information signal processingjao/talks/invitedtalks/isp2.pdf · information signal processing j. a....

Post on 20-Jul-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Information Signal ProcessingInformation Signal Processing

Joseph A. OJoseph A. O’’SullivanSullivan

Electronic Systems and Signals Research Laboratory

Center for Security TechnologiesDepartment of Electrical and Systems Engineering

Washington Universityjao@ee.wustl.edu

http://essrl.wustl.edu/~jaoSupported by: ONR, NSF, NIH, Boeing Foundation, DARPASpecial thanks to Naveen Singla

J. A. O’Sullivan. 11/21/2003Information Signal Processing

2

CollaboratorsCollaborators

Jasenka BenacMichael D. DeVoreAndrew (Lichun) LiClayton MillerLee MontagninoRyan Murphy Natalia SchmidNaveen SinglaBrandon WestoverShenyu Yan

G. James BlaineRoger ChamberlainMark FranklinDaniel R. FuhrmannRonald S. IndeckChenyang LuPierre Moulin, UIUCMarcel MullerRobert PlessDavid G. PolitteChrysanthe PrezaAndrew Singer, UIUC Donald L. SnyderBruce R. WhitingJeffrey F. Williamson, VCULihao Xu

Faculty Current and Former Students

J. A. O’Sullivan. 11/21/2003Information Signal Processing

4

OutlineOutline

• DSP ISP

- Data models, computational models,

algorithms

- Central role of information

• Graphical Data Models- X-ray CT imaging

- Iterative decoding

• Message Passing EM

Algorithms

• Applications Revisited

• Speculation on Trends• Conclusions

J. A. O’Sullivan. 11/21/2003Information Signal Processing

5

Signal Processing

Information TheoryComputation and

Communication

FFTFFT

MultiresolutionMultiresolutionanalysisanalysis

J. A. O’Sullivan. 11/21/2003Information Signal Processing

6

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

FFT

J. A. O’Sullivan. 11/21/2003Information Signal Processing

7

Signal Processing

Information Theory

Numerical analysisNumerical analysis

Processors: parallel, Processors: parallel, ASIC, etc.ASIC, etc.

Systolic architecturesSystolic architectures

FFTWFFTW

Computation and

Communication

J. A. O’Sullivan. 11/21/2003Information Signal Processing

8

Signal Processing

Information Theory

Numerical analysisNumerical analysis

Processors and Processors and architecturesarchitectures

FFT, FFTWFFT, FFTW

Transversal filtersTransversal filters

MRAMRA

Complexity theoryComplexity theory

Graphical modelsGraphical models

KalmanKalman filtersfilters

CompressionCompression

Computation and

Communication

J. A. O’Sullivan. 11/21/2003Information Signal Processing

9

Computation and

Communication

Information Signal ProcessingInformation Signal Processing

Signal Processing

Information Theory

ComplexityComplexity--constrained processingconstrained processing

Signal processing on graphsSignal processing on graphs

Distributed signal processingDistributed signal processing

Distributed information theoryDistributed information theory

Distributed computation and Distributed computation and communicationcommunication

Optimal information extraction, Optimal information extraction, communication, computationcommunication, computation

J. A. O’Sullivan. 11/21/2003Information Signal Processing

10

Distributed sensing,

communication, computation““The architecture for a The architecture for a

fully netted maritime forcefully netted maritime force””

J. A. O’Sullivan. 11/21/2003Information Signal Processing

11

Wireless Sensor NetworksWireless Sensor Networks

http://www.greatduckisland.net/index.php

Great Duck Island Habitat

J. A. O’Sullivan. 11/21/2003Information Signal Processing

14

OutlineOutline

• DSP ISP

- Data models, computational models,

algorithms

- Central role of information

• Graphical Data Models- X-ray CT imaging

- Iterative decoding

• Message Passing EM

Algorithms

• Applications Revisited

• Speculation on Trends• Conclusions

J. A. O’Sullivan. 11/21/2003Information Signal Processing

15

Graphical Data ModelsGraphical Data Models

•• Model 1:Model 1: y = Hsy = Hs– y is n × 1, s is m × 1,

and H is n × m

– yj depends on sk if hjk 0

– Defines a graphical model

•• Model 2:Model 2:

– Neighborhood structure

– Bipartite graph model

•• Model 3:Model 3:– RVs on edges of graph

k

j

j

kj jksypp ))(,|()|( sy

k kj

kjk sxpp)(

)|()|( sx

j

jkj jkxypp ))(,|()|( xy

J. A. O’Sullivan. 11/21/2003Information Signal Processing

16

Tomography

S

D

Nonrandom Graphs

Line integrals through patient

Quantization point spread function

weights on edges of graph

Helps organize computations

Siemens Somotom Emotion

J. A. O’Sullivan. 11/21/2003Information Signal Processing

17

Computational ModelsComputational Models

System model accounts for:

• Information extraction

problem definition

• Compression of sensor data

• Network throughput

• Processor cycles per

instruction

• Size of processor local

memory

• Communication bandwidth

of each link

• etc.

J. A. O’Sullivan. 11/21/2003Information Signal Processing

18

Computational ModelsComputational Models

• Local resources plus remote

• Communicate observation as well as classification- Human in the loop

- Remote contribution to classification when available

• Dynamic resource availability

• Sequence of partial classifications (an, n)

J. A. O’Sullivan. 11/21/2003Information Signal Processing

19

Progress: Computational Graph Progress: Computational Graph Same as Data Model GraphSame as Data Model Graph

•• Message passing algorithmsMessage passing algorithms– Pearl’s belief propagation

– Iterative decoding

» Turbo-codes, parallel concatenated codes

» Low density parity check codes

» Repeat-accumulate codes, serial concatenated codes

– Iterative equalization and decoding

•• ExpectationExpectation--Maximization (EM) AlgorithmsMaximization (EM) Algorithms– Graphical models

– General problem

– Gaussian, Poisson (emission tomography, transmission tomography)

– Abstract examples on random graphs

J. A. O’Sullivan. 11/21/2003Information Signal Processing

20

10011010101000

01010101010001

10100001010101

01100110010100

10010101001010

00101000101011

01001010100110

H Regular (3,6) n=14

Random Graphs

Comment: LDPC parity check matrix

J. A. O’Sullivan. 11/21/2003Information Signal Processing

21

001010100000

100100000010

010001001000

000100010001

100000001100

001000100010

010001010000

000010000101

H Regular (2,3) n=12

Random Graphs

J. A. O’Sullivan. 11/21/2003Information Signal Processing

22

10011010101000

01010101010001

10100001010101

10101010010100

10010101001010

00101000101101

01001001010110

H Irregular n=14

Random Graphs

J. A. O’Sullivan. 11/21/2003Information Signal Processing

24

k

j

jk

jk

),(

),(

)1(

'

)1(

)(

'

)1(

stateg

statef

m

kjk

m

jk

m

jkj

m

jk

J. A. O’Sullivan. 11/21/2003Information Signal Processing

27

Iterative Decoding Message PassingIterative Decoding Message Passing

kjk

m

jk

m

jk

\)('

)(

'

)1(

jkj

m

kjz

m

jk k

\)('

)1(

'

)1(

2tanh)1(

2tanh

Codeword Bit Nodes

zk

xj

Check Nodes

jk

jk

J. A. O’Sullivan. 11/21/2003Information Signal Processing

28

Iterative Decoding Message PassingIterative Decoding Message Passing

-6

-5

-4

-3

-2

-1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

SNR [dB]

Bit e

rro

r ra

te,

Lo

g B

ase

10

ISI-free

BIAWGN Capacity

[10000,5000] regular (3,6) matrix[10000,5000] regular (3,6) matrix

J. A. O’Sullivan. 11/21/2003Information Signal Processing

29

OutlineOutline

• DSP ISP

- Data models, computational models,

algorithms

- Central role of information

• Graphical Data Models- X-ray CT imaging

- Iterative decoding

• Message Passing EM

Algorithms

• Applications Revisited

• Speculation on Trends• Conclusions

J. A. O’Sullivan. 11/21/2003Information Signal Processing

30

ML Problem: xsxxys

dpp )|()|(lnmax

EM Algorithm: )|()|(

),|(ln),|(minmin

sxxy

syxsyx

s pp

EM AlgorithmEM Algorithm

sk

yj

Hidden Data

Incomplete Data

xjk

J. A. O’Sullivan. 11/21/2003Information Signal Processing

31

VariationalVariational RepresentationsRepresentations

•• Convex Decomposition LemmaConvex Decomposition Lemma. Let f be convex. Then

• Special Case: f is ln

• Basis for EM; see also De Pierro, Lange, Fessler

i

ii

i i

ii

rii

rr

xfrxf

0,1

)()(1

i

ii

i i

ii

i

iq

q

1,0:

lnminln

P

P

J. A. O’Sullivan. 11/21/2003Information Signal Processing

32

EM AlgorithmEM Algorithm

')|'()'|(

)|()|(),|(

)(

)()()1(

xsxxy

sxxysyx

dpp

ppm

mmm

xsxsyxss

dp, mmm )|(ln)|(argmax )()1()1(

Assume the factorizations:

k kj

kjk sxpp)(

)|()|( sx

j

jkj jkxypp ))(,|()|( xy

These computations become local and thus message passing

In general, these are global computations

J. A. O’Sullivan. 11/21/2003Information Signal Processing

33

Message Passing EM AlgorithmMessage Passing EM Algorithm

)('

'

)('

)(

'''

'),('

'

)('

)(

'''

1(

)|())(',|(

)|())(',|(

),|(

jk

jk

jk

m

kjkjkj

kkjk

jk

jk

m

kjkjkj

(m)

jjk

)m

dxsxpjkxyp

dxsxpjkxyp

yx

KK

KK

K

K

s

jkkjk

m

jjk

m

s

m

k dxsxp,yxsk

)|(ln)|(argmax )()1()1(s

sk

yj

Input Data

Measured Data

xjk

)( jkx

ks

J. A. O’Sullivan. 11/21/2003Information Signal Processing

34

GaussianGaussian--MAPMAP

)2

,0(~

),0(~

;

0 Iw

Is

wHsy

NN

PN

)(

)(

0

)1( ˆ

|)(|2|)(|

ˆkj

l

jk

l

k x

j

NkP

Ps

)('

)1(

'

)1()1( ˆ|)(|

1ˆˆ

jk

l

kj

l

k

l

jk syj

sx

sk

yj

Input Data

Measured Data

xjk

jkx

ks

J. A. O’Sullivan. 11/21/2003Information Signal Processing

35

GaussianGaussian--MAPMAP

[10000,5000] regular (3,6) matrix[10000,5000] regular (3,6) matrix

J. A. O’Sullivan. 11/21/2003Information Signal Processing

36

Emission TomographyEmission Tomography

y ~ Poisson(H )

: Mean of emitted photons

)(

)()(

)1( ˆ|)(|

ˆˆ

kj

m

j

m

km

k qk

)('

)(

'

)(

ˆˆ

jk

m

k

jm

j

yq

k

yj

Pixels

Measured Data

jq

J. A. O’Sullivan. 11/21/2003Information Signal Processing

37

Emission TomographyEmission Tomography

[10000,5000] regular (3,6) matrix[10000,5000] regular (3,6) matrix

J. A. O’Sullivan. 11/21/2003Information Signal Processing

38

Emission TomographyEmission Tomography

[50000,1000] regular (3,150) matrix[50000,1000] regular (3,150) matrix

J. A. O’Sullivan. 11/21/2003Information Signal Processing

39

Transmission TomographyTransmission Tomography

y ~ Poisson(I0exp(-H ))

: photon attenuation )(

)(

)()()1( ln1ˆˆ

kj

m

j

kj

j

m

k

m

kq

y

z

)(

)(

0

)( ˆexpjk

m

k

m

j Iq

k

yj

Pixels

Measured Data

jq

J. A. O’Sullivan. 11/21/2003Information Signal Processing

40

[10000,5000] regular (3,6) matrix[10000,5000] regular (3,6) matrix

Transmission TomographyTransmission Tomography

J. A. O’Sullivan. 11/21/2003Information Signal Processing

41

Comments on DetailsComments on Details

•• Information geometry basisInformation geometry basis

•• Easily extended to arbitrary Easily extended to arbitrary HH

•• Low density Low density sparsesparse

•• Constraints in iterative decoding vs. forward Constraints in iterative decoding vs. forward modelmodel

J. A. O’Sullivan. 11/21/2003Information Signal Processing

42

OutlineOutline

• DSP ISP

- Data models, computational models,

algorithms

- Central role of information

• Graphical Data Models- X-ray CT imaging

- Iterative decoding

• Message Passing EM

Algorithms

• Applications Revisited- Iterative decoding

- X-ray CT imaging

• Speculation on Trends• Conclusions

J. A. O’Sullivan. 11/21/2003Information Signal Processing

43

Science and technologyScience and technologypotentially yield potentially yield

6 Tb/in6 Tb/in22

courtesy R. S. courtesy R. S. IndeckIndeck

Patterned Magnetic Media

J. A. O’Sullivan. 11/21/2003Information Signal Processing

44

Advanced Recording MediaAdvanced Recording MediaBluBlu--Ray DiscRay Disc

Next-generation Optical Disc Video Recording Format

J. A. O’Sullivan. 11/21/2003Information Signal Processing

45

2D Intersymbol Interference2D Intersymbol Interference

1111

11

11

11

1111

21

21

11211

kkkk

k

xxx

x

xxx

1111110

110

12

1111110

100100

kkkkkk

kkkkkk

k

kk

k

rrrr

rrrr

r

rrrr

rrrw(i,j)

25.05.0

5.01h

Includes

Guard Band

jijijijijiji wxxxxr ,1,11,,1,, 25.05.05.0

Singla et al., “Iterative decoding and equalization for 2-D recording channels,” IEEE Trans.

Magn., Sept. 2002.

J. A. O’Sullivan. 11/21/2003Information Signal Processing

46

Full Graph Message PassingFull Graph Message Passing

Measured Data Nodes (r)

Codeword Bit Nodes (x)

Check Nodes (z)

jijijijijiji wxxxxr ,1,11,,1,, 25.05.05.025.05.0

5.01h

J. A. O’Sullivan. 11/21/2003Information Signal Processing

49

Full Graph Message Passing

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3

SNR [dB]

Bit e

rro

r ra

te, L

og

Ba

se

10

ISI-free

Full Graph_50

Full Graph Message PassingFull Graph Message Passing

[10000,5000] regular (3,6) matrix[10000,5000] regular (3,6) matrix

J. A. O’Sullivan. 11/21/2003Information Signal Processing

50

Full Graph AnalysisFull Graph Analysis

Length 4 cycles present which degrade performance Length 4 cycles present which degrade performance of messageof message--passing algorithm passing algorithm

x(i+2,j) x(i+2,j+1)

x(i+1,j) x(i+1,j+1)

x(i,j) x(i,j+1)

x(i+2,j+2)

x(i+1,j+2)

x(i,j+2)

r(i+1,j+1)

r(i,j+1)r(i,j)

r(i+1,j)

From

Check

Nodes

Kschischang et al., “Factor graphs and the sum-product algorithm,” IEEE Trans. Inform.

Theory, Feb. 2001.

J. A. O’Sullivan. 11/21/2003Information Signal Processing

51

Ordered Subsets Message Passing Ordered Subsets Message Passing

From Imaging From Imaging –– Data set is grouped into subsets to Data set is grouped into subsets to increase rate of convergence of image increase rate of convergence of image reconstruction algorithmsreconstruction algorithms

For Decoding For Decoding –– Measured data is grouped into Measured data is grouped into subsets to eliminate short length cycles in the subsets to eliminate short length cycles in the Channel ISI graphChannel ISI graph

H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets

of projection data,” IEEE Trans. Medical Imaging, Dec. 1994

J. A. O’Sullivan. 11/21/2003Information Signal Processing

52

Labeling of data nodes into 4 subsetsLabeling of data nodes into 4 subsets

For each iteration use data nodes of one label onlyFor each iteration use data nodes of one label only

Labeled ISI GraphLabeled ISI Graph

J. A. O’Sullivan, and N. Singla, “Ordered subsets message-passing,” Int’l Symp. Inform.

Theory, Yokohama, Japan 2003.

J. A. O’Sullivan. 11/21/2003Information Signal Processing

53

Ordered Subsets Message Passing

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3

SNR [dB]

Bit e

rror

rate

in log10

ISI-free

Ordered Subsets_200

Full Graph_50

[10000,5000] regular (3,6) matrix[10000,5000] regular (3,6) matrix

Ordered Subsets Message PassingOrdered Subsets Message Passing

J. A. O’Sullivan. 11/21/2003Information Signal Processing

54

CT Imaging in Presence of High CT Imaging in Presence of High Density Attenuators (J. Williamson, PI)Density Attenuators (J. Williamson, PI)

Brachytherapy applicators

After-loading colpostats

for radiation oncology

Cervical cancer: 50% survival rate

Dose prediction important

Object-Constrained Computed

Tomography (OCCT)

J. A. O’Sullivan. 11/21/2003Information Signal Processing

55

Filtered Back ProjectionFiltered Back Projection

Truth FBP

FBP: inverse Radon transform

J. A. O’Sullivan. 11/21/2003Information Signal Processing

56

Transmission TomographyTransmission Tomography• Source-detector pairs indexed by y; pixels indexed by x

• Data d(y) Poisson, means g(y: ), log likelihood function

• Mean unattenuated counts I0, mean background

• Attenuation function (x,E), E energies

• Maximize over or ci; equivalently minimize I-divergence

)(),(),(exp),():(

):():(ln)()):(|(

0 yExxyhEyIyg

ygygydgdl

E x

y

X

Y

I

i

ii ExcEx1

)()(),(

J. A. O’Sullivan. 11/21/2003Information Signal Processing

57

MaximumMaximum--LikelihoodLikelihoodMinimum IMinimum I--divergencedivergence

• Poisson distribution

• Poisson distributed data loglikelihood function

• Maximization over equivalent to minimization of I-divergence

kk

kkI

kkkNP

ek

kNPk

ln)||(

!lnln)(ln

!)(

)(),(),(exp),():(

):()():(

)(ln)()):(||(

):():(ln)()):(|(

0 yExxyhEyIyg

ygydyg

ydydgdI

ygygydgdl

E x

y

y

X

Y

Y

J. A. O’Sullivan. 11/21/2003Information Signal Processing

58

Maximum Likelihood Maximum Likelihood Minimum IMinimum I--DivergenceDivergence

Difficulties: log of sum, sums in exponent

)()()(),(exp),():(

):()():(

)(ln)()):(||(

):():(ln)()):(|(

1

0 yExcxyhEyIyg

ygydyg

ydydgdI

ygygydgdl

E x

I

i

ii

y

y

X

Y

Y

J. A. O’Sullivan. 11/21/2003Information Signal Processing

59

Interpretation: Compare predicted data to measured data

via ratio of backprojections

Update estimate using a normalization constant

Comments: choice for constants; monotonic convergence;

linear convergence; fixed points satisfy Kuhn-

Tucker conditions; constraints easily incorporated

)(~

)(ˆln

)(

1)(ˆ)(ˆ

)(

)()()1(

xb

xb

xZxcxc

li

li

i

li

li

New Alternating Minimization AlgorithmNew Alternating Minimization Algorithmfor Transmission Tomographyfor Transmission Tomography

J. A. O’Sullivan. 11/21/2003Information Signal Processing

60David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000001

J. A. O’Sullivan. 11/21/2003Information Signal Processing

61David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000002

J. A. O’Sullivan. 11/21/2003Information Signal Processing

62David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000005

J. A. O’Sullivan. 11/21/2003Information Signal Processing

63David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000010

J. A. O’Sullivan. 11/21/2003Information Signal Processing

64David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000020

J. A. O’Sullivan. 11/21/2003Information Signal Processing

65David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000050

J. A. O’Sullivan. 11/21/2003Information Signal Processing

66David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000100

J. A. O’Sullivan. 11/21/2003Information Signal Processing

67David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000200

J. A. O’Sullivan. 11/21/2003Information Signal Processing

68David G. Politte

October 31, 2002

Mini CT, AM Iteration 0000500

J. A. O’Sullivan. 11/21/2003Information Signal Processing

69David G. Politte

October 31, 2002

Mini CT, AM Iteration 0001000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

70David G. Politte

October 31, 2002

Mini CT, AM Iteration 0002000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

71David G. Politte

October 31, 2002

Mini CT, AM Iteration 0005000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

72David G. Politte

October 31, 2002

Mini CT, AM Iteration 0010000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

73David G. Politte

October 31, 2002

Mini CT, AM Iteration 0020000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

74David G. Politte

October 31, 2002

Mini CT, AM Iteration 0050000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

75David G. Politte

October 31, 2002

Mini CT, AM Iteration 0100000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

76David G. Politte

October 31, 2002

Mini CT, AM Iteration 0200000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

77David G. Politte

October 31, 2002

Mini CT, AM Iteration 0500000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

78David G. Politte

October 31, 2002

Mini CT, AM Iteration 1000000

J. A. O’Sullivan. 11/21/2003Information Signal Processing

79

Our Plans in CT ImagingOur Plans in CT Imaging

•• CTCT MultirowMultirow SinogramSinogram data:data:14081408 ×× 768768 ×× nndd ×× nnzz

– where nd is the number of detector rows and nz is the number of gantry rotations

•• Fully 3Fully 3--D Implementations for D Implementations for Quantitative CTQuantitative CT

•• SpeedSpeed--up: Ordered Subsets, up: Ordered Subsets, MultigridMultigrid Methods, Parallel Methods, Parallel Implementations on Clusters Implementations on Clusters of PCsof PCs

•• Future: PETFuture: PET--CTCT Siemens Somotom Emotion

J. A. O’Sullivan. 11/21/2003Information Signal Processing

80

Slide and data from R. Laforest and M. Mintun.

PETCT-211

J. A. O’Sullivan. 11/21/2003Information Signal Processing

81

PETCT-165

Slide and data from R. Laforest and M. Mintun.

J. A. O’Sullivan. 11/21/2003Information Signal Processing

82

Additional Algorithm/DetectorAdditional Algorithm/DetectorModel DevelopmentModel Development

•• RegularizationRegularization

•• Energy integrating detectors Energy integrating detectors

•• Finite detector size, better source modelFinite detector size, better source model

•• Finite pixel, Finite pixel, voxelvoxel sizesize

•• Average integral or average exponentialAverage integral or average exponential(arithmetic vs. geometric average)(arithmetic vs. geometric average)

•• Partial volume effectsPartial volume effects

•• MotionMotion

•• ScatteringScattering

•• Limited angle tomographyLimited angle tomography

•• Region of interestRegion of interest

•• Scanner implementations: beam hardening Scanner implementations: beam hardening correction, sampling, etc.correction, sampling, etc.

),( EyEdN

J. A. O’Sullivan. 11/21/2003Information Signal Processing

83

Computation and

Communication

Signal Processing

Information Theory

ComplexityComplexity--constrained processingconstrained processing

Signal processing on graphsSignal processing on graphs

Distributed signal processingDistributed signal processing

Distributed information theoryDistributed information theory

Distributed computation and Distributed computation and communicationcommunication

Optimal information extraction, Optimal information extraction, communication, computationcommunication, computation

J. A. O’Sullivan. 11/21/2003Information Signal Processing

84

Limits of Information TheoryLimits of Information Theory

•• Information theory provides bounds on performance Information theory provides bounds on performance of communication, compression, and data analysisof communication, compression, and data analysis

– Channel coding theorem (capacity)

– Entropy, rate-distortion theory

– Fisher information

•• Open Problems in Information TheoryOpen Problems in Information Theory

– Broadcast channel p(y1,y2|x) capacity region of achievable (R1,R2)

» Depends only on p(y1|x) and p(y2|x); degraded channel known

– Distributed source compression achievable (R1,R2, D1,D2)

•• Algorithmic information theory (Algorithmic information theory (KolmogorovKolmogorovcomplexity)complexity)

p(x,yp(x,y))

XXnn

YYnn

XXnn

ffyy

ffxx

YYnngg ^

^

J. A. O’Sullivan. 11/21/2003Information Signal Processing

85

Speculation on FutureSpeculation on Future

•• Distributed compressionDistributed compression– Compression with side information

– Analogies to information embedding

– Reduced communication rates

•• Broadcast channel models Broadcast channel models – Appropriate for motes

– Communication at different rates using a common signal

– Reduced communication rates

•• Tradeoffs in communication and computationTradeoffs in communication and computation

•• Mobile computing: cheap Mobile computing: cheap expensiveexpensive cheapcheap– mobile base station + network mobile

J. A. O’Sullivan. 11/21/2003Information Signal Processing

86

ConclusionsConclusions

•• Information Signal ProcessingInformation Signal Processing

—— DSP, Information Theory, Computation andDSP, Information Theory, Computation and

CommunicationCommunication

•• Role of Graphical ModelsRole of Graphical Models

•• Message Passing EM AlgorithmsMessage Passing EM Algorithms

•• Iterative Equalization and DecodingIterative Equalization and Decoding

•• XX--Ray CT ImagingRay CT Imaging

J. A. O’Sullivan. 11/21/2003Information Signal Processing

87

Future WorkFuture Work

Signal Processing

Information Theory

Fast algorithmsFast algorithms

Optimal communicationOptimal communication

Distributed information Distributed information theorytheory

Computation and

Communication

top related