

ure 100: Axon

ts

tricviewsho1,andthetruationisnotor.Besidesthvideprotect

togetherwitolypsandtrWhenthepoaylightdispe

nometric View

owsthedesuss,layer2.physicallybhepolypsantionbutalso

ththeouterussmembeolypsareopersesoverth

w Prototype 

signsplitup.Bothofthebuiltbutwindtrussacotoserveas

rpolyparmsersaremadepenedtheywhetranspar

intothetwelayersareilldepictaccladdingwilsatouchse

swillbecoleoutofPlexwillallowdarentsurface

Layer1,DirectinActuated

Layer2,MediumformActuated(Notmo

wodifferentlindependencertainsnaplbefittedtonsor.

oredblack.xi‐Glassof2aylightand/s,illuminati

Polypsnteractivity:dbyelectric

TrussmInteractivi

dbylinearaodeledinthi

layers.Thentlyactuatepshotofitsotheouter

Theentire2mm,laser‐c/oringtheinne

:Daylight,vcalservoMo

ity:Optimal

actuatorsisprototype

76 

d.

cut

er

ventilationotor

structural

e)

 

Figu

 

ure 101: Protootype, 3D Skeetch 

 

77 

 

 

Pol

ThetraarmmidAswhnorundSimdiffmethemelarg

Figu

Figu

lyp

edesignoftnsformthemsmovingiddlebeam,“

showninthhichallowthrmalconfiguderwaterpo

mulationoftficultyofthechanism.Thetrussasamechanismsagestbendin

ure 102: Scotc

ure 103: Polyp

thepolypacrotationalanandouto“yoke”,whic

helowerfiguhemtomoveurationbytolyp.

thismovemesystemanheoutershemember.Thswellasthengmomento

ch Yoke Mech

p Actuation, 3

ctuatorusesactuationofftheskin.Tchisattache

uretheyokeewhenmovtransparent

entispossindsincetherelloftheactheshapeofteoptimalstoccurringin

hanism (Mech

3D Sketch 

sthe“ScotchftheservomThismechanedtotheele

etransformvedoutofthstrings,mim

blebutnotrearenoextuatorprovtheoutermtructuralfornthemiddle

hanisms 101 n

hYoke”,acamotortoalinismexistsoectricmotor

msintofoursheskin.Eachmickingthe

necessarybxternalloadidesthenecembraneformforatrueofthemem

n.d.) 

ammechaninearmotionoutoftwogr.

separatepoharmisheleappearanc

becauseoftsplacedoncessarystiffllowstheinssmember,mber.

ism,tonofpolypguidesanda

olyparmsldoutofitseofan

theminorthefnessforusenteriormeaningth

78 

a

ein

he

 

Figu

Figu

IsspolMaToconforThipar 

ure 104: Polyp

ure 105: Polyp

ue3‐9:Durlypsconnecakingthestrprovidethennectedthrocesandact

isismainlyrtswasnota

p Actuator 

p, Upper node

ringconstrutiontothetructureunstemwiththeoughplasticaspresume

duetothefaccuratelyc

e connection

uctionofthetrussmembtableandbonecessarypcwire.Makiedinthedes

factthatthecalculatedto

eentireproberswasnotodypartsfapullstrengthingthenodesign.

eexact‐fitmoprovideth

totypeitbetsufficienttallingoutofh,alloftheeconnection

methodusedhenecessary

cameobviotoprovideptheirapprobodypartsnabletowi

forlaser‐cuypullresist

ousthatthepullstrengthopriateslidewereithstandpul

uttingthetancebyshe

79 

h.e.

ll

ear.

 

Tru

Memowhsysin.Issstilmoobvwenodoftseathe

Figu

Figu

 

uss

mbersofthoment,whichichisfairlystem.Truss

ue3‐10:Onllactuatedtovementoftviousthatnreconnectedeswouldhtheunknowarchforanaeyareconne

ure 106: 2D Si

ure 107: 3D si

hetrussarehismaximaeasytopromembersco

neofthefirthepolypantheskin.Hoodesandined.Theconshavetobeofwnmaterialsalternativedectedin.

imulation, De

imulation, De

reinforcedialinthemidduce,wasthouldonlym

sttrussdesndthetrussweverwhennterconnectistructionwifthe3Dprinstrengthandesignwher

esign 1 

sign 1 

 

inbothdireddleofthethelimiting

moveinthe2

signswasa2andwherensimulatingingmemberith2Djointsntedballjoidcostoftheretrussmem

ectionsforthtrussmembfactorinthe2Dplanethe

2Dsimulatiaseriesofrgthestructurswouldmos,isthereforinttypemene3Dprint,tmberswoul

heoccurriner.Thisjoinesearchforeyhavebeen

onwherethrectangleswurein3Ditoveoutofthrenotpossintionedbefthisresearcdonlymove

gbendingntdesign,ravalidtrusnconnected

heactuatorwouldprovibecameheplanetheible.Meaninfore.Becaushchosetoeintheplan

80 

ssd

de

eyngse

ne

 

ByfouWhcongridnodtowwildir 

 

 

Figu

 

simplifyingund.Thediahentheactunnectednoddconsistingdeofthegriwardsit.Whllmovevertectionstoa

ure 108: 2D si

gthetrusstoagonalsplacuatorelongadewhileshrgofninenoidintheupphenallsurroticallyupwaallowthemo

imulation, De

oaspacetruedineachratestherectrinkinginthdes(polypsperdirectiooundingactuards.Asmallovementoft

sign 2 

 

ussofrectarectangleoftanglewilldheothercars)willbecreonsurrounduatorsareglshrinkagethenode.

nglesanddf thespacetdeformanddinaldirecteatedandsidingdiagonagiventhesaoftheskin

iagonalsasrusscanbewillheightetion.Forthisimulated.Toalsmustbemeelongatiwilloccurin

solutionwasactuated.entheuppesprototypeomoveonepointedionthepoinntheother

 

 

 

81 

s

ra

nt

 

Diaupwagrpro 

Figu

Figu

agonalscanwardanddoridofninenototype,byu

ure 109: 3D si

ure 110: Truss

beplacedinownwardmnodesinasusingstiffd

imulation, De

s assembly 

napatternsmovement.Fpecificstandiagonalswi

sign 2

sothateverollowingfignce.Thisstaithdifferent

rycoupleofguresrepresncewillalsotlengthsan

f twonodessentasimulobeapplieddnotbyact

candeliverlationmadedinthefinatuators.

82 

eonl

 

 

 

Cla

TheincThecladthissheblacladifocopBasranwh

Figu

      6 Vathestreby

adding

ecladdingfreasingtheereforeacladdingwithsresearchceetsthroughacktoprovidddingwastonenodeoftpewiththe

sedonseemndomcontinhichwaslase

ure 111: Laser

                      acuumformermoforminetchedontoapplyingva

fortheprotoeffectoftheaddingmatealargestiffnchosepartshtheirthreedethelightthatitcouldtherectangmovement.

minglyrandonuousinterser‐cutonto

rcut Vacuum 

                      ming,commog,wherebyoorintoasiacuumbetw

otypeisinteeopeningperialofpainnessbutatwhichwereedimensionshieldingefdbeusedinleshouldm

ompatternssectingline.asheetofM

Forming Mold

          onlyknownasheetofpingle‐surfacweenthemol

endedtoshipolyps,andtntedplasticthesametimevacuumfonalform.Thffect.Anoththechosen

moveupward

soccurring.ThislinewMediumDen

ds 

asvacuufoplasticisheacemold(BrEldsurfacea

ieldsunlightobeaslighwaschosenmemaintainrmed6tocrhesecladdinerdesignretrussrectandsthatthei

innaturethwasthentrannsityFiberb

orming,isasatedtoaforE,mould),aandtheshee

tfromtheinhtweightaspn.Howevertnalowweigeatestiffercgsweretheequirementngletrusssynterlayingc

hedesignernsformedinoard(MDF)

simplifiedvrmingtempendheldagaet.(Wikipedi

nnerspace,possible.toprovidethghtofitsowcladdingenpaintedoftheystemandtcladdingcou

sketchedantoapattern)of6mm.

versionoferature,ainstthemoia2011c) 

83 

hewn,

thatuld

n

old

 

Forsucinspla

Figu

Issmothepla

Figu

 

rthevacuumctionholesoertionpoinastic.

ure 112: Vacu

ue3‐11:Vaold,thathaseplasticcauasticdimens

ure 113: Vacu

mformingponthetop,btforavacuu

uum Former w

acuumformbeenCNC‐m

usingittolosionsareto

uum forming r

process,anobasedontheumcleaner,

with mold 

mingwouldamilledoutoosenfromibechoseni

result with hig

operatingboedimensionprovidingt

alsohavebeofapieceoftsframeannaccordanc

gh mold 

oxwasprodnsoftheplathevacuum

eenusedforcellulose,hdannihilatecewiththe

ducedconsisasticsheets,neededtof

rthepolypahoweverwasethevacuumheightofth

stingof,andanformthe

arms.Thestoohighfomeffect.Thhemold.

84 

ore

 

Isslasepla190dimoft 

Issmeconcon 

Figu

 

Figu

 

ue3‐12:Ther‐cutter,masticsheetsu0&190mm.mensionsofthisprototy

ue3‐13:Theaningcutovnnectednodnnectedtoe

ure 114: Cladd

ure 115: Cladd

hedimensiomeaning600usedto250Iflargervacf thetrussarype.

hepatternofverbothofde,whilestieachotheru

ding, Upper V

ding, Lower V

onsoftheva0x300mm.T0x250mmancuumformerepossible.

fthecladdinitsdiagonalllmaintainiusingaplast

View 

View 

acuumboxwThisvacuumndthusalsoersareavailThisisnot

ng,eachoftls.Thiswouingcladdingticonedirec

werelimitedmboxtherefolimitingthlabletheclathecaseho

thefourreculdallowmogintegrity.Cctionalhing

dtothesurfforelimitedhecladdingtaddingandtweverdurin

tangles,wasovementofeCladdingseae.

faceofthethesizeofttothusngthedesig

striangulateachamsare

85 

the

gn

ted,

 

 

    86 

Behavior

Varioussensorswereimplementedintotheflexibleskin.Piezoelementscapableofmeasuringimpactorshocksweregluedtothecladding,transformingthecladdingtoatouchsensitivesurface.Onelightsensorwasattachedtomeasuredaylightlevels,sothatthepolypscouldrespondaccordingly.Sincethe9nodesoftheprototypelieclosetoeachotherthereisnoneedforinstalling9independentsensors.Howeverinrealitythesearesupposedtobeinstalled.Eachofthepolypsthenreactstoitsspecificsensor,transformingtheflexibleskinintoavisualizationoftheincidentsolarradiation.Finallytwoinfraredsensorswerealsoimplementedonthesurfaceofthecladding,measuringtheproximityofobjectstowardstheskin.Thepolypscanthusreactandinteractwithpassersbyorcouldshyawayfromthemtomaintaininnerspaceprivacy.Thesameprinciplegoesfortheimplementationofmultipleinfraredproximitysensorssothatthepolypswillactmoreautonomouslyandinatagreaterresolution.Asameansofprototypingthepolypsfurthestawayfromeachotherwillbedrivenbyaseparateinfraredsensor.Andthemiddlepolypswillbedrivenbyanaveragedvalueofthe2infraredsensors.Alloftheprogramming7wasdoneinArduinoenvironmentbasedonProcessing.

 

                                                            7 Appendicx B: Behavior Arduino code 

Sensor  Action  Behavior 

Light  Polyps Open  Polyps will catch daylight dispersing it over its structure. 

Light  Polyps Close  Polyps will block daylight to intervene in its inner space. 

Touch  Polyps Close Polyps will shy away from interested people, opening again over time. 

Touch  Polyps Open Polyps will be eager to respond to interested people. Conversing with the person in front of it. 

Proximity  Polyps Close  Polyps will shy away from passerby's. 

Proximity  Polyps Open  Polyps will affirm passerby's, luring them closer 

Table 11: Polyps Behavioral Scheme 

 

Figu

Figu

Figu

ure 116: Built

ure 117: Built

ure 118: Built

‐In Opto‐Resi

‐In Piezo Elem

‐in IR Sensor 

stor 

ment 

87 

 

Figu

Figu

ure 119: Proto

uur 120: Proto

otype Side‐Vi

otype Side‐Vi

ew 

ew 

88 

 

 

Figu

Figu

ure 121: Proto

ure 122: Proto

otype Perspec

otype Upper V

ctive View 

View 

89 

    90 

Chapter4:Evaluation&Discussion

4.1Evaluation&DiscussionSimulatingDesign

4.1.1SimulationCaseStudies

ThesimulationofkineticbeamstructuresispossiblewiththeGrasshopperenvironment.ThecomponentKangaroousesaspringbasedmodelwherenodesareconsideredasdiscretepointsandbeamsaremodeledasspringswiththeappropriatestiffness.Actuatorsarespringswithadjustablerestlength.Thisresearchhoweverdidnotimplementachangeinspringstiffnessinvolvingactuators.Whentherestlengthofanactuatorchanges,itsstiffnessissupposedtochangeaccordingtothestiffnessformulaE*A/L,whenabstractingtheactuatorasatrussmemberwithconstantcrosssection.Anactuatorcouldalsohaveadifferentstiffnessbehaviorsinceitscrosssectionisnotconstantoveritslength.Furtherresearchcouldanalyzedifferentactuatorsandtheirstiffnessbehavioroveritsstroke,toimplementinGrasshopperasanaccuratestiffnessfunction.Kineticstructuresonlymadeoftrussmembers,actuatorsandanchorpointsfixedintimeandspacecanbeimplemented,whenthebasicskillsetinvolvingGrasshopperandKangarooisavailable.Bendingcanalsobeimplementedontwocoupledlinestosimulatehingednodes.HoweverKangaroolacksthenecessarydocumentationexplainingtheusedunitsasbendingstrength.TheGrasshopperenvironmenttogetherwithKangarooisnotacommercialpackage.Itisalsonotintendedtobeatheoreticalcalculationpackage.ThereforeunderstandingGrasshopperonlyfortheuseofdisplacementcalculationisnotmeantasabasisforfurtherresearch.Thispackagehoweverprovidesthesimulationenvironmentwitheasytousekinematicswheretheusercanhavetotal,visual,controloveritsdesign.FurtherresearchcanhowevertakeadeeperlookintotheexactprogrammingofKangarooandimproveoraddcomponentswherenecessary. 

 

TheguiguistruKanimpandmeisa

Figu

Figu

 

emainprobides,meaninidesformthucturescan

ngarooiscoplementatiodshouldproantimesimuanelaborate

ure 123: Simu

ure 124: Simu

blemwhenunganchorphebasisfornnstillnotbe

ontinuouslybonoftherollovetobeabulatingrollieandinaccu

ulation Flexibl

ulation of the 

usingKangaointsattachnumerousksimulated.

beingdevelolingguideisigimprovemngguidesbyuratesolutio

e Tower 

Expanding Ge

arooisitscuhedtoaspekineticstruc

opedaswesstobeintrodmentinthisyvariablepon.

eodesic Dome

urrentinabicificlineorctures,mean

speak.Ithasducedinthepackage’ssiullforcesto

ilitytointrosurface.Thningaparto

sbeenannounextreleaseimulationcawardsinters

oducerollingheserollingofkinetic

uncedthateofKangaroapacity.Inthrsectingplan

91 

g

oohenes

 

    92 

4.1.2Numericalvalidation

Kangarooisquiteaccurateforsimulatingnon‐dynamicstructures.Acomparisonstudyindisplacements,comparingKangarooandANSYS,showsthattheaveragederrormarginofKangarooisonly0,1%oftheANSYSresult.Whensimulatingadynamicstructure,meaninganactuatedstructure,Kangarooisnotasaccuratebasedonthecomparisonresults.DisplacementsfoundbyKangaroohaveerrormarginsof316%maximum.HoweverthisdoesnotprovethatKangarooisnotsuitableforthesimulationofKA.InANSYStheactuatorwasmodeledasatrussmemberwithaninitialstrain.InGrasshopperitwasmodeledasaspringwithvariablerestlength.Changingstiffnessandotherfactorscouldplayapartintheseendresults,asdiscussedbefore.Non‐linearanalysisinANSYSandfurtherresearchwouldbeconclusive.SincethedifferenceinresultsaresmallinabsolutevaluethisresearchhoweverstatesthatKangarooisavaluableearlysimulationpackageandwillimproveorjustifyitsresultsinfurtherresearch.

Table 12: Error Margin %, Default 5kN                          Table 13:Error Margin %, 5kN 

   

Node X Direction Y Direction

1 0,0 0,0

2 0,0 0,1

3 0,1 0,1

4 0,1 0,1

5 0,1 0,1

6 0,0 0,1

7 0,1 0,1

8 0,1 0,1

9 0,1 0,1

10 0,0 0,1

11 0,0 0,0

12 0,0 0,0

13 0,0 0,1

14 0,0 0,1

15 0,0 0,1

16 0,0 0,1

17 0,0 0,1

18 0,0 0,1

19 0,0 0,1

20 0,0 0,1

21 0,0 0,1

22 0,0 0,0

0,0 0,1

Node X Direction Y Direction

1 0,0 0,0

2 ‐105,7 21,3

3 ‐111,2 9,4

4 316,2 ‐2,7

5 247,3 ‐17,4

6 206,7 ‐28,0

7 159,0 ‐33,0

8 128,0 ‐38,1

9 106,4 ‐45,4

10 90,6 ‐59,7

11 0,0 0,0

12 0,0 0,0

13 62,6 30,8

14 70,5 13,4

15 79,0 17,6

16 ‐132,0 ‐18,8

17 ‐120,8 ‐29,1

18 ‐112,2 ‐33,7

19 ‐104,8 ‐39,0

20 ‐97,9 ‐46,9

21 ‐91,4 ‐65,7

22 0,0 0,0

32,8 ‐20,3

 

WhthecalThiKanwhconTheiterbenbenThesimnotbut

Figu

 

Figu

 

 

henanalyzineresultsinAculatesneu

isresultiscngaroosimuereasactuanstantofthe

esimulationrativeprocendingmomendingmome

esimulationmulation,metthecaseintstillbeinga

ure 125: Simu

ure 126: Simu

ngtheinternANSYScalcutralorposit

causedbythulatesaspritioninANSYespecificme

nbyKangarossofitssimuentthankstoentwillimply

nbyANSYSweaningnoexreality,whiabletoelong

ulation Grassh

ulation ANSYS

nalstressesulatetensiontiveinterna

ewayactuangwithvariYSisinserteemberisinse

oocanbeseulationengiotheanglewlytwooppos

willkeepthextrastrainwichKangarogateaccord

hopper, 0kN, A

S, 0kN, Actuat

softhediffenintheupplforces.

ationisimpliablerestleedasadifferertedintoth

eenasanonine.Anon‐liwhichthetrsitefixedend

einitialstrawilloccurothosimulatesdingtoitsstif

Actuated, Def

ted, Deformat

erentcalculaperleftcorn

lementedinngthandarrentconstanhesimulatio

‐linearsolutinearsolutiorussmemberdmomentsl

inconstantherthanthebetterbyoniffness.

formation Sca

tion Scale 1:1

ationsitcaner,whereK

eachsimularelativelylantset.Theinnprogram.

tionbecauseonwillprodurshasbeenplikeshownb

duringtheeeinitialstrainlychanging

ale 1:1 

 

nbeseenthaKangaroo

ationsoftwargestiffnessnitialstrain

eoftheuceanappliplacedin.Abelow.

entirein.Thisisalgitsrestlen

93 

at

are:s,

ied

lsogth

 

4.2

UsienvsimvarDirimpMeactstoCenactresGalVBThedisrecext

Figu

 

2Simulati

ingtheArduvironment,smulationofKriablelength

rectlyremapplementedianingpragmtuators.Thisredinnumb

ntralintelligtuatorsbasespectivecelllapagosOpt.

eoptimizatiplacement,cognitionorternallangu

ure 127: Optim

ingbehav

uinomicrocsensordataKA.Theactuhsofitsactu

ppingthedaintheGrassmaticsensosmethodisbersandthu

genceontheedonacoup.CentralinttimizationS

ionsolvercdistanceorrRDIFreadiuage.

mizatin, Kinet

vior

ontrolleranacanbereaduationoftheuators.Base

atavaluestohopperenvrvaluescannamedSwauscannotb

eotherhandpleofsensortelligencecaolverand/o

anbeusedwrinternalforngscanonly

tic arch movin

ndthecompddirectlyfrekineticstredonthein

othestrokevironmentunbedirectlyarmIntelligeeimplemen

disacoordrvaluesnotanbeimpleorprogramm

whenoptimrces.Humanybeimplem

ng towards po

ponentFirefromtheboaructureisoncomingdata

erangeofthusingtheFirylinkedtotence.Humantedinthea

inatedactutnecessarilymentedusinminginexte

mizingaspenisticdatasmentedbyp

oints 

flyIntheGrrdandusednlybasedonatheseleng

heactuatorcreflycomponheactuationnisticdatacabovemetho

ationofalloylinkedtoengeitherthernallangua

cificvaluessuchasskelprogrammin

rasshopperdinthenthedifferegthsvary.

canbeeasilynents.nofdifferencannotbeod.

oftheeachheintegratedageC++and

suchasetonnginan

94 

ent

y

nt

dd

 

    95 

Besidescentralintelligencebeingmoreaccuratethanswarmintelligence,whichwasfoundinthecomparedresultsofabasicsimulation,theendactuationisalsodependentontheiterativeprocessoftheoptimizationsolver.Thiswasnotvisibleinthefirstsimulation,minimizingthedistancetowardsapoint,butwasinthesecondsimulationwhenminimizingtheinternalforces. 

Thisproblemwillalwaysoccurwhenusingevolutionarysolversandtheiriterativeprocess.Howeverresultsshowthatdifferentactuationendresultsgivethesameendvalue.Problemsarelikelytoarisewhenmorecomplexsimulationswillleadtodifferentendresultswithmajordifferencestheendresult.Thereforeoptimizationsolversaretobehandledwithcareandresearchedwhenimplementinginafinaldesign. 

 Tabel 14: Optimization results versus swarm implementation, Simulation 1 

 

 Tabel 15: Optimization results, Simulation 2 

 

Grasshopperisnotonlyinterestingforthesimulationofkinetics,thisfreeandopencodingenvironmentmakeswaytodifferentprotocolsthatcanbeusedincombinationwithupcominghumanisticaswellaspragmaticsensors.Forfurtherdetailsinvolvingsubjectssuchastheemotivelayerandbehaviorwerefertothechaptermethodologyandresultsinquestion.Itisthewriter’sopinionthatGrasshopperprovidesandwillcontinuetoprovideavaluableenvironmentforthesimulationanddesignofInteractiveArchitecture.

Actuator Intelligent 1 Intelligent 2 Intelligent 3 Swarm

1 0 0 0 7,93

2 0 0 0 12,58

3 18 20 8 17,68

4 20 20 20 20,00

5 19 20 19 16,76

6 0 0 0 11,51

7 7 9 3 7,12

8 10 4 0 3,25

9 0 0 0 0,00

CP 0,565594 0,565594 0,565594 0,565692

Difference 0 0 0 9,8E‐05

Actuator Intelligent 1 Intelligent 2 Intelligent 3

1 1 1 1

2 0 0 0

3 ‐3 ‐3 ‐3

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

F*L 0,000033 0,000033 0,000033

 

4.3

4.3

4.3

IngeasspaispwhWhconintejoinSymNoconareina

Figu

Figu

 

 

 

3DesignI

3.1Joints

3.2.12DJoi

generalitcasiertobuildaceandallowpossiblewhhenthetruss

hendesigninnnectingpinersectionpontormoveommetricalc

desshouldnnectedinteconnectedakineticstr

ure 128: 2D Tu

ure 129: 2D u

Issues

int

anbestateddthana3Dnwingtheneenatleasttsmembers

ng2Djointsnandtheheoint.Toavooutofthe2Donnections

bedesignedheintersecttosuchanuructure.

urning Joint, w

nstable joint 

dthatmodelnodeconnececessarydegthreemembdonotmove

sthelimitingeightofthecideccentricDplane,asywillprovide

dtobestabltingpointounstableno

without eccen

ling2Djoinctingmembgreeoffreedbersconnectveoutofthe

gfactorsarcombinedccityinthe2Dymmetricaleabalanced

le,meaningfthetrussmode,itbecom

ntricity 

tsmovinginbersindifferdom.Anodetwiththenir2Dplane.

ethestrengonnectingmDstructure,lattachmendnodewith

2Djointsalmembers.Evmesunstabl

ntheirownrentdirectioecombiningode,fixingi.

gthofthetramembersat,causingittthastobeuhouteccentr

lwaysneedvenwhentheandunabl

nplaneareonsin3Dgtwo2Djoiitinspace,a

ansversethetobreaktheused.ricity.

tobehreemembeletobeplac

96 

intsand

e

ersced

 

 

 

4.3

DifthewhbetareonlTheexctheDurmachatopfragmoint

Figu

 

3.2.23DJoi

fferent3Dnereisasubshichcanbemtweenmoreeabletomolypossiblew

euniversaljcellentbehaeintersectio

ringthe3Dainlyduetotaracteristicspofeachothgile,whichcodelbutalsotheperpend

ure 130: 3D‐p

int

odesweremtantialdiffemodeledideethantwomveinalargewhenusing

jointorCaraviorwithouonpointoft

printingoftthelackofmsofthe3Dpher.Inthepecausedittoprintingthiculardirec

rint Universa

modeledinterencebetweallywithanmembers.Weanglerelatamultipleb

dan‐jointcouteccentricithetwoconn

thisnodethmassforstrerinteritself.erpendicularslide/breakemodelinationofthep

l Joint 2 

 

thisresearcweentheconnintersectio

Whenconnectivetothenballjointno

onsistsoftwityandstillnectingmem

efirstmodeengthandstf.3Dprintingrdirectionokfromitsforaccordancetprinter.

ch.Whendisnnectionbetonpoint,anctingmoretnodethisresode.

wosymmetrplacingthembers.

elbrokeatthtiffnessbutagworksbylofthelayersrm.Solutionstoitslayerin

scussingthetweentwomndtheconnethantwomesearchstate

ricalpinsprnodecente

hecentercroalsobecauseayeringplasthemodelissarestrengng,avoiding

esenodesmembers,ectionemberswhiesthatthisi

rovidingerdirectlyat

oss.Thiswaeofthesticstringoisrelativelygtheningthegcrucialpoin

97 

chis

t

s

n

nts

 

 

TheincmoKinsmFurcrucruareminforcthe

Figu

4.3

TrustreTheenlothuse

Figu

econceptbacardinaldirorethanthreneticArchiteallerthanth

rtherresearucialbreakinucialpointweintroducednimalatthocesdonotseenode.

ure 131: 3D p

3.3Member

ussmemberengthenedi

esepartscanlarginginterherprovidingedwhenpro

ure 132: Truss

alljointwasectionsofaeetrussmeecture.Alsoheorderof

rchandFE‐angpointsinwouldbethed.Thankstoosepointsaneemtocaus

rinted Ball Jo

rs

rsusedinainperpendi

nbeeasilycrconnectinggasuitableducingthef

s Member 

sdesignedblargerball‐mbersitisfthedimenslengthofth

analysisofththemodel,pouterrimwmultiplebandcouldleadeaproblem

int, Section 

3Dstructurculardirect

constructedpartsbyhaconnectionfinalprototy

bythewrite‐formnode.fixedin3Dssionofthethetrussmem

heballsubjeprovidingthwhichkeepslljointsplacdtofailure/

msincesuffic

re,connectetions,topro

byinsertingalfofthecutwithoutextype.

er.ItwasforWhenthisspaceandatotalnodehmbers.

ectedtopushhedesignmotheballjoincedinthiso/breakingofcientmassis

edbya2Doovidestiffne

glaser‐cutptting‐linethitramaterial

rmedbyplanodeisconabletofulfillastobemu

handpullfooreoptimalfntinplacewuterrim,theftheouterlaavailablein

r3Djoint,hessinalldire

artsintoeacickness,they.Thismetho

cingballjoinectedbylitsroleinultipletimes

orceswillshforms.Awhenpullforemassisayer.Pushnthebodyof

havetobeections.

chother.Byyfitintoeacodwasalso

98 

ints

ow

rces

f

ych

 

4.3

CladescanmotheparStifsanwhmoemisoconThehowappcladnec

Figu

Figu

3.4Claddin

addingofkinsignedspacenalreadybeoreorlesslieirimplemertsoftheme

ffpartshowndwichpanehendesigninovesoutofitmbeddedintstaticallyalnnectionpo

elowerfigurweverhavenpearanceofddingisconcessarysoftw

ure 133: Kinet

ure 134: Expa

g

neticframeesviable.Ateinsulated,ghtintothentationisreembrane.

wevercanalelsconsistinngacladdingtsoriginalptheupperorlowthenecinthastobe

redepictsthnotbeenimpanutandbonected.Theware.

tic Box, Scena

nsion joint W

structuresitthetimeofevenprovidespace.Exceelativelyeas

sobeusedangoftwolaygsystemonplane,necesrlowertruscessarydegreresearche

eisostaticcoplementedinolt,onlyattaexactdegre

ario 2 

Wooden claddi

isanecessafwriting,eldingdiffereeptforthecsybyusing

ascladdingyersofmetanakineticstssarystepshsselementwreeoffreeddandsimul

onnectionofnthephysicaachedtoabaeoffreedom

ing 

arystepformlasticcladdintdensitiesconnectiondstiffenedm

andcouldaalgluedtoatructure,inhavetobetawhichattachom.Theneclatedbefore

fthestiffclaaltestbuthaalljointbuilmshouldbes

makingourngsuchasmswhenstretdetailsofmetalringsin

alsobeinsulastiffinsulawhichaclaaken:Knuckhthecladdincessaryfreeehand.

adding.Knucavethesametinthebeamsimulatedus

rnewlymembranestchedtoallomembranesnreinforced

latedlikeation.Howevaddingplaneklejointsngedomofthe

cklejointsephysicalmtowhichtsingthe

99 

sow

d

vere

the

 

4.3

ActthishasforMubecdepRotandintorat Diffme 

Pnever Thisilicprothenecsilic Deswhpul 

Tab

Figu

Me

Cra

Ge

Scr

Pn

3.5Actuato

tuatorsareasthesislinestobeactuamoflinesa

usclewire,thcauseofitsrpendenceon

tationalactudspeed.Anolinearmoveofthesem

fferentmechchanismswh

eumaticandryeasytopr

isabilityisthconetubingovidingtensiereforecannocessaryinthconetubing

spitethisstrereasrotatiollforcesacco

bel 16: Shrink 

ure 135: McKi

echanism

ankshaft

ear Pinion

rew

eumatic mu

rdesign

availableinearactuatoratedbylineandplanesw

hesmallestrelativelysmnphysicalfa

uatorsarewnumberofbvementwermechanisms

anismswerehichallowb

dhydraulicroduceand

hankstothewhichdeforionstrength.otbeusedasesetupofthcausingthe

rengththemonal/linearordingtothe

Rates of diffe

ibben air mus

S

uscle

allsortsofrswereresearactuatorswillallowm

inthefamilmallstrengtactorssuch

widelyavailaasicmechanreintroduce.

eusedbutfuiggeractuat

musclesarecapableofc

esetupofthermsunderai.ObviouslytssuchinakheMcKibbenmuscletofa

musclecanonractuatorscestrengthof

erent actuato

scle setup 

Shrink Rate 

types,driviearched,whs.Theimpleorecompre

lyoflinearath,unsuitabasexternal

ableindiffenismstotraedandbuilt

urtherreseartionratesw

ethefinaltycarryingrel

emuscle.Thirpressureathemuscleiskineticstructnairmuscletail.

nlycontractcancontractftheelectric

ors 

[%]

ingmechaniereasthisdementationehensivestr

actuators,isbleforbuildiheating.

erentsizes,aansformthettomeasure

rchcouldimhereneeded

ypesoflineaativelylarge

eMcKibbenandastrongsunabletorture.Thebratoavoidloca

upto10%oupto48%acalmotor.

 

23

48

28

11

ismsordrivoesnotimpofrollingguuctures.

snotsuitablingloads,an

availablestrrotationalmethepractic

mproveordesd.

aractuatorseloadsinte

airmusclecbraidedoutresistpushfoaidedsleevinaldeformati

ofitsoriginaandcanresis

vingforces.plythatallKuidesinthe

leforKAndits

rength/torqmovementcalelongatio

signnew

s,provingtoension.

consistsofatersleevingorces,andngisalsoionsofthe

allength,stpushand

100 

InKAe

que

on

obe

    101 

By looking at the test results of the McKibben air muscle this research recognizes the fact that the air muscle has a variable elongation rate according to the applied load. There even seems to be a maximum value at 30N. This effect was not examined further but is likely to be caused by different material strengths and properties like strength of the specific braided sleeve and silicone tubing. Additionally parameters such as the wall thickness, length or diameter of the silicone tubing used could lead to these findings. Further research, documentation and examination of material strength should provide conclusive insights.   

 Figure 136: Elongation/Original Length [%] 

 Table 17: Muscle Elongation [%] 

   

0,92

0,94

0,96

0,98

1,00

1,02

1,04

1,06

1,08

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 5,00

Length/ Original length [/]

Air Pressure [bar]

Elongation[/] vs. Air Pressure[bar]

1kg

2kg

3kg

5kg

4kg

Druk(Bar) 1 kg 2 kg 3 kg 4 kg 5kg

0,00 0,35 2,04 3,73 4,74 5,42

0,50

1,00

1,50

2,00 ‐3,03 ‐2,35 ‐0,66 1,36 2,04

2,50 ‐4,72 ‐4,04 ‐1,68 0,35 0,69

3,00 ‐5,73 ‐5,05 ‐3,36 ‐1,34 ‐0,32

3,50 ‐6,74 ‐5,73 ‐4,38 ‐2,35 ‐1,34

4,00 ‐7,42 ‐7,08 ‐5,73 ‐3,36 ‐2,69

4,50 ‐8,09 ‐7,42 ‐6,74 ‐4,72 ‐3,36

5,00 ‐8,43 ‐7,76 ‐7,42 ‐5,39 ‐4,38

Total Range 8,78 9,80 11,15 10,14 9,80

 

4.3

De

TheintepolactthecouThephyforcondesBeswaInsintoThithaLayme

Figu

3.6Prototyp

sign&Poly

efirstconceeractivity.Tlypsandstiltuatedandcedesignerquldnotbeov

efirstactuaysicaldesignmnotoptimnnectionposignedsepa

sidesthephsalsonotststeadofoverotwostruct

iswasthecatdifferentlyerscanbeechanism.

ure 137: Sketc

peDesign

yp

eptualdesigThisfirstlayllneedingthcontrolledbuicklycamevercome.

atorformalsnofelongatmalinvolvinintatthecoratelyinthi

hysicaldesigtrongenougr‐dimensionturallysepa

onfirmationlayersofintaestheticall

ches Polyp, D

gnwasasinyerwasdefinhesupportoyotheractueacrossdiff

sodidnotptingatoneegbendingmonnectionbeisprelimina

gn,theelectghtocarrytningoneelearatelayers

nbutalsothteractivitycyinterwove

esign 1

gleactuatornedasastrofaload‐beuatorsanddferentphysi

performoptiendandstaymomentintretweenlayearyidea.

tricalmotortheintroducectricalmotwastheobv

hepracticalouldnotbeenbutcann

rthatcoulducturalframearingstructdata.Whenicalcomplic

imallyregaryingfixedatroducedatteroneandl

rthatshouldcedloadsofor,themethviouschoice

insightthatactuatedbyotbeactuat

actuatethemetogetherture(layer2designingthationsandi

rdinginternttheotherethemiddleaayertwo,w

dhavebeenftheentireshodofdividie.

tflowedoutythesameatedbythesa

efirstlayerrwiththe2)whichwaheactuatorissueswhic

nalforces.Itendmadeitandatthewhichwere

implementskinstructuingthelaye

tofthedesiactuators.ame

102 

of

ash

tsts

tedure.er

gn:

 

ThesecofiintedimpoltruforTheextwoanddescut

Figu

Figu

esecondancondlayerninteractivityerwovenbumensionedolyps,onwhiussmembertheoccurri

eseparateptended.Thisrkasasprindcausedthesignthepolyttingthehol

ure 138: Polyp

ure 139: Proto

ndfinaldesignowprovidey,allowingdutactuatorsonlyontheiichnoexterwhichprovingbending

polyparmsaswassuppongholdingtearmstobrypitselftoslesforthea

p Actuator 

otype Perspec

gnusedthisesstructuraldaylightentrworkcomprlayer.Servrnalloadsarvidesstabilitgmomentan

aresupposeosedtobepothemback.Treakwhentspreadtheprmsatthey

ctive View

sinsightandlstabilityanranceand/opletelyindepvo’swithlowrebeingplatyandnecendnormalfo

edtodisperossiblebyaThisimplemtensionedtopolypsarmsyokecloser

ddecoupledndthepolyporventilatiopendentlyawtorquecoced.Theshessarystrengorces.

rsefromtheattachingplamentationpohard.Anotswhenfullytoeachoth

dbothofthepsprovideson.Bothlayendcanalsouldthenbeellofthepogthtowards

centerwheasticstringsrovedtobetherpossibiyextended,ber.

elayers.Ththefirstlayersarebeusedfortholypsactsassthemiddle

enfullystotheendseverydifficuilityistobylaser‐

103 

eyer

esae

stoult

 

 

Tru

WhneeimpresnodcladIntfrarecwasthishavClaconmeHownodmamo

Figu

 

uss&Cladd

hendesigninededintheplicationsosearch.Whicdaldisplaceddedframe

theproductime.Likeshoctangularfrasnecessaryfsinsighttorvebeenmor

addingsurfanceptwastoemberswithweverwhendeinquestiadepossibleovedtothet

ure 140: Cladd

ding

ngastructuearlierphasnthestructchisthatonementsands.

ionofthisprowninthepame,werecufornodalmredevelopthreoptimal.

acescouldaoattachthehtheuseofsnoneoftwoonanditscebythehingtrussmemb

ding Hinge, Tr

rewhichissesofthedeturalframebnlytriangulacanthusfor

rototypetherototypetheutupaftertovementwahesameflexi

lsonotbeacladdingsusimplehingoneighborinconnectingcge.Itisfortersinstead

russ member 

kinetic,asuesign.Thedbelow.Oneatedsurfacermabasicid

ecladdingwerectangulatheirproducasnotthougibleskin,the

attachedtonurfacestothgeswhicharngnodes(trcladdingmothisreasonofthenode

connection

uitableconcdesignofthebasicinsighesareabletdeatobegin

wasdesignedarcladdingpction.Meanightofintheeuseofatri

nodalpointshenodesanreabletomriangulationovesinadirthatthecones.

ceptfortheecladdingwhtwasgaineomovetogendesigning

dafterthestpieces,basengthetriandesignphasiangulatedf

s.Theprelimdnottotheoveinonedn)changesiectionothernnectionoft

claddingiswillhaveedinthisetherwithstructural

tructuraldonthengulationthses.Byusingframewould

minaryetrussdirection.itsheight,thrthanthatthecladdin

104 

atgd

he

g

 

 

VacThitheproseaAlsmoelimWhsetuformhigdef 

Figu

 

cuumforminisstiffensthevacuumforovidecladdiamsleadtow

somoldswholdwillutilizminatingthe

henlarge,mupisusedwmer.Thiswaghermold.Tformation.

ure 141: Vacu

ngisagreatheplasticshrmingproceingwiththeweakpoints

hichareusezemoreplaevacuumef

eaninghighwhereanmoaythevacuuTheoriginalp

uum Forming 

twayofintrheet,combiness,thesetueappropriatsintheclad

dinvacuumastic,causingffectundern

h,moldsarevableheatinumformingplatealsoha

results with h

 

roducing3Dningstrengtupneedstotedimensioddingdesign

mformingshgtheplasticneath.

usedinthengelementiprocesswillastobedim

high mold 

Dformintothandlowobeofsufficins.Claddingn.

houldbechctoloosenf

vacuumformisusedtoplalbeslowerbmensionedto

asimpleplaownweight.ientdimensgwhichish

osenwiselyfromitsfram

mingprocesaceoverthebutsuccessfuoallowtheh

asticsheet..Whenusinsionstohadinternal

y.Ahigherme,

ssitbestthaevacuumfulinusingahigher

105 

ng

ata

a

 

    106 

Behavior

BehaviorwasprogrammedusingtheArduinoprogramminglanguage8,whichisbasedonProcessing.Duringdevelopmentandenduseitbecameobviousthatsmoothingmethodshavetobeappliedonincomingsensordata.Pragmaticdatasuchasproximity,deliveredbyanIR(beam)sensor,introduces,thankstothenatureofitssensordesign,aparticularnoiseontothedatastream.Thishastobesmoothedouttoovercometheeffectof“twitching”actuation.Theusedsmoothingfunctionsumsupanamountofmeasurementswithadelayanddividesthembytheiramount.Causingthedatastreamtobeflattenedouttoreducemajorspikes.Theservomotorsused(HextronikHX550)movedinanarbitrarydirectioneverytimetheprogrammingwasuploadedtotheArduinoboard.Thistwitchcausedtheservotomoveoutoftherange,enabledbythemechanism,causingfailureoftheleverconnectingthemotorwiththemechanism.Thishoweverwasovercomewhenmovingtheservotoaknownin‐rangepositionatthetimeofdeclarationintheprogramming.TheusedMotorlibraryusedintheArduinoprogrammingenvironmentisalsoonlyabletoactuate8servomotors.

                                                            8 Appendicx B: Behavior Arduino code 

 

WhmoresArdtoaboaproAccactwasnec

Figu

 

henuploadinotorsbeganstartfollowiduinoboardactuateeighardtosucceogramming.

curatemeastuationcouldsonlydelivecessaryspec

ure 142: Ardu

ngthefirsttotwitch.Angtheactuadconnectedhtservomotessfullyactu

surementsofdconsumeueringaboutcificationsw

uino powered 

testsoftheAfterfurtherationofthetoaUSBpotors.Anadduateeveryse

ftheenergyupto2000m500mA.Thasabletode

by USB and 9

behaviortorresearchthservomotoortwasnotditional9Vbervomotor.

consumptiomA.TheUSBeextrabatteliverthata

9V battery 

otheArduinheArduinoors.ThiswaabletosuppbatterywasThiswasth

onshowedthBportpowerteryorexteramountofcu

noboard,thprogramminsduetotheplytheneceattachedtohusnotcaus

hat8servomringtheArdnalpowersurrent.

eservongbegantoefactthatthessarypoweotheArduinsedbyfaulty

motorsduriduinoboardsupplywitht

107 

oheernoy

ing

the

 

    108 

Chapter5:ConclusionThisresearchconcludeswiththesummarizationofdifferentresultsandpracticalinsightsinvolvingKineticArchitecture,modelingdesignandbehavior.

5.1SimulatingDesign

KangarooandGrasshopperarerathernewsoftwarepackagesandnotyetfullyincorporatedintheuseofarchitecturedesign.Likestatedintheliteraturestudy,eveninthespecificfieldofInteractiveArchitecture,simulationpackagesarenotwidelyused.SimulationtoolsdonotexistbecauseInteractiveArchitectureexistbutparametricaltoolswhicharecontinuouslydevelopedtogetherwithnewprojectsarenolongerboundtothatspecificdesign.Newtoolsthereforestimulateandpositivelyreinforcenewstructuresduringtheirdesign.InthisresearchacasestudyresearchshowedthatKangaroo,theusedcomponentforsimulatingphysics,isapromisingtool.Whendesigningstructures,whichareanchoredbypoints,Kangarooisabletosimulatekinetics,aprimarydemand.Thebiggestissueinvolvingthiscomponentisthecurrentinabilitytoimplementrollingguidesoranchorpoints.Meaningotherthananchorpointsfixedinspace,Kangarooisnotyetabletoimplementthem.Kangarooisstillbeingdevelopedatthetimeofwritinghoweverandthesecomponentshavebeenannounced.FurtherresearchcouldbethedesignofmultiplecomponentpackagesbasedonaspecificdesigntoimplementandpublishfortheuseinGrasshopper.Involvingaccuracy,itcanbeconcludedthatKangarooisabletoaccuratelysimulatestructuralbehaviorofnon‐actuatedstructures.AveragederrormarginsincomparisontoANSYS,aFiniteElementspackage,areaslowas0,1%.Errormarginsofthecomparisonbetweenactuatedstructureshoweverareashighas316,2%.Thisresearchisnotabletoaccuratelyargumentthislargeerrormargin.ItstateshoweverthatANSYSisnotdesignedtoactuatemembersduringitscalculations.AninitialstrainwasappliedtothebeaminANSYSwhichwastheonlypossiblemethod.ComparedtoKangaroohoweverwhereactuationofabeamisimplementedbyadjustingtherestlengthofthestiffspringdepictingthebeam.

 

TheANissupac

Tab

Figu

Figu

No

emethodsoSYSandanuestobefuckageKanga

ble 18: Error M

ure 143: Simu

ure 144: Simu

ode X Dire

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ofimplemennon‐linear,itrtherreseararooandacc

Margin %, Def

ulation Grassh

ulation ANSYS

ction Y Di

0,0

0,0

0,1

0,1

0,1

0,0

0,1

0,1

0,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

ntingtheactterative,calrchedtovalcountforth

fault 5kN         

hopper, 0kN, A

S, 0kN, Actuat

irection

0,0

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,0

0,0

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,0

0,1

tuationtogeculationmelidatethenuhenumerica

                 Tab

Actuated, Def

ted, Deformat

Nod

etherwithtethodbyKaumericalacalmismatch

ble 19:Error M

formation Sca

tion Scale 1:1

de X Dire

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

thelinearcangarooaretcuracyofth.

Margin %, 5kN

ale 1:1 

 

ction Y Dire

0,0

‐105,7

‐111,2

316,2

247,3

206,7

159,0

128,0

106,4

90,6

0,0

0,0

62,6

70,5

79,0

‐132,0

‐120,8

‐112,2

‐104,8

‐97,9

‐91,4

0,0

32,8

alculationbythemainhesimulatio

ection

0,0

21,3

9,4

‐2,7

‐17,4

‐28,0

‐33,0

‐38,1

‐45,4

‐59,7

0,0

0,0

30,8

13,4

17,6

‐18,8

‐29,1

‐33,7

‐39,0

‐46,9

‐65,7

0,0

‐20,3

109 

y

on

    110 

5.2SimulatingBehavior.

Besidesbeingabletosimulatekinetics,Grasshopperhastheabilitytointroducereal‐lifesensordatatotheprogrammingenvironmentthankstothecomponentFirefly.Beingabletoimplementthesestreamsofdata,thedesignercanbegintodesigntheintelligencewhichisacrucialpartinthetranslationofdataintoactuationofthekineticstructure.BasictechniqueswhicharealreadyimplementedinGrasshopperaretheremappingfunctionandtheOptimizationsolver,Galapagos.Theremappingfunctionallowstoeasilyremapthevalueinthesensorrangetotheactuationrange.Thesensorrangeisdependentonthespecificsensorandpostprocessing.Theactuationrangeisspecifiedbytheusedactuatordrivingthestructure.Remappingfunctionshoweverleadtoaswarmlikeintelligencenottakingthewholestructureintoaccount.TheGalapagosOptimizationsolverhoweverisabletooptimizeasinglevalue,maximallyorminimally,basedoneveryactuatorlength.Techniqueswhichprovetobevaluableinfurtherdesignsandresearcharepositiontowardsapoint(displacementorattractor)andthesumproductofbeamlengthandinternalforce.Structurescouldbeactuatedtominimizeinternalforcesorminimizedisplacements.Againfurtherimplementationandprogrammingofcomponentsspecificallyforarchitecturaldesignanddatamanipulationisapossibility.Thisresearchalsoremarksthefactthattheoptimizationsolverisanevolutionarytypesolver,meaningeveryiterationprocesswillleadtoanotheractuation.Howeverseeingcomparedresultstheendvalueisalwaysthesame,leadingtoanoptimalactuation,independentfromthechosenactuationvalues.

Figure 145: Central Intelligence versus Swarm intelligence, Simulation 1 

Actuator Intelligent 1 Intelligent 2 Intelligent 3 Swarm

1 0 0 0 7,93

2 0 0 0 12,58

3 18 20 8 17,68

4 20 20 20 20,00

5 19 20 19 16,76

6 0 0 0 11,51

7 7 9 3 7,12

8 10 4 0 3,25

9 0 0 0 0,00

CP 0,565594 0,565594 0,565594 0,565692

Difference 0 0 0 9,8E‐05

 

5.3

Thipricurvalcon5.3AvjoinaccdiffA3ballargbeckinWhbuiincoffunsnodmaThiitsdesjoinadj

Figu

3PracticalI

isresearchantingandlarrentprojecuablesourcnstructade

.1Joints

varietyofjoints.Toconccountforeccficulttocon

3Djointconlljoint.Thegedegreeocauseotherwneticstructu

henconnectiltwhilemaorporatedwfreedom.Thstable.Howdeisstillstaakesthenod

isballjointresistancetsign,torecontcouldbeustingthen

ure 146: 3D p

Issues

acknowledgasercuttingctlandscapeceofinspirasign.

intswasfirsludethisthcentricityannstruct.

necting2moptimalnodffreedom.Twisethenoure.

tingmorethaintainingawithaballjoheintersectiweverwhenaableandcandeunusable

hasnotbeetopushandognizeandaexaminedinnodedesign

rinted Multip

gestheuseo.Andstateseanditsownationandreq

stresearcheesisstatestnddegrees

membersismdepointtheTherequiremdebecomes

han2memblargedegreointperattaionpointdoattachinganbeusedinforuseink

enresearchepullforces.analyzeweanfurtherrenmaintainin

ple member B

ofnewfabrsthatseeingnprototypequireathor

edinvolvingthatnodesioffreedom.

mainlyduetenstillliesimentforthsunstablea

bershoweveeeoffreedomachedtrussoesnotfalliminimumonakineticstkineticstruc

edusingaF.Thisishowakpointsinsearchacknngalargede

Ball joint 

icationtechgtheoveralle,thattheseroughknow

gthedifferenina2Dplan.3Djointsh

totheuniventheinterseintersectiandcannotb

ertheidealnm.Thisresemembers.Tinthesameof3trussmetructure.Atctures.

FiniteElemeweveranimthestructurnowledgingegreeoffree

hniquessuchlfabricationtechniques

wledgetosuc

ncebetweeneareeasythoweverare

ersaljointmectingpoinonpointisnbeimplemen

nodepointcearchdesignThisallowspoint,makiembersin3taching1or

ntscalculatportantpoire.Thedeveitsweakpoedom.

has3Dnprocessofsformaccessfully

n2Dand3Dtofabricateerelatively

mechanismontandallownecessaryntedina

cannotbenedanodealargedegingthenode3Dspacethir2member

tioninvolvinintinnodalelopedballointsand

111 

f

Dto

orsa

reeesrs

ng

 

5.3

ClaincthointrinstooStifusecladstrufailpanInt

Figu

Figu

 

3.2Claddin

addingisanludeflexibloroughlyresroducesunlultedusingolsorinsigh

ffcladdingledinKineticddinghastouctureoutolandbreak.nelsaswelleractiveSpa

ure 147: Kinet

ure 148: Expa

g

importantpemembransearchedinlightintospNanogeltetscouldbe

likecomposcArchitectuobeattacheofthecladdFurtherresasinsulatioace.

tic Box, Scena

nsion joint W

partofmakesandstiffthisresearcpacesusingtechnologyemtakencareo

itepanelsaure.Howeveedisostatic.ingplanewsearchintoponresearch

ario 2 

Wooden claddi

 

kingourintematerials.Fchbutstatetheirstretchmbeddedinofinfurther

arealreadywerwhenattaWhenattac

willcausethepropersealwillprovev

ing 

eractivespaFlexiblememsthatmembhdensityannacomposirresearch.

widelyavailachedtoakchedhyperseattachedcantsforthevaluableini

cesviable.Smbranesarebraneshavendthefactttemembran

lable.Theseineticstructstaticmovemcladdingorceairtightneimprovingt

Systemsenotetheabilitythattheycanne.Further

ecouldalsoture,thementoftheconnectionssofthesetheviability

112 

yton

be

to

yof

    113 

5.3.3ActuatorDesign

ActuatorsarethemeansofourKineticArchitecture.Accordingtotheliteraturestudyavarietyofactuators,whichnotevenbecategorizedbecauseoftheirnumbers,areavailable.Allofthesewithdifferentcharacteristicsorlimitingfactors.Thisresearchlookedintomusclewires,rotationalactuatorsandpneumaticallydrivenactuators.MusclewireswereresearchedbutdiscardedfortheuseinKineticArchitecturebecauseoftheirlimitedstrengthandlargedependenceonenvironmentalfactorssuchastemperature.MusclewiresthereforedidnotfitintheuseforKineticArchitecture.Rotationalactuators,inthisresearchsmallservomotors,areavailableindifferentapplications.TotransformtherotationalactuationintolinearactuationforourKineticstructuresdifferentpossibilitiesormechanismsoccur.Thisresearchhasbuilt3differentmechanismswithrotationalactuators:arack‐pinionsystem,acrankshaftmechanismandascrewmechanism.Thisresearchstatesthattheseactuatorsarelimitedbytheiravailabletorque,dependingonthetype,andtheirelongation/shrinkrate(stroke).Sinceactuatorsusedwereofthesametorquestrength,differentshrinkratescouldbecalculatedandcomparedtoeachother.Furtherresearchincooperationwithmechanicalengineerscouldprovidenewinsightsinvolvingactuatorsandtheirbehaviorinrealscaleapplications.

Figure 149: Linear actuators, Shrink Rate 

  

Mechanism Shrink Rate [%]

Crankshaft 23

Gear Pinion 48

Screw 28

Pneumatic muscle 11

    114 

ForthisresearchaMcKibbenairmusclewasalsofabricatedtotestitselongationrateversusappliedload.Whenintroducingavariablepressurerangeof0to5barthemusclecontracted.Differenttotalelongationrateswerefound,depictingtheaccuracyofthesetuporotherissuesthatmightinfluencetheendresults.Theseissuesarethestrengthofthebraidedsleeve,acomponentofthemuscle,aswellasthedimensionsofthesiliconetubing.Furtherresearchcouldresearchthisspecificairmuscleordesignandvalidatedifferentnewmechanismsforlinearorrotationalactuation.

Figure 150: Air muscle, Elongation rate [%] 

 

Druk(Bar) 1 kg 2 kg 3 kg 4 kg 5kg

0,00 0,35 2,04 3,73 4,74 5,42

0,50

1,00

1,50

2,00 ‐3,03 ‐2,35 ‐0,66 1,36 2,04

2,50 ‐4,72 ‐4,04 ‐1,68 0,35 0,69

3,00 ‐5,73 ‐5,05 ‐3,36 ‐1,34 ‐0,32

3,50 ‐6,74 ‐5,73 ‐4,38 ‐2,35 ‐1,34

4,00 ‐7,42 ‐7,08 ‐5,73 ‐3,36 ‐2,69

4,50 ‐8,09 ‐7,42 ‐6,74 ‐4,72 ‐3,36

5,00 ‐8,43 ‐7,76 ‐7,42 ‐5,39 ‐4,38

Total Range 8,78 9,80 11,15 10,14 9,80

 

5.3

Thenatshatypintesta

Figu

ThepolinndetpreawTheactpro

3.4Prototyp

eproducedture.Startinapeandinnepologyofuneractivity,rebilityandin

ure 151: Proto

efirstlayerlyps,offerstnerspace.Betectproximiesence.Inhaareofthem

eproductiotuators.Struoducedasim

pe

prototypeingfromageerspacethinderwaterpesponsetodnteractivity

otype, Perspe

ofinteractitheflexibleesidestheseityortouchabitantsaremusingthisI

nofthepolyucturalintermplebuteff

sinspiredbneralideaosresearchdolypsresididaylight,pronmedium

ective view 

vity,directlyskinwithmephysicaln,passingittnolongersInteractiveA

ypsmadewrnalforceswficientande

bythecurreofastructurdesignedapingincoralsoximityand

mlongtimefr

ylinkedtotmeansofintrneedsofthisthroughtheshieldedfroArchitectur

wayforinsigweretakenielegantactu

entlandscapralskinbeinprototype.Asthisprototdvibration,rames.

thebiomimroducingligsinnerspaceskinmakinmoutdoorfe.

ghtsinmakiintoaccounatordesign

peofIA,KAngabletofoAprototypetypecombinwithalayer

icryofundeghtandvente,thepolypngitsinhabifactorsbuta

ngaswellatofthepoly.

andforemoormitsownbasedonthnesdirectrofstructur

erwatertilationinitpsareabletoitantsawarearenowma

asdesigningypswhich

115 

ost

he

ral

tsoeofade

g

 

Figu

Figu

ure 152: Proto

ure 153: Proto

otype Upper V

otype Side vie

View 

ew 

116 

 

 

Figu

EvethesparecweshointeThetonappstruperThecurandthastridevinto 

ure 154: 3D Tr

enifthestruesame.Astratialneedsoctangularfrarefabricateowitsfullpoeractivityin

esecondlaynewbuildinpliedforcesucturewilltriodofdays

edesignandrrentInteraddirectinteatthesetwoictlydividedvelopmoreothefieldo

russ Simulatio

ucturallayeructuralframorstructuraamewassimedasmembeotentialbutnarealtime

yerisbasedngsorthebltoshift.Altthenresponorweeksa

dconstructictiveandKieractivityfodifferentladasinthecelaborateaofpractical,

on 

rwasnotimmeisabletoaloptimizatimulatedanderswithafitdoesshoweframe.

onslowerslossomoftrteringthecondaccordingndnotminu

ionofthispineticarchitllowtheiroayerscanbecurrentprojndmoreintusableand

mplementedoreacttoseion.Thebasdfabricatedixedlength.witstrueuse

structuralcreesinthevonditionsofgtoitsintelutesorseco

prototypewtecturelandownindepenewovenintoectlandscaptelligentstrbuiltarchit

dinthisproetsofdatatsicstructure.ActuatorswBydoingtheandmeani

hange.Chanvicinitywillfthisinteraclligenceandonds.

wasconceivedscapewherndentpath.oeachotherpe.Furtheructureswhiecture.

ototypetheiodeformaceconsistingwithdifferehis,theprotingofdiffere

ngesinwindcausetheectiveequatidchangeits

dasaresporestructuraThisprototyranddonotresearchanichextendt

idearemainccordingtogofaentlengthstotypedidnentlayerso

dpatternsdenvironmenion.Theshapeina

onsetothealinteractivitypesuggestthavetobenddesignscthesenotion

117 

ns

notof

duetal

itytcanns

    118 

Appendices 

    119 

AppendixA

Boek 

Naam

 

Plaats 

Arch

itect 

Jaartal 

on 

Kinetics 

Kinetic 

motio

Scale 

Timespan

 

WaysA

ctuato

Sensor 

Intellige

n

ce 

mechan

is

Load

 Bearin

Arch

itecture 

rotatin

tower 

Arab

 

Emirates 

David

 Fish

er  2008 

Activity 

Clim

ate) 

Embedde

M‐ 

Building 

Direct  

Ben

ding 

Motor 

Both 

Both 

Ben

ding 

at node 

structu

ral 

capacity 

Arch

itecture 

ery 

Module 

United

 

States 

Spectacu

lar 

2008 

Design

 (In

terior) 

Embedde

S‐ interio

Direct  

Weigh

None 

None‐

Physics 

Linkage

 

structu

ral 

capacity 

Arch

itecture 

Emergen

Surface

 

United

 

States 

Asso

ciates 

2008 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

M‐

Building 

Direct  

Ben

ding 

Motor 

Pragm

atic 

Both 

Linkage

 

structu

ral 

capacity 

Arch

itecture 

Starlight 

Theater 

United

 

States 

Gang 

Arch

itects 

2003 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

M‐

Building 

Direct  

Ben

ding 

Motor 

Pragm

atic 

Head

 

Ben

ding 

at node 

structu

ral 

capacity 

Arch

itecture 

WhoWha

tWhen

Air 

United

 

States 

Group 

MIT 

2006 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Muscles 

Pragm

atic 

Head

 

Truss 

structu

ral 

capacity 

Arch

itecture 

e Skylichts 

United

 

States 

Group 

MIT 

2008 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

M‐

Building 

Direct  

c Cilin

ders 

Pragm

atic 

Swarm

 

Truss 

structu

ral 

capacity 

Arch

itecture 

PixelSkin

 

United

 

Kingdom 

n,Oran

gevoid  2008 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

M‐

Building 

Direct  

SMA 

Pragm

atic 

Swarm

 

Antago

nis

t  structu

ral 

capacity 

Interactive 

Arch

itecture 

Robotic membrane 

United

 Kingdom 

Anshuman,

Oran

gevoid 

2008 

Activity 

Clim

ate) 

Embedded 

M‐ B

uilding 

Direct  

Pneu

matic 

Cilin

ders 

Linkage

 

structu

ral 

capacity 

Arch

itecture 

Flare 

Germ

any 

WHITEvo

id 

2008 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

M‐ 

Building 

Direct  

c Cilin

ders 

Linkage

 

structu

ral 

capacity 

    120 

Arch

itecture 

Enviro

nm

ent 

United

 

States 

Pezsh

kpo

ur 

2007 

Design

 (In

terior) 

Dynam

ic 

Systems 

S‐ interio

Direct  

c Cilin

ders 

Both 

Head

 

Postitio

ni

ng 

structu

ral 

capacity 

Arch

itecture 

rable 

House 

Belgiu

Usm

an 

Haque 

2008 

Design

 (In

terior) 

Dynam

ic 

Systems 

S‐ interio

Direct  

Vario

us 

Vario

us 

Both 

structu

ral 

capacity 

Arch

itecture 

Federal 

Building 

United

 

States 

Morphosi

2007 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

M‐ 

Building 

Direct  

Ben

ding 

Motor 

Pragm

atic 

Both 

Linkage

 

structu

ral 

capacity 

Arch

itecture 

of ju

stive 

Shading 

United

 

Kingdom 

Foster+P

artn

ers  2009 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

M‐

Building 

Direct  

Motor 

Pragm

atic 

Both 

Linkage

 

structu

ral 

capacity 

Arch

itecture 

Glass, 

Guills 

United

 

States 

The Livin

2008 

Design

 (In

terior) 

Embedde

S‐ interio

Direct  

SMA 

Pragm

atic 

Swarm

 

Linkage

 

structu

ral 

capacity 

Arch

itecture 

Rem

oteH

ome 

Germ

any 

Smart 

Studio 

2008 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

S‐ interio

Direct  

Vario

us 

Humanist

ic 

Head

 

structu

ral 

capacity 

Arch

itecture 

4D Pixel 

Neth

erlan

ds 

rde 

studios 

2005 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

S‐ interio

Direct  

Servo 

Pragm

atic 

Swarm

 

linkage

 

structu

ral 

capacity 

Arch

itecture 

Apertu

re 

Germ

any 

Frederic 

Eyl 

2005 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

S‐ interio

Direct  

Fans 

Pragm

atic 

Swarm

 

linkage

 

structu

ral 

capacity 

Arch

itecture 

Hylo

zoic 

Grounds 

United

 

States 

Philip

 Beesley 

2008 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

SMA, 

Muscles 

Both 

Swarm

 

Linkage

 

structu

ral 

capacity 

Arch

itecture 

Bubbles 

United

 

States 

Mich

ael Fox 

2010 

Optim

ization 

Dynam

ic 

Systems 

S‐ interio

Direct  

Pneu

mati

c  Both 

Both 

Pneu

mati

c  structu

ral 

capacity 

Arch

itecture 

Dune 4

.0 

Neth

erlan

ds 

rde 

Sstudios 

2008 

Activity 

Clim

ate) 

Dynam

ic 

Systems 

S‐ interio

Direct  

Light 

Pragm

atic 

Swarm

 

Antago

nis

t  structu

ral 

capacity 

    121 

IA 

number 1

 

Muscle

 

Neth

erlan

ds 

Oosterh

ui

2003 

Optim

ization 

Embedde

S‐ interio

Direct  

Muscles 

Pragm

atic 

Head

 

Pneu

mati

c  structu

ral 

capacity 

IA 

number 1

 

Reco

nfigu

red 

Neth

erlan

ds 

Oosterh

ui

2005 

Optim

ization 

Embedde

S‐ interio

Direct  

Muscles 

Pragm

atic 

Head

 

Postitio

ni

ng 

structu

ral 

capacity 

IA 

number 2

 

Muscle 

Body  

Neth

erlan

ds 

Oosterh

ui

2005 

Optim

ization 

Embedde

S‐ interio

Direct  

Muscles 

Pragm

atic 

Head

 

Postitio

ni

ng 

structu

ral 

capacity 

IA 

number 2

 

Muscle 

Tower 1

 

Neth

erlan

ds 

Oosterh

ui

2007 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Muscles 

Pragm

atic 

Head

 

Truss 

structu

ral 

capacity 

IA 

number 2

 

Muscle 

Tower 2

 

Neth

erlan

ds 

Oosterh

ui

2008 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Muscles 

Pragm

atic 

Head

 

Truss 

structu

ral 

capacity 

IA 

number 2

 

Muscle 

Space

  

Neth

erlan

ds 

Oosterh

ui

2007 

Optim

ization 

Embedde

S‐ interio

Direct  

Muscles 

Pragm

atic 

Swarm

 

Postitio

ni

ng 

structu

ral 

capacity 

IA 

number 2

 

Interactiv

e Wall 

Neth

erlan

ds 

Festo  2004 

Activity 

Clim

ate) 

Embedde

S‐ interio

Direct  

Muscles 

Pragm

atic 

Head

 

Truss 

structu

ral 

capacity 

Design

 Group 

Plaza &

 

Fountain

 

Spain

 

Santiago

 Calatrava 

1995 

Activity 

Clim

ate) 

Embedde

M‐ 

Building 

Direct  

Pragm

atic 

Head

 

Linkage

 

structu

ral 

capacity 

Design

 Group 

Guided

 

Mast 

Germ

any 

Otto

 Frei 

1976 

Activity 

Clim

ate) 

Dep

loyab

l

e  M‐

Building 

Direct  

Pragm

atic 

Head

 

Antago

nis

t  structu

ral 

capacity 

Design

 Group 

Hoberm

a

n Sp

here

 

United

 

States 

Asso

ciates 

1998 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Pragm

atic 

Head

 

Nurnberg 

scissors 

structu

ral 

capacity 

Design

 Group 

Hoech

st 

Stadium 

Germ

any 

Otto

 Frei 

1976 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Pragm

atic 

Head

 

Postitio

ni

ng 

structu

ral 

capacity 

    122 

Design

 Group 

Kuwait 

Pavilio

Spain

 

Santiago

 Calatrava 

1992 

Activity 

Clim

ate) 

Embedde

M‐ 

Building 

Direct  

Pragm

atic 

Head

 

Ben

ding 

at node 

structu

ral 

capacity 

Design

 Group 

Music 

Pavilio

United

 

States 

FTL Happold 

1997 

Activity 

Clim

ate) 

Embedde

M‐ 

Building 

Direct  

Pragm

atic 

Head

 

Linkage

 

structu

ral 

capacity 

Design

 Group 

Dep

loyab

l

e Schell 

United

 

Kingdom 

Felix Pallares 

1992 

Activity 

Clim

ate) 

Embedde

M‐ 

Building 

Direct  

Pragm

atic 

Head

 

Nurnberg 

scissors 

structu

ral 

capacity 

Design

 Group 

Kinetic 

Wall 

United

 

States 

Group 

MIT 

2004 

Optim

ization 

Dynam

ic 

Systems 

S‐ interio

Direct  

Pragm

atic 

Head

 

Antago

nis

t  structu

ral 

capacity 

Design

 Group 

Floatin

Pavilio

Switzerla

nd  

Santiago

 Calatrava 

1995 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Pragm

atic 

Head

 

Ben

ding 

at node 

structu

ral 

capacity 

Design

 Group 

Iris Dome 

United

 

States 

Asso

ciates 

1998 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Pragm

atic 

Head

 

Nurnberg 

scissors 

structu

ral 

capacity 

Design

 Group 

Kinetic 

Canopies 

France 

Otto

 Frei 

1976 

Activity 

Clim

ate) 

Embedde

M‐

Building 

Direct  

Pragm

atic 

Head

 

Linkage

 

structu

ral 

capacity 

Design

 Group 

IBM

Pavilio

United

 

States 

Pian

Ren

zo  1995 

Activity 

Clim

ate) 

Embedde

M‐ 

Building 

Direct  

Pragm

atic 

Head

 

Ben

ding 

at node 

structu

ral 

capacity 

   

    123 

AppendixB

 

#include<Button.h>#include<Servo.h>//Declaration!Servomyservo1;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatedServomyservo2;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatedServomyservo3;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatServomyservo4;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatedServomyservo5;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatedServomyservo6;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatServomyservo7;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatedServomyservo8;//createservoobjecttocontrolaservo//amaximumofeightservoobjectscanbecreatedintsensorPinLight=0;intsensorPinIR=2;intsensorPinKnock=5;intsensorPinButton=13;intpos=30;booleanKnocking=false;intcounter=1;ButtonKnop=Button(sensorPinButton,PULLDOWN);

    124 

 

//Initialization!voidsetup(){myservo1.attach(12);//attachestheservoonpin12totheservoobjectmyservo1.write(pos);myservo2.attach(3);//attachestheservoonpin3totheservoobjectmyservo2.write(pos);myservo3.attach(4);//attachestheservoonpin4totheservoobjectmyservo3.write(pos);myservo4.attach(5);//attachestheservoonpin5totheservoobjectmyservo4.write(pos);myservo5.attach(6);//attachestheservoonpin6totheservoobjectmyservo5.write(pos);myservo6.attach(7);//attachestheservoonpin7totheservoobjectmyservo6.write(pos);myservo7.attach(8);//attachestheservoonpin8totheservoobjectmyservo7.write(pos);myservo8.attach(10);//attachestheservoonpin10totheservoobjectmyservo8.write(pos);pinMode(sensorPinLight,INPUT);pinMode(sensorPinIR,INPUT);Serial.begin(9600);//printstitlewithendinglinebreakSerial.println("ProgramStarting");

    125 

 

//Loop!voidloop(){intValueLight=map(irRead(sensorPinLight,10),0,900,30,160);//ValueLight=map(analogRead(sensorPinLight),0,900,30,160);floatdistance=12343.85*pow(irRead(sensorPinIR,10),‐1.15);//floatdistance=12343.85*pow(analogRead(sensorPinIR),‐1.15);//floatdistance=irRead(sensorPinIR,10);intValueIR=map(distance,0,100,30,160);intValueKnock=irRead(sensorPinKnock,10);if(ValueKnock>=50){Knocking=true;}ValueLight=constrain(ValueLight,30,160);ValueIR=constrain(ValueIR,30,160);if(Knop.uniquePress()){counter++;if(counter==3){counter=0;}Serial.println("Program:");Serial.println(counter);}if(counter==0){Serial.println(ValueLight);WriteAll(ValueLight);}if(counter==1){Serial.println(ValueIR);//Serial.println(distance);WriteAll(ValueIR);}if(counter==2){Serial.println(ValueKnock);if(Knocking==true){WriteAll(170);delay(10000);SweepAll(170,30);Knocking=false;}}delay(100);}

    126 

intirRead(intreadPin,intamount){inthalfPeriod=13;//oneperiodat38.5khZisaproximately26microsecondsintcycles=amount;//26microseconds*38ismoreorless1millisecondinti;inttotal=0;for(i=0;i<=cycles;i++){intinterval=analogRead(readPin);total=total+interval;delay(halfPeriod);}return(total/cycles);}voidWriteAll(intvalue){myservo1.write(value);//delay(1000);myservo2.write(value);//delay(1000);myservo3.write(value);//delay(1000);myservo4.write(value);//delay(1000);myservo5.write(value);//delay(1000);myservo6.write(value);//delay(1000);myservo7.write(value);//delay(1000);myservo8.write(value);//delay(1000);}voidSweepAll(intstart,inteinde){if(start>einde){for(intvalue=start;value>einde;value‐‐)//goesfrom0degreesto180degrees{//instepsof1degreeWriteAll(value);//tellservotogotopositioninvariable'pos'delay(15);//waits15msfortheservotoreachtheposition}}if(einde>start){for(intvalue=start;value<einde;value++)//goesfrom0degreesto180degrees{//instepsof1degreeWriteAll(value);//tellservotogotopositioninvariable'pos'delay(15);//waits15msfortheservotoreachtheposition}}

    127 

BibliographyAdaptive Building Initiative, 2006. Adaptive Building Initiative. Strata. Available

at: http://www.adaptivebuildings.com/strata-surface.html [Accessed June 6, 2011].

Andy Payne, Matt Bell & Elise Elsacker, 2010. Kinect & Grasshopper. Home. Available at: http://ghkinect.blogspot.com/2011/03/kinect-grasshopper.html [Accessed May 20, 2011].

Andy, P. & Johnson, J., 2010. Firefly. Home. Available at: http://www.fireflyexperiments.com/ [Accessed May 7, 2011].

Arduino, 2005. Arduino. Homepage. Available at: http://www.arduino.cc/ [Accessed May 6, 2011].

Arnall, T., Knutsen, J. & Martinussen, E.S., 2011. Immaterials: Light painting WiFi on vimeo. Available at: http://vimeo.com/20412632 [Accessed May 20, 2011].

Birdair, Birdair Tensotherm. Homepage. Available at: http://www.tensothermroofing.com/ [Accessed May 23, 2011].

Bullivant, L., 2007. 4dsocial: Interactive Design Environments, Wiley.

Bullivant, L., 2005. 4dspace: Interactive Architecture 1st ed., Academy Press.

Calatrava, S., Santiago Calatrava : Homepage. Available at: http://www.calatrava.com/# [Accessed May 27, 2011].

D’Estree Sterk, T., 2003. The Office for Robotic Architectural Media & Bureau for Responsive Architecture. Homepage. Available at: http://www.orambra.com/ [Accessed May 2, 2011].

Daerden, F. & Lefeber, D., Pneumatic Artifical Muscles: actuators for robotics and automation, Vrije Universiteit Brussel.

Davidson, S., Grasshopper - generative modelling for Rhino. Home. Available at: http://www.grasshopper3d.com/ [Accessed May 2, 2011].

    128 

Festo Corporate, 2009. Festo Corporate. InteractiveWall. Available at: http://www.festo.com/cms/en_corp/9776.htm [Accessed May 17, 2011].

Fotiadou, A., 2007. Analysis of Design Support for Kinetic Structures, TU Vienna.

Fox, M., 1995a. Kinetic Design Group. Homepage. Available at: http://www.robotecture.com/kdg/project.html [Accessed May 8, 2011].

Fox, M., 1995b. Kinetic Design Group. Kinetic Matrix. Available at: http://www.robotecture.com/kdg/Matrix/matrix.html [Accessed May 6, 2011].

Fox, M. & Kemp, M., 2009. Interactive Architecture 1st ed., Princeton Architectural Press.

Future Cities Lab, 2010. future cities lab. Xeromax Envelop(e). Available at: http://www.future-cities-lab.net/index/?cat=71 [Accessed May 28, 2011].

Haque, U., 2006. haque :: design + research. Burble. Available at: http://www.haque.co.uk/burble.php [Accessed May 17, 2011].

Haque, U., Pachube - data infrastructure for the Internet of Things. Homepage. Available at: http://www.pachube.com/ [Accessed May 27, 2011].

Haque, U. & Somlai-Fischer, A., 2005. Lowtech Sensors and Actuators. Available at: http://lowtech.propositions.org.uk/ [Accessed May 27, 2011].

Hoberman, C., 1997. Hoberman Associates. Expanding Fabric Dome. Available at: http://www.hoberman.com/portfolio/pompidou.php?myNum=7&mytext=Expanding+Fabric+Dome&myrollovertext=%3Cu%3EExpanding+Fabric+Dome%3C%2Fu%3E&category=&projectname=Expanding+Fabric+Dome [Accessed May 17, 2011].

Kejia Industry, KEJIA INDUSTRY. Ball Joint. Available at: http://www.kejiaplasticmould.com/display.asp?id=31 [Accessed May 28, 2011].

Kilian, A. et al., 2006. WhoWhatWhenAIR. Available at: http://musclesfrombrussels.blogspot.com/ [Accessed May 7, 2011].

Lab[au], 2010. LAb[au]. Tessalate. Available at: http://lab-au.com/#/projects/tessel/ [Accessed May 17, 2011].

Mechanisms 101, Mechanisms 101. Scotch Yoke. Available at: http://www.mekanizmalar.com/scotch_yoke.html [Accessed May 28, 2011].

    129 

Van Mele, T., 2008. Scissor-Hinged Membrane Structures - a system for retractable roofs, Vrije Universiteit Brussel. Available at: http://www.vub.ac.be/ARCH/ae-lab/people.php?researcher=Van%20Mele [Accessed May 28, 2011].

Merali, R. & Long, D., 2009. Actuated Responsive Truss, University of Toronto.

Mitchell, W.J., 1996. City of Bits: Space, Place, and the Infobahn, The MIT Press.

Mitchell, W.J., 2000. e-topia: Urban Life, Jim-But Not As We Know It, The MIT Press.

Mitchell, W.J., 2004. Me++: The Cyborg Self and the Networked City, The MIT Press.

Mitchell, W.J., William J. Mitchell. Available at: http://web.media.mit.edu/~wjm/ [Accessed May 8, 2011].

National Geographic, National Geographic. Swarm Intelligence. Available at: http://ngm.nationalgeographic.com/2007/07/swarms/swarms-photography [Accessed May 20, 2011a].

National Geographic, National Geographic. Coral Photos, Coral Wallpapers. Available at: http://photography.nationalgeographic.com/photography/photos/patterns-coral/#/coral-polyps-henry_1387_600x450.jpg [Accessed May 28, 2011b].

Octatube, 2010. Octatube International bv. Projects. Available at: http://www.octatube.nl/index.php?id=5676 [Accessed May 23, 2011].

Oosterhuis, K., 2000. Hyperbody. Homepage. Available at: http://www.hyperbody.nl/ [Accessed May 7, 2011].

Oosterhuis, K. & Xia, X., 2007. Interactive Architecture: No. 1, Ram Distribution.

Oosterhuis, K. & Xia, X., 2008. Interactive Architecture: No. 2, Episode Publishers.

Oosterhuis, K. & Xia, X., 2010. Interactive Architecture: No. 3, Ram Distribution.

Orangevoid, ORANGEVOID. Homepage. Available at: http://www.orangevoid.com/ [Accessed May 7, 2011].

Piker, D., 2011a. Kangaroo bending validation at Vimeo. Available at: http://vimeo.com/20287194 [Accessed May 12, 2011].

Piker, D., 2011b. Kangaroo Group. Homepage. Available at: http://www.grasshopper3d.com/group/kangaroo [Accessed May 2, 2011].

Piker, D., 2011c. Kangaroo Manual. Available at:

    130 

https://docs.google.com/View?id=ddpv99dx_44f88c75fh [Accessed May 2, 2011].

reacTIVision, reacTIVision. Homepage. Available at: http://reactivision.sourceforge.net/ [Accessed May 30, 2011].

Roosegaarde, D., 2011. Studio Roosegaarde. Projects. Available at: http://www.studioroosegaarde.net/projects/#dune [Accessed May 2, 2011].

The Living, The Living New York. Living Glass. Available at: http://www.thelivingnewyork.com/lg/lg16.htm [Accessed May 20, 2011].

Tzonis, A. & Lefaivre, L., 1997. Santiago Calatrava’s Creative Process 1st ed., Birkhäuser Architecture.

Wikipedia, 2011a. Wikipedia, the free encyclopedia. Linkage (mechanical). Available at: http://en.wikipedia.org/wiki/Linkage_(mechanical) [Accessed May 23, 2011].

Wikipedia, 2011b. Wikipedia, the free encyclopedia. Biomimicry. Available at: http://en.wikipedia.org/wiki/Biomimicry [Accessed May 28, 2011].

Wikipedia, 2011c. Wikipedia, the free encyclopedia. Vacuum forming. Available at: http://en.wikipedia.org/wiki/Vacuum_forming [Accessed May 28, 2011].

 

    131 

FicheMasterproef

Student:CarloRousseeuwTitel:KinetischeArchitectuur:ModellerenvanontwerpengedragEngelsetitel:KineticArchitecture:ModellingdesignandbehaviorUDC:72ProefschriftvoorgedragentothetbehalenvandegraadvanMasterindeingenieurswetenschappen:Architectuur–BouwtechnischeOptiePromotor(en):Prof.AndrewVandeMoereAssessoren:Prof.LeoVanBroeckBegeleiders:Prof.StefaanBoeykensKorteinhoud:Thewayweuseandexperienceobjectsinourdailylivesisconstantlybeingimprovedwithincreasinguser‐interactivity.Fromourcarswhicharefilledwithsensorstoenrichourdrivingexperiencetotheautomatedshadingofourwindowswhichdisappearswhenweneedtogetoutofbedinthemorning.Architecturetodayontheotherhandisstatic,itsstructuralformdoesnotinteractwithitsusersoritschangingenvironmentalfactors.Insteadofshieldingtheinhabitantsfromthesefactors,thesefactorscanberespondedtoandinteractedwithtochangetheinhabitant’sperceptionofthisnewspace,InteractiveArchitecture.Inthedesignofinteractivearchitecturewithstructuralkineticchanges,KineticArchitecture,thesimulationofastructureanditsbehaviorplaysavaluableroleinitsoveralldesignandproduction.Beingabletoconnectawiderangeofsensordatawiththisdesign‐softwarewecrossthebridgenecessaryforcompletelysimulatinginteractivearchitecture,whichinturnhasaneffectonthefinaldesign.RecentdevelopmentsandcommunityeffortsinpluginsfordrawingsoftwarelikeGrasshopperforRhinoceroshavegivenustheseabilities. 

K.U.LeuvenFaculteitIngenieurswetenschappen 2010‐2011

    132 

Everyprojectisuniquebyitsowncontextandusageandthereforeuniquebyitsmeanstointeract.ThisthesissimulatesdifferentexistingstructuresinthecurrentlandscapesandteststhescopeofcurrentsimulationpackagesandtheirusetodesignerswithregardstoKineticArchitecture.AlsotheintelligencewhichcontrolsthisKineticArchitectureandthedifferentkindsofdatastreamsareaddressedtogetherinthecontextofthesimulationsoftware.Besidestheresearchintermsofsimulation,thisthesisalsodiscussespracticalissuesofKineticStructuresinageneralwaybeforebuildingaworkingprototype.ThisresearchwillactasacatalysttoprovidearchitectswiththenecessaryskillsettodevelopanddesigninteractivearchitecturebutalsotoprovideamutualgoalforotherdisciplineslikeroboticsandmaterialengineerstoformandresearchdifferentendproductswithenhanceduserinteractivitywhichcouldbeusedinthisnewbreedofInteractiveArchitecture.

top related