fast step transition and state identification (stasi) for discrete …eubias.org › eubias2015 ›...

Post on 23-Jun-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fast Step Transition and State Identification (STaSI)

for Discrete Single-Molecule Data Analysis

Bo Shuang

Landes Research Group

Rice University

QBI

Jan. 08, 2015 1

Acknowledgements

Landes Group

Dr. Christy Landes - PI

Dr. Jixin Chen

Lydia Kisley

David Cooper

Wenxiao Wang

Dr. J. Nick Taylor

Dr. Chun-Biu Li

Dr. Tamiki Komatsuzaki

Link Group

2

Motivation: When Histogram is not Enough

50 100 150 200 2500.2

0.4

0.6

0.8

50 100 150 200 2500.2

0.4

0.6

0.8

Time

FR

ET

Effic

iency

0 100

0 20 40# of Occurrence

0 0.5 1 1.5 2 2.50

0.5

1

FR

ET

Effic

iency

Distance/R0

FRET: Förster(fluorescence) resonance energy transfer

1 Cooper, D. et. al. unpublished image

1

3

Cutting Edge Methods

4

Watkins and Yang, J. Phys. Chem. B 2005 McKinney, Joo and Ha, Biophys. J. 2006

Bronson, et. al. Biophys. J. 2009

• Targeting binned data

• 1) Fitting of different number of states

– Student’s t test

• 2) Determine the optimum number of

states

– Minimum Description Length Principle

(MDL)

5

Our Approach

Advances in Minimum Description Length: Theory and Applications, MIT Press

Pre-selection: Step Detection and State

Identification for Different Number of States

6

Step 1: Step Detection

using Student’s t-test:

Shuang, B., et. Al., J. Phys. Chem.

Lett., 2014, 5, 3157-3161

Pre-selection: Step Detection and State

Identification for Different Number of States

7

Step 2: Group similar states

using a greedy algorithm

Shuang, B., et. Al., J. Phys. Chem.

Lett., 2014, 5, 3157-3161

Step 3: Determine the Optimum Number of

States

8

# of states

# of data

points in ith

state transitions

Shuang, B., et. Al., J. Phys. Chem. Lett., 2014, 5, 3157-3161

0

0.4

0.8

0

0.4

0.8

Performance: More Accurate

1 Bronson, J. E., et. al. Biophys. J. 2009, 97, 3196-3205. 9

Gray: Simulated FRET trace Red: StaSI fit

Green: vbFRET fit1 Blue: True states

0

0.4

0.8

0

0.4

0.8

Time (dt)

FR

ET

Effic

iency

2000

Performance: Faster in Computation

102

103

104

105

10-2

100

102

104

# of Data Points

Analy

sis

Tim

e (

s)

vbFRET

STaSI

10

The Importance of L1 norm

11

Other Applications

1 2 3 4 510

-5

10-4

10-3

Time (s)

D (

m2/s

)

Instantaneous diffusion coefficient Photobleaching steps

12 Hu, Z. et. al. JACS, 2014, 136 (45), 16023–16031

13

The Program with GUI

Conclusion

• STaSI provides comprehensive, objective analysis of multiple

traces requiring few user inputs about the underlying physical

models, and is faster and more precise in determining the

number of states than established and cutting-edge methods

for single-molecule data analysis.

• This method improves the state determination for noisy data or

data with fast dynamics, which potentially increases the

temporal resolution in single-molecule measurements.

• We plan to expend this method to data with variance change or

frequency change.

• Our program (in MATLAB) can be downloaded at:

http://lrg.rice.edu/Content.aspx?id=96

14

Questions

15

102

103

104

105

10-2

100

102

104

# of Data Points

Analy

sis

Tim

e (

s)

vbFRET

STaSI

top related