inférence en génétique des populations

Post on 23-Jun-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Inference en genetique des populations

Francois Rousset & Raphael Leblois

M2 Biostatistiques 2015–2016

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 1 / 30

Outline of course

Buts: presenter des thematiques de recherche methodologiques actuelles,et faciliter la comprehension de la litterature

Rappels de genetique (FR)

Likelihood inference under simple models; the coalescent (FR)Molecular markers (RL)

TD Coalescence (RL)

Moment methods (FR)

Algorithms for likelihood inference under neutral models (RL)

Simulation-based inference: ABC (Jean-Michel Marin)

Analyse d’articles

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 2 / 30

Why is (statistical) regression called regression?

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 3 / 30

Why is (statistical) regression called regression?

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 3 / 30

Today’s outline

Population genetics = analysis of the processes controlling geneticpolymorphisms in populations

Developed to understand evolution

From Mendel’s rules to population processes

Population genetics

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 4 / 30

A familiar example: our mosquitoes

In the ’60s: development of tourism.Insecticide treatments 1969- First resistance in 1972

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 5 / 30

A familiar example: our mosquitoes

In the ’60s: development of tourism.Insecticide treatments 1969- First resistance in 1972

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 5 / 30

A familiar example: our mosquitoes

In the ’60s: development of tourism.Insecticide treatments 1969- First resistance in 1972

October 1996

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 5 / 30

How does natural selection work?

artificial breeding: we know that selection works even if we do notknow the mechanisms of heredity

VariationDifferential reproductive success (fitness)Heredity

Was not compatible with some early ideas about heredity

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 6 / 30

Heredity matters

The misconception ofblending inheritance

R R

R R R

R R R

Assuming Xdescendant = Xparents

How does the variance of trait evolve?

Variance of trait quickly vanishesVar(X )among descendants =Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= Xparents

Elaborations, e.g. regression on ancestralvalues (Galton)

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 7 / 30

Heredity matters

The misconception ofblending inheritance

R R

R R R

R R R

Assuming Xdescendant = Xparents

Variance of trait quickly vanishesVar(X )among descendants =Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= Xparents

Elaborations, e.g. regression on ancestralvalues (Galton)

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 7 / 30

Heredity matters

The misconception ofblending inheritance

R R

R R R

R R R

Assuming Xdescendant = Xparents

Variance of trait quickly vanishesVar(X )among descendants =Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= Xparents

Elaborations, e.g. regression on ancestralvalues (Galton)

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 7 / 30

Heredity matters

The misconception ofblending inheritance

R R

R R R

R R R

Assuming Xdescendant = Xparents

Variance of trait quickly vanishesVar(X )among descendants =Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= Xparents

Elaborations, e.g. regression on ancestralvalues (Galton)

Xt+1 = 2Xt3 + 4Xt−1

9 + 8Xt−2

27 + · · ·

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 7 / 30

Heredity matters

The misconception ofblending inheritance

R R

R R R

R R R

Assuming Xdescendant = Xparents

Variance of trait quickly vanishesVar(X )among descendants =Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= Xparents

Elaborations, e.g. regression on ancestralvalues (Galton)

Xt+1 = Xt2 + Xt−1

4 + Xt−2

8 + · · ·

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 7 / 30

Mendelian segregation

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

Allows continued selection ofinitial variation over manygenerations

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 8 / 30

Mendelian segregation

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

Allows continued selection ofinitial variation over manygenerations

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 8 / 30

Mendelian segregation

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

Allows continued selection ofinitial variation over manygenerations

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 8 / 30

Two developments

Concepts of particulate inheritance andits physical basis

chromosomes

� � � �

� � � � � �

� � � � � � � �

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 9 / 30

Two developments

Concepts of particulate inheritance andits physical basischromosomes

� � � �

� � � � � �

� � � � � � � �

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 9 / 30

Two developments

Concepts of particulate inheritance andits physical basischromosomes

� � � �

� � � � � �

� � � � � � � �

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 9 / 30

Meiosis

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 10 / 30

Meiosis

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 10 / 30

Two developments

Concept of particulate inheritance andits physical basischromosomesLinkage maps

aa bb

ab ab ab

aa ab ab bb

� � � �

••••� � . . . � �

� � � � � � � �

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 11 / 30

Two developments

Concept of particulate inheritance andits physical basischromosomesLinkage mapsQuantitative theory of evolution

aa bb

ab ab ab

aa ab ab bb

� � � �

••••� � . . . � �

� � � � � � � �

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 11 / 30

The language of Mendelian and population genetics

At an (autosomal) locus you have two genes (one from each parent) butmaybe a single allele.

Phenotype1 := anything (R)

Genotype1 := set of transmitted determinants of the phenotype, eachof which is transmitted independently of the environment.(aa/ab/bb)

Gene1 := an element of the genotype.

May or may not be DNAMay or may not code for a protein

Allele1 := a form of the gene (a as opposed to b)

Locus := position of a gene on a genetic (or physical) map

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 12 / 30

The language of Mendelian and population genetics

At an (autosomal) locus you have two genes (one from each parent) butmaybe a single allele.

Phenotype1 := anything (R)

Genotype1 := set of transmitted determinants of the phenotype, eachof which is transmitted independently of the environment.(aa/ab/bb)

Gene1 := an element of the genotype.

May or may not be DNAMay or may not code for a protein

Allele1 := a form of the gene (a as opposed to b)

Locus := position of a gene on a genetic (or physical) map

1After Johannsen, 1911FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 12 / 30

The language of Mendelian and population genetics

At an (autosomal) locus you have two genes (one from each parent) butmaybe a single allele.

Phenotype1 := anything (R)

Genotype1 := set of transmitted determinants of the phenotype, eachof which is transmitted independently of the environment.(aa/ab/bb)

Gene1 := an element of the genotype.

May or may not be DNAMay or may not code for a protein

Allele1 := a form of the gene (a as opposed to b)

Locus := position of a gene on a genetic (or physical) map

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 12 / 30

The language of Mendelian and population genetics

At an (autosomal) locus you have two gene copies (one from each parent)but maybe a single allele.

Phenotype1 := anything (R)

Genotype1 := set of transmitted determinants of the phenotype, eachof which is transmitted independently of the environment.(aa/ab/bb)

Gene1 := an element of the genotype.

May or may not be DNAMay or may not code for a protein

Allele1 := a form of the gene (a as opposed to b)

Locus := position of a gene on a genetic (or physical) map

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 12 / 30

From crosses to populations

RRR

R

R

RRR

R

0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Regression coefficient=heritability;quantifies response to selection

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 13 / 30

From crosses to populations

RRR

R

R

RRR

R

0.50 0.55 0.60 0.65 0.700.

450.

500.

550.

600.

650.

700.

75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Regression coefficient=heritability;quantifies response to selection

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 13 / 30

From crosses to populations

RRR

R

R

RRR

R

0.50 0.55 0.60 0.65 0.700.

450.

500.

550.

600.

650.

700.

75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Regression coefficient=heritability;quantifies response to selection

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 13 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with semi-dominance, i.e.

R1 R0

R R R

R R R R

Further assume pb = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,semi-dominance within loci, allpb = 0.4

0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 14 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with semi-dominanceFurther assume pb = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,semi-dominance within loci, allpb = 0.4

0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 14 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with semi-dominanceFurther assume pb = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,semi-dominance within loci, allpb = 0.4

0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 14 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with semi-dominanceFurther assume pb = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,semi-dominance within loci, allpb = 0.4

R1 R0

R R R

R R R R

0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 14 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with semi-dominanceFurther assume pb = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,semi-dominance within loci, allpb = 0.4

0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 14 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with dominance,pb = 0.4

R1 R0

R R R

R R R R

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,dominance within loci, all pb = 0.4

0.75 0.80 0.85 0.90

0.70

0.75

0.80

0.85

0.90

0.95

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●

●●

●●

●●

●●

●●

● ●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 15 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with dominance,pb = 0.4

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

ab bb

ab bb

aa bb

ab

aa aa

aaaa ab

ab aa

ab abaa ab ab bb

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,dominance within loci, all pb = 0.4

0.75 0.80 0.85 0.90

0.70

0.75

0.80

0.85

0.90

0.95

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●

●●

●●

●●

●●

●●

● ●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 15 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with dominance,pb = 0.4

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,dominance within loci, all pb = 0.4

0.75 0.80 0.85 0.90

0.70

0.75

0.80

0.85

0.90

0.95

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●

●●

●●

●●

●●

●●

● ●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 15 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with dominance,pb = 0.4

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,dominance within loci, all pb = 0.4

0.75 0.80 0.85 0.90

0.70

0.75

0.80

0.85

0.90

0.95

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●

●●

●●

●●

●●

●●

● ●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 15 / 30

Parent-offspring regressions under Mendelian inheritance

One locus with dominance,pb = 0.4

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

mid−parent phenotype

offs

prin

g ph

enot

ype

100 loci, additive effect among loci,dominance within loci, all pb = 0.4

0.75 0.80 0.85 0.90

0.70

0.75

0.80

0.85

0.90

0.95

mid−parent phenotype

offs

prin

g ph

enot

ype

●●

●●

●●

●●

●●

●●

●●

●●

● ●

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 15 / 30

Parent-offspring regressions under Mendelian inheritance

Many complications ignored in previous examples: environmental effects,non-additive effects of different loci (epistasis)

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 16 / 30

Changes in allele frequencies: classification of causes

Analysis of changes in genotype frequencies in terms of

Selection

Mutation

Immigration (“gene flow”)

Drift

Additional effects of the mating system on the diploid genotype frequenciesAdditional effects of recombination on multilocus genotype frequencies

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 17 / 30

When nothing happens: Hardy-Weinberg (HW) equilibrium

Initially addressed an early misconception about the transmission ofdominant characters:

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

HW equilibrium: allele frequencies do not change over generations (in theabsence of selection, mutation and drift)Random mating (panmixia) ⇒ HW genotype frequencies p2 : 2pq : q2

(using traditional notation p for the frequency of an allele in a population,and q := 1− p)Genotype frequencies also constant over generations

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 18 / 30

When nothing happens: Hardy-Weinberg (HW) equilibrium

Initially addressed an early misconception about the transmission ofdominant characters:

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

HW equilibrium: allele frequencies do not change over generations (in theabsence of selection, mutation and drift)Random mating (panmixia) ⇒ HW genotype frequencies p2 : 2pq : q2

(using traditional notation p for the frequency of an allele in a population,and q := 1− p)Genotype frequencies also constant over generations

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 18 / 30

When nothing happens: Hardy-Weinberg (HW) equilibrium

Initially addressed an early misconception about the transmission ofdominant characters:

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

HW equilibrium: allele frequencies do not change over generations (in theabsence of selection, mutation and drift)Random mating (panmixia) ⇒ HW genotype frequencies p2 : 2pq : q2

(using traditional notation p for the frequency of an allele in a population,and q := 1− p)Genotype frequencies also constant over generations

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 18 / 30

Non-random mating

E.g. partial selfing with probability s

P(ab)′ = (1− s)2pq + sP(ab)/2

Still equilibrium: allele frequencies do not change over generations (in theabsence of selection and drift)⇒ Asymptotic equilibrium,

P(ab) = 2pq1− s

1− s/2= 2pq(1− FIS) for FIS =

s

2− s.

Genotype frequencies p2 + pqFIS : 2pq(1− FIS) : q2 + pqFIS

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 19 / 30

Mutation

Example: insecticide resistance

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 20 / 30

Mutation

Anything that changes the allelic state: single nucleotide, deletions,insertions, chromosomal inversions and translocations....Rates of point mutation per gene copy per generation:

After Drake et al. (1998) Genetics

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 21 / 30

Selection

Selection: causal link between parent i ’s alleles and their reproductivesuccess.

General:

E[p′a] =∑

parents i

P(parent is i)1a(i) =1

N

∑NP(parent is i)1a(i)

NP(parent is i) is the expected number of descendants from parent i .It may be taken as a definition of the fitness wi of individual i , such that

E[p′a]− pa = Cov[wi , 1a(i)].

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 22 / 30

Selection

Selection: causal link between parent i ’s alleles and their reproductivesuccess.Example: insecticide resistance

E(survival) = 1−1Treated(x)[sa

2(2−#A) +

se2

(2−#E)]−ca

#A

2−ce

#E

2

General:

E[p′a] =∑

parents i

P(parent is i)1a(i) =1

N

∑NP(parent is i)1a(i)

NP(parent is i) is the expected number of descendants from parent i .It may be taken as a definition of the fitness wi of individual i , such that

E[p′a]− pa = Cov[wi , 1a(i)].

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 22 / 30

Selection

Selection: causal link between parent i ’s alleles and their reproductivesuccess.

E[p′a] =∑

parents i

P(parent is i)1a(i)

=∑

parents i

P(survival of i)∑parents k P(survival of k)

1a(i).

General:

E[p′a] =∑

parents i

P(parent is i)1a(i) =1

N

∑NP(parent is i)1a(i)

NP(parent is i) is the expected number of descendants from parent i .It may be taken as a definition of the fitness wi of individual i , such that

E[p′a]− pa = Cov[wi , 1a(i)].

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 22 / 30

Selection

Selection: causal link between parent i ’s alleles and their reproductivesuccess.General:

E[p′a] =∑

parents i

P(parent is i)1a(i) =1

N

∑NP(parent is i)1a(i)

NP(parent is i) is the expected number of descendants from parent i .

It may be taken as a definition of the fitness wi of individual i , such that

E[p′a]− pa = Cov[wi , 1a(i)].

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 22 / 30

Selection

Selection: causal link between parent i ’s alleles and their reproductivesuccess.General:

E[p′a] =∑

parents i

P(parent is i)1a(i) =1

N

∑NP(parent is i)1a(i)

NP(parent is i) is the expected number of descendants from parent i .It may be taken as a definition of the fitness wi of individual i , such that

E[p′a]− pa = Cov[wi , 1a(i)].

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 22 / 30

Some traditional or memorable formulas

For deterministic models, in terms of allelic fitnesses wa and wb

(papb

)′=

wa

wb

papb

p′a − pa =(wa − wb)pa(1− pa)

=βw ,1a Var(1a) = Cov[wi , 1a(i))]

Fitness is often more vaguely defined, up to a constant w , such that

p′a − pa =(wa − wb)

wpa(1− pa)

E.g., “fitness” defined as survival in previous example.

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 23 / 30

Some traditional or memorable formulas

For deterministic models, in terms of allelic fitnesses wa and wb(papb

)′=

wa

wb

papb

p′a − pa =(wa − wb)pa(1− pa)

=βw ,1a Var(1a) = Cov[wi , 1a(i))]

Fitness is often more vaguely defined, up to a constant w , such that

p′a − pa =(wa − wb)

wpa(1− pa)

E.g., “fitness” defined as survival in previous example.

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 23 / 30

Migration

Example: insecticide resistance

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 24 / 30

Migration

Example: insecticide resistance

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 24 / 30

Components of fitness can be estimated

Example: insecticide resistance

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 25 / 30

Genetic drift

107 lines founded each by 16heterozygous flies

Buri (1956)

Wright-Fisher model

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 26 / 30

Wright-Fisher model

AssumptionsN parents each producing a Poisson-distributed number (with mean � N)of juveniles.N descendants are drawn from all juveniles.Elementary questionsDistribution of number of drawn offspring of each parent?Two alleles a and b: Distribution of number of drawn offspring of type a?Simplest version: no mutation nor selectionMarkov chain on na with transition probabilities P(n′a|na):

(N

n′a

)(na/N)n

′a(1− na/N)N−n

′a =

(N

n′a

)pn′aa (1− pa)N−n

′a

(Symmetric) mutation: (N

n′a

)℘n′a(1− ℘)N−n

′a

with ℘ = pa + µ(1− 2pa)E[pa(1− pa)] after t generations ?

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 27 / 30

Wright-Fisher model

AssumptionsN parents each producing a Poisson-distributed number (with mean � N)of juveniles.N descendants are drawn from all juveniles.Elementary questionsDistribution of number of drawn offspring of each parent?Two alleles a and b: Distribution of number of drawn offspring of type a?Simplest version: no mutation nor selectionMarkov chain on na with transition probabilities P(n′a|na):(

N

n′a

)(na/N)n

′a(1− na/N)N−n

′a =

(N

n′a

)pn′aa (1− pa)N−n

′a

(Symmetric) mutation: (N

n′a

)℘n′a(1− ℘)N−n

′a

with ℘ = pa + µ(1− 2pa)E[pa(1− pa)] after t generations ?

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 27 / 30

Wright-Fisher model

AssumptionsN parents each producing a Poisson-distributed number (with mean � N)of juveniles.N descendants are drawn from all juveniles.Elementary questionsDistribution of number of drawn offspring of each parent?Two alleles a and b: Distribution of number of drawn offspring of type a?Simplest version: no mutation nor selectionMarkov chain on na with transition probabilities P(n′a|na):(

N

n′a

)(na/N)n

′a(1− na/N)N−n

′a =

(N

n′a

)pn′aa (1− pa)N−n

′a

(Symmetric) mutation: (N

n′a

)℘n′a(1− ℘)N−n

′a

with ℘ = pa + µ(1− 2pa)E[pa(1− pa)] after t generations ?FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 27 / 30

Complex patterns can result from interactions between thedifferent processes

Frequency of a mutant controlling expression of lactase in humanpopulations

Need for formal model-based inferences

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 28 / 30

References

Maynard Smith Chapitre 1 Biologie Evolutive

http://kimura.univ-montp2.fr/

~rousset/courses.html

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 29 / 30

Sexual life cycles

“Diploid” organism “Haploid” organism

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 30 / 30

Sexual life cycles

“Diploid” organism “Haploid” organism

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 30 / 30

Sexual life cycles

“Diploid” organism “Haploid” organism

A single haplo-diploid cycle with a unique transmission rule

FR & RL Inference en genetique des populations M2 Biostatistiques 2015–2016 30 / 30

top related