ice sheet system model - ice flow models · ice flow models larour et al. ice flow equations...

Post on 28-Sep-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

J E T P R O P U L S I O N L A B O R A T O R Y

ISSM Workshop 2011

Ice Sheet System modelIce flow models

Eric LAROUR1, Eric RIGNOT1,3, Mathieu MORLIGHEM1,2, Hélène SEROUSSI1,2 ChrisBORSTAD1, Feras HABBAL1,3, Daria HALKIDES1,4, Behnaz KHAKBAZ1, John SCHIER-MEIER1, Nicole SCHLEGEL1

1Jet Propulsion Laboratory - California Institute of Technology2Laboratoire MSSMat, École Centrale Paris, France3University of California, Irvine4Joint Institute for Regional Earth System Science & Engineering, UCLA

December 2011 ©Copyright 2011. All rights reserved

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Outline

1 Ice flow equationsApproximations implementedIce flow equationDiagnostic parametersBoundary conditions

2 Combining modelsMethods implemented in ISSMPenaltiesTiling methodUtilization

1/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Ice Sheet flow equationsIncompressibility

∀x ∈ Ω ∇ · v = Tr (ε) =∂u∂x

+∂v∂y

+∂w∂z

= 0 (1)

• v = (u, v ,w) ice velocity (m/yr)

• ε strain rate tensor (yr-1)

Incompressible viscous fluid

σ′ = 2µε (2)

• σ′ deviatoric stress

• µ ice viscosity

• ε strain rate tensor

Glen’s flow law

µ =B

2 εn−1

ne

(3)

• B ice hardness

• n Glen’s law coefficient (n = 3)

• εe effective strain rate (second invariant)2/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Ice Sheet flow equations

Conservation of momentum

∀x ∈ Ω ∇ · σ′ −∇P + ρg = 0 (4)

Assumptions:

1 Stokes flow (quasi-static assumption)

2 Coriolis effect negligible

Boundary conditions

Ice/Air interface: Free surface Γs σ · n = Patm n ' 0

Ice/Ocean interface: water pressure Γw σ · n = Pw n

Ice/Bedrock interface (1): lateral friction Γb (σ · n + βv)‖ = 0

Ice/Bedrock interface (2): impenetrability Γb v · n = 0

Side boundaries: Dirichlet Γu v = vobs

3/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Models description

Full-Stokes model:• Momentum balance + incompressibility• 3D model• Four unknowns (vx , vy , vz , p)

Full-Stokes (FS)

(vx, vy, vz, P )

Model equations

∂x

(2µ∂vx

∂x

)+

∂y

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂z

(µ∂vx

∂z+µ

∂vz

∂x

)−∂p∂x

= 0

∂x

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂y

(2µ∂vy

∂y

)+

∂z

(µ∂vy

∂z+µ

∂vz

∂y

)−∂p∂y

= 0

∂x

(µ∂vx

∂z+ µ

∂vz

∂x

)+

∂y

(µ∂vy

∂z+ µ

∂vz

∂y

)+

∂z

(2µ∂vz

∂z

)−∂p∂z− ρg = 0

∂vx

∂x+∂vy

∂y+∂vz

∂z= 0

4/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Models description

Higher-order model:• [Blatter, 1995, Pattyn, 2003]• 3D model• Horizontal and vertical velocity decoupled• 2 (vx , vy ) + 1 (vz ) unknowns

Blatter-Pattyn (BP)

(vx, vy)

Model equations

∂x

(2µ∂vx

∂x

)+

∂y

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂z

(µ∂vx

∂z+µ

∂vz

∂x

)−∂p∂x

= 0

∂x

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂y

(2µ∂vy

∂y

)+

∂z

(µ∂vy

∂z+µ

∂vz

∂y

)−∂p∂y

= 0

∂x

(µ∂vx

∂z+ µ

∂vz

∂x

)+

∂y

(µ∂vy

∂z+ µ

∂vz

∂y

)+

∂z

(2µ∂vz

∂z

)−∂p∂z− ρg = 0

∂vx

∂x+∂vy

∂y+∂vz

∂z= 0

5/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Models description

Shelfy-stream approximation:• [MacAyeal, 1989]• 2D model• Horizontal and vertical velocity decoupled• 2 (vx , vy ) + 1 (vz ) unknowns

MacAyeal-Morland (SSA)

(vx, vy)

Model equations

∂x

(2µ∂vx

∂x

)+

∂y

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂z

(µ∂vx

∂z+µ

∂vz

∂x

)−∂p∂x

= 0

∂x

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂y

(2µ∂vy

∂y

)+

∂z

(µ∂vy

∂z+µ

∂vz

∂y

)−∂p∂y

= 0

∂x

(µ∂vx

∂z+ µ

∂vz

∂x

)+

∂y

(µ∂vy

∂z+ µ

∂vz

∂y

)+

∂z

(2µ∂vz

∂z

)−∂p∂z− ρg = 0

∂vx

∂x+∂vy

∂y+∂vz

∂z= 0

6/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Models description

Shallow ice approximation:• [Hutter, 1983]• 3D analytical model• 2 unknowns (vx , vy ) computed separately

Hutter (SIA)

(vx, vy)

Model equations

∂x

(2µ∂vx

∂x

)+

∂y

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂z

(µ∂vx

∂z+µ

∂vz

∂x

)−∂p∂x

= 0

∂x

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂y

(2µ∂vy

∂y

)+

∂z

(µ∂vy

∂z+µ

∂vz

∂y

)−∂p∂y

= 0

∂x

(µ∂vx

∂z+ µ

∂vz

∂x

)+

∂y

(µ∂vy

∂z+ µ

∂vz

∂y

)+

∂z

(2µ∂vz

∂z

)−∂p∂z− ρg = 0

∂vx

∂x+∂vy

∂y+∂vz

∂z= 0

7/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Material non-linearity

Model equations

∂x

(2µ∂vx

∂x

)+

∂y

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂z

(µ∂vx

∂z+µ

∂vz

∂x

)−∂p∂x

= 0

∂x

(µ∂vx

∂y+ µ

∂vy

∂x

)+

∂y

(2µ∂vy

∂y

)+

∂z

(µ∂vy

∂z+µ

∂vz

∂y

)−∂p∂y

= 0

∂x

(µ∂vx

∂z+ µ

∂vz

∂x

)+

∂y

(µ∂vy

∂z+ µ

∂vz

∂y

)+

∂z

(2µ∂vz

∂z

)−∂p∂z− ρg = 0

∂vx

∂x+∂vy

∂y+∂vz

∂z= 0

Glen’s flow law

µ =B

2 εn−1

ne

(5)

• B ice hardness

• n Glen’s law coefficient (n = 3)

• εe effective strain rate (second invariant)

→ Treatment of non-linearity with fixed point

8/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Material non-linearityTreatment of non-linearity with fixed point:

Compute uh

Initial velocity u = uh+w

Compute w

a(

uh,Φ

)

= l (Φ)

Solution u = uh+w

∂w

∂z= −div

(

uh

)

Viscosity

Compute us

Initial velocity us

as (us,Φ) = ls (Φ)

Solution us

Viscosity

convergence

convergence

Vertical velocity computed with incompressibility for 2d shelfy-stream and 3dBlatter/Pattyn modes.

9/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Flow equation

setflowequation is used to generate the approximation used to compute thevelocity

• Arguments:1 model2 approximation names3 approximation domains

• Domains can be Argus files or array of element flags• Approximation available

• stokes (Full-Stokes model)• pattyn (Higher-order model)• macayeal (Shallow Shelf Approximation)• hutter (Shallow Ice Approximation)

• Possibility of coupling models

10/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Flow equation

setflowequation is used to generate the approximation used to compute thevelocity

• Examples

1 md=setflowequation(md,'hutter','all')2 md=setflowequation(md,'stokes','all')3 md=setflowequation(md,'macayeal','all')4 md=setflowequation(md,'pattyn','all')

• To diplay the type of approximation:

1 >> plotmodel(md,'data','elements_type')

11/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Flow equation• To diplay the type of approximation:

1 >> plotmodel(md,'data','elements_type')

0 2 4 6 8 10

x 105

0

1

2

3

4

5

6

7

8

9

10x 10

5

Elements type

Hutter’s elements

MacAyeal’s elements

Pattyn’s elements

MacAyealPattyn’s elements

Stokes’s elements

MacAyealStokes’s elements

PattynStokes’s elements

None element

12/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Flow equation class

1 >> md.flowequation23 ans =45 flow equation parameters:6 ismacayealpattyn : 0 -- is the macayeal or pattyn approximation used ?7 ishutter : 0 -- is the shallow ice approximation used ?8 isstokes : 0 -- are the Full-Stokes equations used ?9 vertex_equation : N/A -- flow equation for each vertex

10 element_equation : N/A -- flow equation for each element11 bordermacayeal : N/A -- vertices on MacAyeal's border (for tiling)12 borderpattyn : N/A -- vertices on Pattyn's border (for tiling)13 borderstokes : N/A -- vertices on Stokes' border (for tiling)

13/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Diagnostic class

1 >> md.diagnostic23 ans =45 Diagnostic solution parameters:67 Convergence criteria:8 restol : 0.0001 -- mechanical equilibrium residue convergence criterion9 reltol : 0.01 -- velocity relative convergence criterion, NaN -> not applied

10 abstol : 10 -- velocity absolute convergence criterion, NaN -> not applied11 maxiter : 100 -- maximum number of nonlinear iterations12 viscosity_overshoot : 0 -- over-shooting constant new=new+C*(new-old)1314 boundary conditions:15 spcvx : N/A -- x-axis velocity constraint (NaN means no constraint)16 spcvy : N/A -- y-axis velocity constraint (NaN means no constraint)17 spcvz : N/A -- z-axis velocity constraint (NaN means no constraint)18 icefront : N/A -- segments on ice front list (last column 0-> Air, 1-> Water, ...

2->Ice1920 Rift options:21 rift_penalty_threshold : 0 -- threshold for instability of mechanical constraints22 rift_penalty_lock : 10 -- number of iterations before rift penalties are locked2324 Penalty options:25 penalty_factor : 3 -- offset used by penalties: penalty = Kmax*10^offset26 vertex_pairing : N/A -- pairs of vertices that are penalized2728 Other:29 shelf_dampening : 0 -- use dampening for floating ice ? Only for Stokes model30 stokesreconditioning : 10000000000000 -- multiplier for incompressibility equation. Only for Stokes model31 referential : N/A -- local referential32 requested_outputs : N/A -- additional outputs requested

14/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Boundary conditions

Boundary conditions created automatically or manually• Automatically:

1 >> md=SetIceSheetBC(md)2 >> md=SetIceShelfBC(md,'Front.exp')3 >> md=SetMarineIceSheefBC(md,'Front.exp')

• Manually: fields to change• md.diagnostic.spcvx• md.diagnostic.spcvy• md.diagnostic.spcvz• md.diagnostic.icefront

• To diplay the boundary conditions

1 >> plotmodel(md,'data','BC')

15/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Models description”Everything should be made as simple as possible, but no simpler.” Albert Einstein

Model Dim. Unknowns Reference

Full-Stokes (FS) 3d 4 [Stokes, 1845]

Blatter-Pattyn (BP) 3d 2 + 1 [Blatter, 1995, Pattyn, 2003]

Shallow shelf (SSA) 2d 2 + 1 [MacAyeal, 1989]

Shallow ice (SIA) 2d 2 + 1 [Hutter, 1983]

Hutter (SIA)

(vx, vy)

MacAyeal-Morland (SSA)

(vx, vy)

Blatter-Pattyn (BP)

(vx, vy)

Full-Stokes (FS)

(vx, vy, vz, P )

16/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Penalty method

• Only to couple SSA and HO• Very stiff spring to penalize differences between degrees of freedom

Using penalties to couple models:

1 md=setflowequation(md,'macayeal','FloatingIce.exp','fill','pattyn','coupling','penalties')

17/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Domain Decomposition

• Ω = Ω1 ∪ Ω2

• ΩS = Ω1 ∩ Ω2 6= ∅• u = u1 |Ω1

+ u2 |Ω2∈ V (Ω) = (V1 (Ω1) + V2 (Ω2))

Ω1

Ω2

Ωs

Γ1Γ2

Ω1

Ω2

Ωs

Γ1 Γ2

Find u = u1 |Ω1+ u2 |Ω2

∈ V ,

∀ (v1, v2) ∈ V a (u1 + u2, v1 + v2) = l (v1 + v2)

→ Infinite number of solutions for the continuous problem

18/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Discretization

ΩS

u2 |Ω2

u1 |Ω1

u

Ω2Ω1 Γ2 Γ1

We take advantage of the discretization to avoid the redundancy:

→ Create one layer of elements in the superposition zone

19/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Multi-model formulation

Two different models: a1, a2 and l1, l2

Find u = u1 |Ω1+ u2 |Ω2

∈ (V1 + V2) , such that:

∀v = v1 |Ω1+ v2 |Ω2

∈ (V1 + V2)

a1

(u1 |Ω1

, v1 |Ω1

)︸ ︷︷ ︸

model 1

+ a2

(u2 |Ω2

, v2 |Ω2

)︸ ︷︷ ︸

model 2

+

a2

(u1 |Ω1

, v2 |Ω2

)+ a1

(u2 |Ω2

, v1 |Ω1

)︸ ︷︷ ︸

model coupling

= l1(

v1 |Ω1

)︸ ︷︷ ︸

model 1

+ l2(

v2 |Ω2

)︸ ︷︷ ︸

model 2

• Coupling different mechanical models

• Easy to implement (local modification of stiffness matrices)

20/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Flow equation

setflowequation is used to generate the approximation used to compute thevelocity

• Examples

1 md=setflowequation(md,'pattyn',md.elementongroundedice,'fill','macayeal','coupling','penalties')2 md=setflowequation(md,'pattyn',md.elementongroundedice,'fill','macayeal','coupling','tiling')3 md=setflowequation(md,'stokes','Contour.exp','fill','pattyn')

• Use exptool to create EXP contours

1 >> exptool('Contour.exp')

21/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Flow equation• To diplay the type of approximation:

1 >> ...plotmodel(md,'data','elements_type','edgecolor','k','expdisp','Contour.exp')

0 2 4 6 8 10

x 105

0

1

2

3

4

5

6

7

8

9

10x 10

5

Elements type

Hutter’s elements

MacAyeal’s elements

Pattyn’s elements

MacAyealPattyn’s elements

Stokes’s elements

MacAyealStokes’s elements

PattynStokes’s elements

None element

22/23

Ice flow models

Larour et al.

Ice flow equationsApproximationsimplemented

Ice flow equation

Diagnostic parameters

Boundary conditions

Combining modelsMethods implemented inISSM

Penalties

Tiling method

Utilization

I S S M W O R K S H O P 2 0 1 1 J E T P R O P U L S I O N L A B O R A T O R Y

Bibliography I

Blatter, H. (1995).Velocity and stress-fields in grounded glaciers: A simple algorithm for includingdeviatoric stress gradients.J. Glaciol., 41(138):333–344.

Hutter, K. (1983).Theoretical glaciology: material science of ice and the mechanics of glaciersand ice sheets.D. Reidel Publishing Co, Dordrecht, The Netherlands.

MacAyeal, D. (1989).Large-scale ice flow over a viscous basal sediment - Theory and application toice stream-B, Antarctica.J. Geophys. Res., 94(B4):4071–4087.

Pattyn, F. (2003).A new three-dimensional higher-order thermomechanical ice sheet model:Basic sensitivity, ice stream development, and ice flow across subglacial lakes.J. Geophys. Res., 108(B8):1–15.

Stokes, G. (1845).On the theories of internal friction of fluids in motion.Trans. Cambridge Philos. Soc., 8:287–305.

23/23

Thanks!

top related