fourier series for more ppts, visit

Post on 26-Mar-2015

219 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fourier Series

For more ppt’s, visit www.studentsaarthi.com

ContentPeriodic FunctionsFourier SeriesComplex Form of the Fourier Series Impulse TrainAnalysis of Periodic WaveformsHalf-Range ExpansionLeast Mean-Square Error Approximation

Fourier Series

Periodic Functions

The Mathematic Formulation

Any function that satisfies

( ) ( )f t f t T

where T is a constant and is called the period of the function.

Example:

4cos

3cos)(

tttf Find its period.

)()( Ttftf )(4

1cos)(

3

1cos

4cos

3cos TtTt

tt

Fact: )2cos(cos m

mT

23

nT

24

mT 6

nT 8

24T smallest T

Example:

tttf 21 coscos)( Find its period.

)()( Ttftf )(cos)(coscoscos 2121 TtTttt

mT 21

nT 22

n

m

2

1

2

1

must be a

rational number

Example:

tttf )10cos(10cos)(

Is this function a periodic one?

10

10

2

1 not a rational number

Fourier Series

Fourier Series

Introduction

Decompose a periodic input signal into primitive periodic components.

A periodic sequenceA periodic sequence

T 2T 3T

t

f(t)

Synthesis

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0

DC Part Even Part Odd Part

T is a period of all the above signals

)sin()cos(2

)( 01

01

0 tnbtnaa

tfn

nn

n

Let 0=2/T.

Orthogonal Functions

Call a set of functions {k} orthogonal on an interval a < t < b if it satisfies

nmr

nmdttt

n

b

a nm

0)()(

Orthogonal set of Sinusoidal Functions

Define 0=2/T.

0 ,0)cos(2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

nmT

nmdttntm

T

T 2/

0)sin()sin(

2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

We now prove this one

Proof

dttntmT

T 2/

2/ 00 )cos()cos(

0

)]cos()[cos(2

1coscos

dttnmdttnmT

T

T

T

2/

2/ 0

2/

2/ 0 ])cos[(2

1])cos[(

2

1

2/

2/00

2/

2/00

])sin[()(

1

2

1])sin[(

)(

1

2

1 T

T

T

Ttnm

nmtnm

nm

m n

])sin[(2)(

1

2

1])sin[(2

)(

1

2

1

00

nmnm

nmnm

00

Proof

dttntmT

T 2/

2/ 00 )cos()cos(

0

)]cos()[cos(2

1coscos

dttmT

T 2/

2/ 02 )(cos

2/

2/

00

2/

2/

]2sin4

1

2

1T

T

T

T

tmm

t

m = n

2

T

]2cos1[2

1cos2

dttmT

T 2/

2/ 0 ]2cos1[2

1

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

Orthogonal set of Sinusoidal Functions

Define 0=2/T.

0 ,0)cos(2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

nmT

nmdttntm

T

T 2/

0)sin()sin(

2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

,3sin,2sin,sin

,3cos,2cos,cos

,1

000

000

ttt

ttt

,3sin,2sin,sin

,3cos,2cos,cos

,1

000

000

ttt

ttt

an orthogonal set.an orthogonal set.

Decomposition

dttfT

aTt

t

0

0

)(2

0

,2,1 cos)(2

0

0

0

ntdtntfT

aTt

tn

,2,1 sin)(2

0

0

0

ntdtntfT

bTt

tn

)sin()cos(2

)( 01

01

0 tnbtnaa

tfn

nn

n

ProofUse the following facts:

0 ,0)cos(2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmT

nmdttntm

T

T 2/

0)cos()cos(

2/

2/ 00

nmT

nmdttntm

T

T 2/

0)sin()sin(

2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

Example (Square Wave)

112

200

dta

,2,1 0sin1

cos2

200

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(

1 cos

1sin

2

200

n

nnn

nnt

nntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

112

200

dta

,2,1 0sin1

cos2

200

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(

1 cos

1sin

2

100

n

nnn

nnt

nntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Example (Square Wave)

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

112

200

dta

,2,1 0sin1

cos2

200

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(

1 cos

1sin

2

100

n

nnn

nnt

nntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Example (Square Wave)

-0.5

0

0.5

1

1.5

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

ttttf 5sin

5

13sin

3

1sin

2

2

1)(

Harmonics

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0

DC Part Even Part Odd Part

T is a period of all the above signals

)sin()cos(2

)( 01

01

0 tnbtnaa

tfn

nn

n

Harmonics

tnbtnaa

tfn

nn

n 01

01

0 sincos2

)(

Tf

22 00Define , called the fundamental angular frequency.

0 nnDefine , called the n-th harmonic of the periodic function.

tbtaa

tf nn

nnn

n

sincos2

)(11

0

Harmonics

tbtaa

tf nn

nnn

n

sincos2

)(11

0

)sincos(2 1

0 tbtaa

nnnn

n

12222

220 sincos2 n

n

nn

nn

nn

nnn t

ba

bt

ba

aba

a

1

220 sinsincoscos2 n

nnnnnn ttbaa

)cos(1

0 nn

nn tCC

Amplitudes and Phase Angles

)cos()(1

0 nn

nn tCCtf

20

0

aC

22nnn baC

n

nn a

b1tan

harmonic amplitude phase angle

Fourier Series

Complex Form of the Fourier Series

Complex Exponentials

tnjtne tjn00 sincos0

tjntjn eetn 00

2

1cos 0

tnjtne tjn00 sincos0

tjntjntjntjn eej

eej

tn 0000

22

1sin 0

Complex Form of the Fourier Series

tnbtnaa

tfn

nn

n 01

01

0 sincos2

)(

tjntjn

nn

tjntjn

nn eeb

jeea

a0000

11

0

22

1

2

1

0 00 )(2

1)(

2

1

2 n

tjnnn

tjnnn ejbaejba

a

1

000

n

tjnn

tjnn ececc

)(2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

Complex Form of the Fourier Series

1

000)(

n

tjnn

tjnn ececctf

1

10

00

n

tjnn

n

tjnn ececc

n

tjnnec 0

)(2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

Complex Form of the Fourier Series

2/

2/

00 )(

1

2

T

Tdttf

T

ac

)(2

1nnn jbac

2/

2/ 0

2/

2/ 0 sin)(cos)(1 T

T

T

Ttdtntfjtdtntf

T

2/

2/ 00 )sin)(cos(1 T

Tdttnjtntf

T

2/

2/

0)(1 T

T

tjn dtetfT

2/

2/

0)(1

)(2

1 T

T

tjnnnn dtetf

Tjbac )(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

Complex Form of the Fourier Series

n

tjnnectf 0)(

n

tjnnectf 0)(

dtetfT

cT

T

tjnn

2/

2/

0)(1 dtetf

Tc

T

T

tjnn

2/

2/

0)(1

)(2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

)(

2

1

)(2

12

00

nnn

nnn

jbac

jbac

ac

If f(t) is real,*nn cc

nn jnnn

jnn ecccecc

|| ,|| *

22

2

1|||| nnnn bacc

n

nn a

b1tan

,3,2,1 n

00 2

1ac

Complex Frequency Spectra

nn jnnn

jnn ecccecc

|| ,|| *

22

2

1|||| nnnn bacc

n

nn a

b1tan ,3,2,1 n

00 2

1ac

|cn|

amplitudespectrum

n

phasespectrum

Example

2

T

2

T TT

2

d

t

f(t)

A

2

d

dteT

Ac

d

d

tjnn

2/

2/

0

2/

2/0

01

d

d

tjnejnT

A

2/

0

2/

0

0011 djndjn ejn

ejnT

A

)2/sin2(1

00

dnjjnT

A

2/sin1

002

1dn

nT

A

TdnT

dn

T

Adsin

TdnT

dn

T

Adcn

sin

82

5

1

T ,

4

1 ,

20

1

0

T

dTd

Example

40 80 120-40 0-120 -80

A/5

50 100 150-50-100-150

TdnT

dn

T

Adcn

sin

42

5

1

T ,

2

1 ,

20

1

0

T

dTd

Example

40 80 120-40 0-120 -80

A/10

100 200 300-100-200-300

Example

dteT

Ac

d tjnn

0

0

d

tjnejnT

A

00

01

00

110

jne

jnT

A djn

)1(1

0

0

djnejnT

A

2/0

sindjne

TdnT

dn

T

Ad

TT d

t

f(t)

A

0

)(1 2/2/2/

0

000 djndjndjn eeejnT

A

Fourier Series

Impulse Train

Dirac Delta Function

0

00)(

t

tt and 1)(

dtt

0 t

Also called unit impulse function.

Property

)0()()(

dttt )0()()(

dttt

)0()()0()0()()()(

dttdttdttt

(t): Test Function

Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()(

n

T nTtt )()(

Fourier Series of the Impulse Train

n

T nTtt )()(

n

T nTtt )()(T

dttT

aT

T T

2)(

2 2/

2/0

Tdttnt

Ta

T

T Tn

2)cos()(

2 2/

2/ 0 0)sin()(

2 2/

2/ 0 dttntT

bT

T Tn

n

T tnTT

t 0cos21

)(

n

T tnTT

t 0cos21

)(

Complex FormFourier Series of the Impulse Train

Tdtt

T

ac

T

T T

1)(

1

2

2/

2/

00

Tdtet

Tc

T

T

tjnTn

1)(

1 2/

2/

0

n

tjnT e

Tt 0

1)(

n

tjnT e

Tt 0

1)(

n

T nTtt )()(

n

T nTtt )()(

Fourier Series

Analysis ofPeriodic Waveforms

Waveform Symmetry

Even Functions

Odd Functions

)()( tftf

)()( tftf

Decomposition

Any function f(t) can be expressed as the sum of an even function fe(t) and an odd function fo(t).

)()()( tftftf oe

)]()([)( 21 tftftfe

)]()([)( 21 tftftfo

Even Part

Odd Part

Example

00

0)(

t

tetf

t

Even Part

Odd Part

0

0)(

21

21

te

tetf

t

t

e

0

0)(

21

21

te

tetf

t

t

o

Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

TT/2T/2

Quarter-Wave Symmetry

Even Quarter-Wave Symmetry

TT/2T/2

Odd Quarter-Wave Symmetry

T

T/2T/2

Hidden Symmetry

The following is a asymmetry periodic function:

Adding a constant to get symmetry property.

A

TT

A/2

A/2

TT

Fourier Coefficients of Symmetrical Waveforms

The use of symmetry properties simplifies the calculation of Fourier coefficients.– Even Functions– Odd Functions– Half-Wave– Even Quarter-Wave– Odd Quarter-Wave– Hidden

Fourier Coefficients of Even Functions

)()( tftf

tnaa

tfn

n 01

0 cos2

)(

2/

0 0 )cos()(4 T

n dttntfT

a

Fourier Coefficients of Even Functions

)()( tftf

tnbtfn

n 01

sin)(

2/

0 0 )sin()(4 T

n dttntfT

b

Fourier Coefficients for Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

TT/2T/2

The Fourier series contains only odd harmonics.The Fourier series contains only odd harmonics.

Fourier Coefficients for Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

)sincos()(1

00

n

nn tnbtnatf

odd for )cos()(4

even for 02/

0 0 ndttntfT

na T

n

odd for )sin()(4

even for 02/

0 0 ndttntfT

nb T

n

Fourier Coefficients forEven Quarter-Wave Symmetry

TT/2T/2

])12cos[()( 01

12 tnatfn

n

4/

0 012 ])12cos[()(8 T

n dttntfT

a

Fourier Coefficients forOdd Quarter-Wave Symmetry

])12sin[()( 01

12 tnbtfn

n

4/

0 012 ])12sin[()(8 T

n dttntfT

b

T

T/2T/2

ExampleEven Quarter-Wave Symmetry

4/

0 012 ])12cos[()(8 T

n dttntfT

a 4/

0 0 ])12cos[(8 T

dttnT

4/

0

00

])12sin[()12(

8T

tnTn

)12(

4)1( 1

nn

TT/2T/2

1

1T T/4T/4

ExampleEven Quarter-Wave Symmetry

4/

0 012 ])12cos[()(8 T

n dttntfT

a 4/

0 0 ])12cos[(8 T

dttnT

4/

0

00

])12sin[()12(

8T

tnTn

)12(

4)1( 1

nn

TT/2T/2

1

1T T/4T/4

ttttf 000 5cos

5

13cos

3

1cos

4)(

ttttf 000 5cos

5

13cos

3

1cos

4)(

Example

TT/2T/2

1

1

T T/4T/4

Odd Quarter-Wave Symmetry

4/

0 012 ])12sin[()(8 T

n dttntfT

b 4/

0 0 ])12sin[(8 T

dttnT

4/

0

00

])12cos[()12(

8T

tnTn

)12(

4

n

Example

TT/2T/2

1

1

T T/4T/4

Odd Quarter-Wave Symmetry

4/

0 012 ])12sin[()(8 T

n dttntfT

b 4/

0 0 ])12sin[(8 T

dttnT

4/

0

00

])12cos[()12(

8T

tnTn

)12(

4

n

ttttf 000 5sin

5

13sin

3

1sin

4)(

ttttf 000 5sin

5

13sin

3

1sin

4)(

Fourier Series

Half-Range Expansions

Non-Periodic Function Representation

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

Without Considering Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T

Expansion Into Even Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Expansion Into Odd Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Expansion Into Half-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Expansion Into Even Quarter-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T/2=2

T=4

Expansion Into Odd Quarter-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T/2=2 T=4

Fourier Series

Least Mean-Square Error Approximation

Approximation a function

Use

k

nnnk tnbtna

atS

100

0 sincos2

)(

to represent f(t) on interval T/2 < t < T/2.

Define )()()( tStft kk

2/

2/

2)]([1 T

T kk dttT

E Mean-Square Error

Approximation a function

Show that using Sk(t) to represent f(t) has least mean-square property.

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

Proven by setting Ek/ai = 0 and Ek/bi = 0.

Approximation a function

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

0)(1

2

2/

2/

0

0

T

T

k dttfT

a

a

E 0)(1

2

2/

2/

0

0

T

T

k dttfT

a

a

E0cos)(

2 2/

2/ 0

T

Tnn

k tdtntfT

aa

E 0cos)(2 2/

2/ 0

T

Tnn

k tdtntfT

aa

E

0sin)(2 2/

2/ 0

T

Tnn

k tdtntfT

bb

E 0sin)(2 2/

2/ 0

T

Tnn

k tdtntfT

bb

E

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnnk ba

adttf

TE

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnnk ba

adttf

TE

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnn ba

adttf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

T

k

nnn ba

adttf

T

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtna

atf

T

2/

2/1

22202 )(

2

1

4)]([

1 T

Tn

nn baa

dttfT

2/

2/1

22202 )(

2

1

4)]([

1 T

Tn

nn baa

dttfT

top related