first opacs and beam dynamics studies on the max iv 3 gev...

Post on 26-Mar-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MAXIVFacility→h0p://www.maxiv.lu.se/WEPAB075,IPAC'17,Copenhagen,DENMARK,May14–19,2017

Top-upInjecAon&SlowOrbitFeedback•MAXIV3GeVstorageringisthefirstMBA-basedlightsourcetogointoopera7on;beamcommissioningstartedAug2015.

•FirststoredbeamonSep15,stackingachievedOct8,firstlightonNov2(onfirstoftwodiagnos[cbeamlines).

•SinceNov2015runningwithtop-upinjec[onandclosedSOFBloop.

•FirsttwoIDs(2-mlong,18-mmperiodIVUs)installedFeb2016,gapsclosedto4.5mmandfirstdatatakenbyJune2016.

•FacilityinauguratedonJune21,2016,duringsummer2016installedoneIVWandtwoEPUs.

•Sofarpeakcurrentof198mAstored,highlyefficientinjec[on/stackingperformedwithonlyasingledipolekicker.

•Rou[nedeliveryof50mAforBLcommissioningandfirstexperiments.

IntroducAon

FirstOpAcsandBeamDynamicsStudiesontheMAXIV3GeVStorageRing

•Firstturnachievedwithallmagnetsatnominalsefngsfor3GeVaccordingtomagne[cmeasurementdataandallringcorrectorssettozero.•Singledipoleinjec[onkickerat~4mrad,withmanualcorrectortweakingeventuallyreached500turns.•Aierphasinginthreecavi[es(delivering15-20kWeach)couldstorebeam.•Reducinginjec[onkickervoltageallowedtoaccumulate4.3mA;aierrela[vephasing(maximizemeasuredfs)increasedstoredbeamcurrentandinjec[onrate.

FirstTurns,StoredBeam&Stacking

LinearOpAcsfromClosedOrbits(LOCO)

•Reducedkickerstrengthandop[mizedinjectorRFchoppertoachievehighcaptureefficiency➙raisedinjec[onratefrom0.5Hzto2Hz(limita[onto2Hzgivenbycommissioninglicense).•Startedtop-upinjec[oninNov2016➙strongincreaseofaccumulateddose;allowscontroloffillingpakerncontrol.•SOFB(relyingonall380correctors)runningsinceNov2016at~0.5Hz(MMLscript)➙orbitstabilityacrossIDstraights200-400nmrms.

†)Newaddress:LawrenceBerkeleyNa[onalLaboratory,Berkeley,CA94720,USA,SCLeemann@lbl.gov

•Symmetriza[on/balancingofop[csthroughLOCOusingBPMs,correctors,andallindependentpowersuppliesforuprightquadrupolegradients(noskewcorrec[onsyet).•Largestrequiredgradientchangeremainedbelow1.5%;individualquadshun[ngpossiblelater.•Aierseveralitera[ons,differencebetweenmeasuredandmodelORMaslowas0.7μmrms.

OpAcsTuning,ChromaAcity&DynamicAcceptance

Emi0ance&LifeAme•Firstmeasurementsonthefirstdiagnos[csbeamlinehaverevealed339±30pmradHemikanceand16±1pmradVemikance(κ=4.7%).•Ascommissioningprogressedintegratedlife[mehasincreasedfrom0.3Ahto2–3Ah(pressureimprovingasaccumulateddoseincreases,tuningoftheHCs).

S.C.Leemann†,M.Sjöström,Å.Andersson,MAXIVLaboratory,LundUniversity,SE-22100Lund,SWEDEN

15x [m]

y [m]

5 10 20 25

2.0

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Beta

Funct

ions

[m]

Dis

pers

ion [m

]

s [m]

βxβyηx

Table 1: MAX IV 3GeV storage ring design parameters.Stored current I 500mACircumference C 528mMain RF frf 99.931MHzBare lattice emittance "0 328 pm radBetatron tunes ⌫

x

, ⌫y

42.20, 16.28Linear chromaticity (natural) ⇠

x

, ⇠y

�50.0, �50.2Linear chromaticity (corrected) ⇠

x

, ⇠y

+1.0, +1.0Linear momentum compaction ↵

c

3.06 ⇥ 10�4

Energy spread (natural) ��

0.769 ⇥ 10�3

Radiated power (bare lattice) U0 363.8 keV/turn

•BPMoffsetsdeterminedwithrespecttoneighboringsextupoles/octupoles(trimwindingsinuprightquadmode).•CheckedBPMoffsetsovermonthsintermsofreproducibility,drii,temperaturestability,currentdependence,etc.•Orbitcorrec[ontoBPMoffsetsresultsin<1μm(H)and<41μm(V)rmsorbit(fewerVCMsthanBPMs➙introducedweigh[ngacrossIDstraights).

BPMOffsets&OrbitCorrecAon

0

10

20

30

40

50

60

70

80

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Co

un

ts

BPMx offset [mm]

Mean: +64 µm, RMS: 114 µm

0

10

20

30

40

50

60

70

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Co

un

ts

BPMy offset [mm]

Mean: +51 µm, RMS: 108 µm

-0.4

-0.2

0

0.2

0.4

0 100 200 300 400 500

BP

Mx

off

set

[mm

]

s [m]

Mean: +64 µm, RMS: 114 µm

-0.4

-0.2

0

0.2

0.4

0 100 200 300 400 500

BP

My

off

set

[mm

]

s [m]

Mean: +51 µm, RMS: 108 µm

Figure 1: BPM o↵set results. Top: measured o↵sets downloaded to BPM units.

Bottom: histogram of BPM o↵sets.

0

10

20

30

40

50

-0.002 -0.001 0 0.001 0.002

Co

un

ts

x [mm]

Mean: +0.01 µm, RMS: 0.54 µm

-0.002

-0.001

0

0.001

0.002

0 100 200 300 400 500

x [m

m]

s [m]

Mean: +0.01 µm, RMS: 0.54 µm

0

5

10

15

20

25

30

35

40

-0.002 -0.001 0 0.001 0.002

Co

un

ts

y [mm]

Mean: -1.61 µm, RMS: 41.07 µm

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 100 200 300 400 500

y [m

m]

s [m]

Mean: -1.61 µm, RMS: 41.07 µm

0

10

20

30

40

50

60

70

-3 -2 -1 0 1 2 3 4

Co

un

ts

HCM [A]

Mean: +0.7 mA, RMS: 1.21 A

0

10

20

30

40

50

60

70

-4 -2 0 2 4 6

Co

un

ts

VCM [A]

Mean: +65 mA, RMS: 1.49 A

Figure 2: Orbit correction to downloaded o↵sets. Top: closed orbit deviationsof corrected orbit. Middle: histogram of closed orbit deviations. Bottom: his-togram of required corrector strengths.

0

20

40

60

80

100

05:4

8

05:5

0

05:5

2

05:5

4

05:5

6

05:5

8

06:0

0

06:0

2

06:0

4

06:0

6

06:0

8

06:1

0

06:1

2

0

50

100

150

200

250

300

350

Sto

red C

urr

ent [m

A]

Net C

harg

e a

t 2 H

z [p

C]

Time

96% Capture Efficiency

2016-05-10

DCCT in 3 GeV Storage RingCT in 3 GeV Transfer Line

Figure 3: Current in storage ring (blue) and injected charge per shot from

linac transfer line (red) showing increased capture e�ciency as commissioning

progressed.

0

50

100

150

200

00:0

0

01:0

0

02:0

0

03:0

0

04:0

0

05:0

0

06:0

0

07:0

0

0

50

100

150

200

250

300

Sto

red C

urr

ent [m

A]

Gro

ss C

harg

e a

t 2 H

z [p

C]

Time

2016-06-11

DCCT in 3 GeV Storage RingCT in 3 GeV Transfer Line

Figure 4: Stored current (blue) and injected charge per shot from linac transfer

line (red) during top-up operation.

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

10:3

0

11:0

0

11:3

0

12:0

0

12:3

0

13:0

0

13:3

0

14:0

0

0

0.5

1

1.5

2

2.5

3

3.5

x,y

[mm

]

Sto

red C

urr

ent [m

A]

Time

2016-04-20

DCCT in 3 GeV Storage Ring

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

03:0

0

04:0

0

05:0

0

06:0

0

07:0

0

08:0

0

09:0

0

10:0

0

11:0

0

12:0

0

13:0

0

14:0

0

15:0

0

0

5

10

15

20

25

30

35

40

45

x,y

[mm

]

Sto

red C

urr

ent [m

A]

Time

2016-04-20

SOFB on

DCCT in 3 GeV Storage Ring

Figure 5: Position readings from BPMs in ID straights. Left: results over a 12-hour period showing drift during decaying beam, jitter during top-up injection,and stable orbit while the SOFB is running. Right: magnified view over theperiod while the SOFB is running.

Table 2: Parameters for LOCO fitting (w/o skew quad terms).Parameter type No. of paremetersBPM gains (H + V) 189 + 189BPM coupling factors (H + V) 189 + 189Corrector strengths (H + V) 200 + 179Corrector coupling factors (H + V) 200 + 179Dipole gradients (PFSs) 2Quadrupole gradients 20⇥ 2 + 20⇥ 2 + 2

-1.2

-0.8

-0.4

0

0.4

0 1

∆k/

k [%

]

Power Supply Index

Dipole Gradients (PFSs)

0

0.5

1

1.5

2

0 5 10 15 20

∆k/

k [%

]

Power Supply Index

QDend

-0.04-0.02

0 0.02 0.04 0.06 0.08

0 5 10 15 20

∆k/

k [%

]

Power Supply Index

QF

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

∆k/

k [%

]

Power Supply Index

QFend

-0.1-0.05

0 0.05 0.1

0.15 0.2

0 5 10 15 20

∆k/

k [%

]

Power Supply Index

QFm

Figure 7: Required changes to quadrupole gradients according to results of theuncoupled LOCO fit.Figure 6: Plot of measured ORM.

0.192

0.194

0.196

0.198

0.2

0.202

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fra

ctio

na

l Tu

ne

(H

)

δ [%]

Measured dataFit: -43.79 δ2 + 1.027 δ + 0.1970

0.268

0.27

0.272

0.274

0.276

0.278

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fra

ctio

na

l Tu

ne

(V

)

δ [%]

Measured dataFit: 5.875 δ2 + 1.131 δ + 0.2723

Figure 10: Measured chromaticity: horizontal (top) and vertical (bottom).

-6

-4

-2

0

2

4

0 20 40 60 80 100 120 140 160 180 200

∆η

x [m

m]

BPM Index

Measured − Design

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180 200

ηy

[mm

]

BPM Index

MeasuredDesign

Figure 9: Horizontal dispersion beating (top) and spurious vertical dispersion(bottom) after downloading results of LOCO fitting to the quad power supplies.

-3

-2

-1

0

1

2

3

0 100 200 300 400 500

Be

ta B

ea

t [%

]

BPM position [m]

βx (RMS: 1.01%)

-3

-2

-1

0

1

2

3

0 100 200 300 400 500

Be

ta B

ea

t [%

]

BPM position [m]

βy (RMS: 0.93%)

Figure 8: Remaining beta beat after downloading results of the LOCO fit tothe quad power supplies: horizontal (top) and vertical (bottom).

•AierLOCOadjustmentstunesmatchdesigntobekerthan0.01,betabea[ngis~1%rmsinbothplanes,horizontaldispersionbea[ngsuppressed.•Spuriousver[caldispersionandbetatroncouplingremaintobecorrected(skewquadcorrec[on).•IVUFFtablesrecordeddownto4.5mmgap;atclosedgaps~1umrmsorbitrecorded(withSOFB);localandglobalop[cscorrec[onforIVUsremaintobeimplemented(nosignsofbetabea[ngobservedsofar).•Linearchroma[ci[escorrectedto+1inbothplanes;2ndordertermsagreereasonablytodesign.•Scrapermeasurementshaverevealedlife[mecontribu[onsandeffec[vepressures;togetherwithlocalbetafunc[onmeasurementsoverallmachineacceptancehasbeendetermined➙7.0mmmradinH&2.5mmmradinVagreeverywellwithtrackingstudyresults.

Figure 11: Top: vertical scraper measurement at 70 mA, fits for gas and Tou-

schek lifetime contributions are included. Bottom: comparison of DA simulation

results at the center of a long straight (blue) with acceptances determined from

scraper measurements (red).

0

1

2

3

4

5

6

7

8

-15 -10 -5 0 5 10 15

y [m

m]

x [mm]

Ideal machine, δ=0.0%Machine with errors, δ=0.0%

Vacuum ChamberPhysical Aperture

Measured: Ax=7 mm mrad, Ay=2.5 mm mrad

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5Vertical scraper distance from beam center, dscry [mm]

0

5

10

15

20

25

30

35

40

Tota

l life

time,

to

tal [h

]

total (dscry2 )

total dscry > dydscry = dyMeasurement

top related