fundamental physics at mesa · 2018-08-08 · pvdis-6 prex-i prex-ii qweak solid moller mesa-p2...

Post on 14-Aug-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fundamental Physics at

MESANiklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

PRISMA Retreat September 2015

Particle Physics: What are the fundamental constituents of matter

and how do they interact?

Niklaus Berger – PRISMA September 2015 – Slide 3

The Standard Model of Elementary Particles

Niklaus Berger – PRISMA September 2015 – Slide 4

Hugely successful Magnetic moment of the electron:

• Theory: ge = -2.002 319 304 363 56 (154)

(Aoyama et al., PRL 109, 111807 (2012))

• Experiment: ge = - 2.002 319 304 361 53 (53)

(Hanneke et al. PRL 100, 120801 (2008))

Open Questions?

Niklaus Berger – PRISMA September 2015 – Slide 6

In the Standard Model of particle physics

Dark Matter

NASA: HST and Chandra

Niklaus Berger – PRISMA September 2015 – Slide 7

In the Standard Model of particle physics

Dark Matter

NASA: HST and Chandra

Niklaus Berger – PRISMA September 2015 – Slide 8

Matter-Antimatter Asymmetry

10’000’000’000

Antimatter

10’000’000’001

Matter

Matter-Antimatter Asymmetry

1

UsRadiation

Niklaus Berger – PRISMA September 2015 – Slide 10

In the Standard Model of particle physics

Gravity

Niklaus Berger – PRISMA September 2015 – Slide 11

The Structure of the Standard Model

Niklaus Berger – PRISMA September 2015 – Slide 12

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 103 TeV 106 TeV 109 TeV 1012 TeV 1015 TeV 1018 TeV1 meV1 μeV

Neutrinos eu

dsμ

cb W

ZH

t

Planck-Scale(Gravity)

Niklaus Berger – PRISMA September 2015 – Slide 13

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 103 TeV 106 TeV 109 TeV 1012 TeV 1015 TeV 1018 TeV1 meV1 μeV

Neutrinos eu

dsμ

cb W

ZH

t

Planck-Scale(Gravity)

Niklaus Berger – PRISMA September 2015 – Slide 14

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 103 TeV 106 TeV 109 TeV 1012 TeV 1015 TeV 1018 TeV1 meV1 μeV

Neutrinos eu

dsμ

cb W

ZH

t

Planck-Scale(Gravity)

h ht

t

Niklaus Berger – PRISMA September 2015 – Slide 15

The Structure of the Standard Model

τ

1 eV 1 KeV 1 MeV 1 GeV 1 TeV 103 TeV 106 TeV 109 TeV 1012 TeV 1015 TeV 1018 TeV1 meV1 μeV

Neutrinos eu

dsμ

cb W

ZH

t

Planck-Scale(Gravity)

LHC ? ?

Direct production

Indirect effects in quantum loops

Indirect effects in quantum loops

Large discovery reach if:

• Many incoming particles

• Long lifetime

• Little/very well understood Standard Model background

Niklaus Berger – PRISMA September 2015 – Slide 19

• The Idea: Searching for new physics with the weak mixing angle

• The Machine: Mainz Energy-Recovery Superconducting Accelerator

• Experiment I: Weak mixing angle with P2

• Experiment II: Dark photons, proton radius etc. with MAGIX

• More experiments: Dark matter, electron electric dipole moment etc.

Overview

Niklaus Berger – PRISMA September 2015 – Slide 20

The weak mixing angle

(also: Weinberg-angle)

Niklaus Berger – PRISMA September 2015 – Slide 21

• One of the fundamental parameters of the standard model

• Electroweak symmetry breaking creates photon and Z0

• Angle shows up both in masses and couplings (charges)

The weak mixing angle

Niklaus Berger – PRISMA September 2015 – Slide 22

• The last slide is true at tree level

• But there are quantum corrections...

Two options:

• Use the masses for the definition: (at all orders of perturbation theory) “On-shell scheme”

• Or use the couplings: (which change with energy, and so does the angle) “MS-scheme”

• Use second option from here on

Which weak mixing angle?

Niklaus Berger – PRISMA September 2015 – Slide 23

Weak mixing angle and charges

Proton electric charge +e

Proton weak charge 1 - 4 sin2θW

Niklaus Berger – PRISMA September 2015 – Slide 24

Scale dependence (running) of sin2θW

Niklaus Berger – PRISMA September 2015 – Slide 25

Scale dependence (running) of sin2θW

Q [ G e V ] 1000 0 100 0 10 0 1 0 1 0 .1 0 . 0 1 0 . 00 1 0 . 000 1

0 . 24 5

0 . 2 4

0 . 23 5

0 . 2 3

0 . 22 5 sin 2 θW ( Q )

Q W ( APV )

Q W ( e )

Q W ( p )

LEP1

SLD

Nu T eV

eDIS T e v atron A TLAS

CMS hs

Niklaus Berger – PRISMA September 2015 – Slide 26

Scale dependence (running) of sin2θW

Q [GeV]1000010001001010.10.010.0010.0001

0.245

0.24

0.235

0.23

0.225sin2 θW (Q )

QW (APV )

QW (e)

QW (p)

LEP1

SLD

P2@MESA

Moller

Qweak

SOLID

NuTeV

eDIS TevatronATLAS

CMS

hs

Niklaus Berger – PRISMA September 2015 – Slide 27

New Physics in the running

Q [GeV]1000010001001010.10.010.0010.0001

0.245

0.24

0.235

0.23

0.225sin2 θW (Q )

QW (APV )

QW (e)

QW (p)

LEP1

SLD

P2@MESA

Moller

Qweak

SOLID

NuTeV

eDIS TevatronATLAS

CMS

hs

Niklaus Berger – PRISMA September 2015 – Slide 28

Marciano et al.

Dark Z in mixingmdark Z 100 MeVmdark Z 200 MeV

APV Cs

Qweak firstE158

SLAC

LEP

DIS

MollerMESA

Qweak

''Anticipated sensitivities''

3 2 1 0 1 2 3

0.230

0.232

0.234

0.236

0.238

0.240

0.242

Log10 Q GeV

sin2 Θ

WQ

2

Niklaus Berger – PRISMA September 2015 – Slide 29

Contact interactions up to

49 TeV(comparable to LHC at 300 fb-1)

Contact Interactions

Niklaus Berger – PRISMA September 2015 – Slide 30

How to measure the weak charge?

Niklaus Berger – PRISMA September 2015 – Slide 31

Weak mixing angle and charges

Proton electric charge +e

Proton weak charge 1 - 4 sin2θW

Niklaus Berger – PRISMA September 2015 – Slide 32

Weak mixing angle and charges

Proton electric charge +e

Proton weak charge 1 - 4 sin2θW

Violates parity!

Niklaus Berger – PRISMA September 2015 – Slide 33

Parity violating electron scattering

Proton Target

Electron beam

Detector

Niklaus Berger – PRISMA September 2015 – Slide 34

Parity violating electron scattering

Proton Target

Electron beam

Detector

Niklaus Berger – PRISMA September 2015 – Slide 35

Parity violating electron scattering

Proton Target

Electron beam

Detector

Niklaus Berger – PRISMA September 2015 – Slide 36

Parity violating electron scattering

Proton Target

Electron beam

Detector

Momentum transfer sets scale

Weak charge - what we want

Proton structure - small nuisance if Q2 small

Niklaus Berger – PRISMA September 2015 – Slide 37

Parity violating electron scattering

Proton Target

Electron beam

Detector

Momentum transfer sets scale

Weak charge - what we want

Proton structure - small nuisance if Q2 small

Niklaus Berger – PRISMA September 2015 – Slide 38

• sin2θW ≈ 0.25: Weak charge is tiny

• At low Q2: Asymmetry is tiny (40 parts per billion): need very large statistics

• We are subtracting two huge numbers from each other (not really - switching helicity with a few KHz)

Why is this difficult?

Niklaus Berger – PRISMA September 2015 – Slide 39

-810 -710 -610 -510 -410 -310-1010

-910

-810

-710

-610

-510

-410

PVeS Experiment Summary

100%

10%

1%

G0

G0

E122

Mainz-Be

MIT-12C

SAMPLE H-I

A4A4

A4

H-IIH-He

E158

H-III

PVDIS-6

PREX-IPREX-II

Qweak

SOLID

Moller

MESA-P2

MESA-12C

PioneeringStrange Form Factor (1998-2009)S.M. Study (2003-2005)JLab 2010-2012Future

PVA

)PV

(A

Niklaus Berger – PRISMA September 2015 – Slide 40

• Want to measure sin2θW to 0.13%

• Need QW at 1.5%

• Essentially means 1.5% on APV

• APV is 40 parts per billion

• δ(APV) is 0.6 parts per billion

• N a few 1018

• Measure 10’000 hours (absolute maximum anyone thinks shifts are organisable)

• Need close to 1011 electrons/s - 100 GHz

How much statistics do we need?

Niklaus Berger – PRISMA September 2015 – Slide 41

Yes!

• 150 μA of electron beam current

• 60 cm long liquid hydrogen target

• Luminosity 2.4 1039 s-1cm-2

• Integrate 8.6 ab-1

Can we get that rate?

Proton Target

Electron beam

Detector

Niklaus Berger – PRISMA September 2015 – Slide 42

10’000 hours is 417 days 24/7 of measurements

Hard to get that amount of time at a shared accelerator facility...

Niklaus Berger – PRISMA September 2015 – Slide 43

If you cannot rent it, build it:

The MESA accelerator

Mainz Energy-recovery Superconducting Accelerator

Niklaus Berger – PRISMA September 2015 – Slide 44

• Beam current 150 μA

• Polarisation > 85%

• High precision polarimetry

• High runtime (more than 4000 h/year)

• Fit into existing halls at MAMI

• Extremely stable

Requirements

cryomodules

external Experiment

“P2”

internal experiment

Niklaus Berger – PRISMA September 2015 – Slide 45

The main worry are beam fluctuations correlated with the helicity: Achieved at MAMI sin2θW uncertainty requirement

• Energy fluctuations: 0.04 eV < 0.1 ppb ok!

• Position fluctuations 3 nm 5 ppb 0.13 nm

• Angle fluctuations 0.5 nrad 3 ppb 0.06 nrad

• Intensity fluctuations 14 ppb 4 ppb 0.36 ppb

Stability Requirements

Niklaus Berger – PRISMA September 2015 – Slide 46

MESA

P2

MAGIX

SRF Cryo Modules

Mainz Energy Recoving Superconducting AcceleratorMESA

New experimental hall (Forschungsbau )

E xisting experimental

halls

MESA

ERL arc

extracted

beam

Niklaus Berger – PRISMA September 2015 – Slide 47

Teichert et al. NIM A 557 (2006) 239

Superconducting Cryomodules

BEAM PIPE VALVE

BEAM PIPE

ALIGNMENTPARTS

COOL DOWN

LHe FEED PIPE

He GAS RETURN

He GAS COLLECTOR

STAINLESS STEELVACUUM VESSEL

SUPPORT SYSTEMLN2-PORT LN2-RESERVOIR

LN2 LEVELMETER

TUNING SYSTEM

SUSPENSION CABLE(SUPPORT SYSTEM)

TITANIUM TANKBATH CRYOSTAT

80K SHIELDING

MAIN COUPLER COLD PART

CENTER POINT FOLDERSHIELDINGS & TANDEMSUPPORT SYSTEM

NIOBIUM CAVITY

TUNING SYSTEMLHe LEVELMETER

ALIGNMENTPARTS

TANK TANDEM

MAG SHIELDING

LOOP

Niklaus Berger – PRISMA September 2015 – Slide 48

Can we go to higher beam currents?

• In principle yes...

• But power is expensive

• Why dump electrons?

Energy recovery

Niklaus Berger – PRISMA September 2015 – Slide 49

• Put energy back into field!

• Can go up to 1 (10) mA beam current

• But not with a thick target

Energy recovery

Niklaus Berger – PRISMA September 2015 – Slide 50

MESA

P2

MAGIX

SRF Cryo Modules

Mainz Energy Recoving Superconducting AcceleratorMESA

New experimental hall (Forschungsbau )

E xisting experimental

halls

MESA

ERL arc

extracted

beam

Niklaus Berger – PRISMA September 2015 – Slide 51

P2:

How to detect 100 GHz of (the right) electrons...

Niklaus Berger – PRISMA September 2015 – Slide 52

Niklaus Berger – PRISMA September 2015 – Slide 53

Choice of scattering angle

Niklaus Berger – PRISMA September 2015 – Slide 54

Solenoid spectrometer

Niklaus Berger – PRISMA September 2015 – Slide 55

Detector

Solenoid spectrometer

Shield

Niklaus Berger – PRISMA September 2015 – Slide 56

Counting detectors

Proton Target

Electron beam

Detector

Niklaus Berger – PRISMA September 2015 – Slide 57

Integrating detectors

Proton Target

Electron beam

Detector

Niklaus Berger – PRISMA September 2015 – Slide 58

Quartz-Bars & Photomultipliers

Detect Cherenkov-light created by electrons Integrate photomultiplier current

Measuring Q2:

Tracking a lot of low momentum particles

Niklaus Berger – PRISMA September 2015 – Slide 60

Tracker requirement

• Low momentum electrons: Thin detectors

• Very high rates: Fast and granular detectors

Solenoid

Beam axis

Tracking detector

Target

Integrating Detectors

Niklaus Berger – PRISMA September 2015 – Slide 61

Fast, thin, cheap pixel sensors

High Voltage Monolithic Active Pixel Sensors

Niklaus Berger – PRISMA September 2015 – Slide 62

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

• Implement logic directly in N-well in the pixel - smart diode array

• Can be thinned down to < 50 μm

• Logic on chip: Output are zero-suppressed hit addresses and timestamps (I.Perić, P. Fischer et al., NIM A 582 (2007) 876 )

Fast and thin sensors: HV-MAPS

P-substrate

N-well

Particle

E �eld

Niklaus Berger – PRISMA September 2015 – Slide 63

HV-MAPS chips: AMS 180 nm HV-CMOS

• 5 generations of prototypes

• Current generation: MUPIX7 40 x 32 pixels 80 x 103 μm pixel size 9.4 mm2 active area

• MUPIX7 has all features of final sensor

• Left to do: Scale to 2 x 2 cm2

The MUPIX chip prototypesMUPIX2

MUPIX4

MUPIX6

Niklaus Berger – PRISMA September 2015 – Slide 64

Test beam at DESY

Niklaus Berger – PRISMA September 2015 – Slide 65

Position resolution given by pixel size

Position Resolution

Niklaus Berger – PRISMA September 2015 – Slide 66

Hit efficiency above 99% without tuning

Efficiency

Niklaus Berger – PRISMA September 2015 – Slide 67

Hit timestamp resolution better than 17 ns (significant setup contribution in the measurement)

Time resolution

-400 -200 0 400

500

1000

1500

2000

2500

3000

200Difference between trigger and timestamp [ns]

σ = 16.6 ns

Hits

per

10

ns b

in Timestamp frequency 100 MHz

Niklaus Berger – PRISMA September 2015 – Slide 68

Built our own pixel telescope

• Four planes of thin Mupix sensors

• Fast readout into PCIe FPGA cards

• Currently about 1 MHz hits/plane possible

• Tested at DESY, PSI and MAMI

Mupix Telescope

Niklaus Berger – PRISMA September 2015 – Slide 69

IntroductionY

• X

Niklaus Berger – PRISMA September 2015 – Slide 70

IntroductionY

• X

Niklaus Berger – PRISMA September 2015 – Slide 71

IntroductionY

• X

Niklaus Berger – PRISMA September 2015 – Slide 72

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium traces

• 25 μm Kapton™ frame as support

• Less than 1‰ of a radiation length per layer

Mechanics

Niklaus Berger – PRISMA September 2015 – Slide 73

Niklaus Berger – PRISMA September 2015 – Slide 74

Y

• X

P2

Niklaus Berger – PRISMA September 2015 – Slide 75

Where are the neutrons in the nucleus?

Neutron Skins

Niklaus Berger – PRISMA September 2015 – Slide 76

Where are the neutrons in the nucleus?

• Gives access to the equation of state of neutron matter

• Tells us how big/small neutron stars are

Neutron Skins

Niklaus Berger – PRISMA September 2015 – Slide 77

• Not charged: Photons not a good probe

• Use parity violating electron scattering: Proton weak charge is almost zero - see mostly neutrons

How to see the neutrons?

Niklaus Berger – PRISMA September 2015 – Slide 78

And now for something different:

MAGIX

Mesa Gas Internal Target Experiment

Niklaus Berger – PRISMA September 2015 – Slide 79

MAGIX Spectrometer

Niklaus Berger – PRISMA September 2015 – Slide 80

Energy recovery: We want the beam back

• Energy loss less than 10-3

• As little scattering as possible No target window

High resolution spectrometer

• No beam interactions in target window

• As little scattering as possible Thin walls, thin detectors

Extremely intense beam: Do not need very high acceptance

Requirements

Niklaus Berger – PRISMA September 2015 – Slide 81

• Inject gas directly into the beam pipe

• Differential pumping to keep beam vacuum

Internal gas target

Niklaus Berger – PRISMA September 2015 – Slide 82

Twin-arm dipole spectrometer

TARDIS

Niklaus Berger – PRISMA September 2015 – Slide 83

• Image momentum to position

• 10-4 momentum resolution for 50 μm position resolution

TARDIS

Target

Target

Detector

Detector

• Image angle to position

Niklaus Berger – PRISMA September 2015 – Slide 84

Gas Electron Multipliers (GEMs)

• Metalized Kapton foil with tiny holes

• Apply electric field

Focal plane detectors

Niklaus Berger – PRISMA September 2015 – Slide 85

Gas Electron Multipliers (GEMs)

• Metalized Kapton foil with tiny holes

• Apply electric field

• Stack GEMs to reduce ion back drift

• PRISMA detector lab

Focal plane detectors

Niklaus Berger – PRISMA September 2015 – Slide 86

The proton, dark photons and more:

Physics at MAGIX

Niklaus Berger – PRISMA September 2015 – Slide 87

How big is a proton? (electromagnetic charge radius)

• Measure in scattering experiments (Mainz!)

Proton Radius Puzzle

0.85 0.9Proton Charge Radius (fm)

µH (A. Antognini et al.)

µH (R. Pohl et al.)

CODATA

JLab (X. Zhan et al.)

MAMI (J. Bernauer et al.)

Niklaus Berger – PRISMA September 2015 – Slide 88

How big is a proton? (electromagnetic charge radius)

• Measure in scattering experiments (Mainz!)

• Measure in spectroscopy (Lamb-shift)

Proton Radius Puzzle

0.85 0.9Proton Charge Radius (fm)

µH (A. Antognini et al.)

µH (R. Pohl et al.)

CODATA

JLab (X. Zhan et al.)

MAMI (J. Bernauer et al.)

Niklaus Berger – PRISMA September 2015 – Slide 89

How big is a proton? (electromagnetic charge radius)

• Measure in scattering experiments (Mainz!)

• Measure in spectroscopy (Lamb-shift)

• Lamb shift is tiny - except in muonic hydrogen

Proton Radius Puzzle

0.85 0.9Proton Charge Radius (fm)

µH (A. Antognini et al.)

µH (R. Pohl et al.)

CODATA

JLab (X. Zhan et al.)

MAMI (J. Bernauer et al.)

Niklaus Berger – PRISMA September 2015 – Slide 90

How big is a proton? (electromagnetic charge radius)

• Measure in scattering experiments (Mainz!)

• Measure in spectroscopy (Lamb-shift)

• Lamb shift is tiny - except in muonic hydrogen

• Big surprise! 4 - 7 σ discrepancy - why?

Proton Radius Puzzle

0.85 0.9Proton Charge Radius (fm)

µH (A. Antognini et al.)

µH (R. Pohl et al.)

CODATA

JLab (X. Zhan et al.)

MAMI (J. Bernauer et al.)

Niklaus Berger – PRISMA September 2015 – Slide 91

Introduction

Niklaus Berger – PRISMA September 2015 – Slide 92

• Scattering experiments happen at finite momentum transfer Q2

• They will see some of the proton substructure

• Charge radius is defined at Q2 = 0

• Need to extrapolate: Potentially large error

• Want to measure at as small Q2 as possible

Scattering, Q2 and substructure

— Belushkin (Disp. Analysis 2007)

MESA projected error

Jones (JLab 2000)

Gayou (JLab 2001)

Dietrich (MAMI 2001)

Pospischil (MAMI 2001)

Punjabi (JLab 2005)

Jones (JLab 2006)

MacLachlan (JLab 2006)

Crawford (Bates 2007)

Zhan (JLab 2011)

– Bernauer (MAMI 2010)

Q2 / (GeV2/c2)

µpG

p E/G

p M

1010.10.01

1.1

1

0.9

0.8

0.7

0.6

Niklaus Berger – PRISMA September 2015 – Slide 93

There is dark matter out there...

• There could be additional U(1) gauge symmetries with an exchange particle (dark photon, mass mγ’)

• It could mix with the photon via heavy fermions (mixing parameter ε)

• It would then show up as a bump in the e+e- spectrum

Dark photons

Niklaus Berger – PRISMA September 2015 – Slide 94

• Measurement via missing mass method

• Requires detection of low energy proton; challenging

Invisible dark photons

Niklaus Berger – PRISMA September 2015 – Slide 95

Dark photons

]2 [GeV/c'γm-210 -110 1 10

ε

-410

-310

-210

e(g-2)

KLOE 2013

KLO

E 20

14

WASA

HADESPHENIX

σ 2±µ

(g-2)

favored

E774

E141A

PEX

A1

NA48/2

BABAR2009

BABAR2014

BESIIIMESA

Niklaus Berger – PRISMA September 2015 – Slide 96

Dark Matter with the Beam Dump

BDX

Niklaus Berger – PRISMA September 2015 – Slide 97

Search for dark matter

P2

MAGIX

SRF Cryo Modules

Mainz Energy Recoving Superconducting AcceleratorMESA

New experimental hall (Forschungsbau )

E xisting experimental

halls

MESA

ERL arc

extracted

beam

MESA: More than 1022 electrons hit beam dump per year

• Some of them could produce dark matter particles

• “Dark matter beam”

• Detect with DM detector (xenon?) behind beam dump

Niklaus Berger – PRISMA September 2015 – Slide 98

Beam dump dark matter

Niklaus Berger – PRISMA September 2015 – Slide 99

And one more:

Electric dipole moment of electrons

Niklaus Berger – PRISMA September 2015 – Slide 100

• An EDM of a fundamental particle violates CP and T

• Essentially 0 in the SM (tiny contribution from CKM)

• Potentially large in BSM models

• Some more CP violation needed

Electric Dipole Moments

Niklaus Berger – PRISMA September 2015 – Slide 101

Necessary conditions to create baryon asymmetry:

• Baryon number violation

• C and CP violation

• Out of thermal equilibrium

Sakharov Criteria

Matter-Antimatter Asymmetry

10’000’000’000

Antimatter

10’000’000’001

Matter

Niklaus Berger – PRISMA September 2015 – Slide 102

• Spin precesses in magnetic field due to magnetic dipole moment μ

• Spin precesses in electric field due to electric dipole moment d

• μ is large, d is almost zero

Dipole moments and precession

Niklaus Berger – PRISMA September 2015 – Slide 103

Charged particle EDMs

For neutral particles:

• Put in a “box”

• Apply large E-field

• Watch precession

• E.g.: Neutron EDM

For charged particles:

• E field leads to acceleration

• Put electron into a neutral, polar molecule (ACME, Imperial/Sussex)

• Put electron/proton/deuteron etc. in a storage ring

Niklaus Berger – PRISMA September 2015 – Slide 104

• Electric and magnetic fields perpendicular to momentum

• How to get rid of magnetic part?

Precession in a storage ring

Magnetic dipole Electric dipole

Niklaus Berger – PRISMA September 2015 – Slide 105

• No magnetic field! (about 10 MV/m electric field)

Precession in a storage ring

Magnetic dipole Electric dipole

Niklaus Berger – PRISMA September 2015 – Slide 106

• No magnetic field!

• Magic momentum!

• 0.7 GeV/c for protons

• 14.5 MeV for electrons

Precession in a storage ring

Magnetic dipole Electric dipole

Niklaus Berger – PRISMA September 2015 – Slide 107

• Magic momentum

• Spin rotates with momentum vector

• EDM leads to out of plane precession

• Counter-rotating bunches help to cancel systematics

Build an electric-only storage ring

Niklaus Berger – PRISMA September 2015 – Slide 108

• Need very low magnetic field

• Good control of electric field

• Very hard to compete with molecules for limits ...

• ... but only option for a precise measurement ...

• ... and a pathfinder for the proton EDM ( Jülich, Korea...)

Systematics

ACME collaboration, Science 343, 269 (2104)

Niklaus Berger – PRISMA September 2015 – Slide 109

Exciting physics program at MESA:

• Weak mixing angle measurement with P2

• Also gives access to neutron skins

• Proton radius, dark photon and much more with MAGIX

• Second generation of experiments: Beam dump dark matter and electron EDM

• Start 2019/2020

Summary

Niklaus Berger – PRISMA September 2015 – Slide 111

top related