energy efficiency assessment in the context of multimodal...

Post on 07-Aug-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Energy efficiency assessment in the context of multimodal passenger transport: 

From ‘well’ to ‘wheels’

Konstantinos N. GenikomsakisUniversity of Deusto

1st MOVESMART Workshop ‐ 15th October 2015Bilbao, Spain

2

AimTo support the mobility of individuals by assisting the traveler to combinevarious means of transportation in an energy‐efficient way

Impact assessment of multimodal routes in relation to the MOVESMART project

Methodological approach“Well‐to‐wheels” analysis of energy consumption/emissions over the operational phase of the life cycle

3

Challenges in relation to MOVESMART objectives

• Scientific:– Consideration of traffic conditions

– Inclusion of electric vehiclesin mobility chains

• Technological:– Low response time

4

Transport services and standardisation in EU

“The assessment of energy consumption and GHG emissions of a transport service shall include both vehicle operational processes andenergy operational processesthat occur during the operational phase of the lifecycle.”

5

Scope of the analysis

Resource extraction and processing

Transport (ship, train, 

lorry, pipeline)

Conversion(refinery, power 

plant)

Transport (diesel), 

transformation (electricity)

Final energy consumption

(vehicle operation)

Facility construction

Facility decommissioning

Vehicle manufacturing

Vehicle disposal

Well‐to‐Tank Tank‐to‐Wheels

Well‐to‐Wheels

6

From “well” to “tank”: Energy operational processes (1)

• Modeling of upstream stages of the life cycle for:‒ Transport fuels‒ Electricity

• Tool/Database: SimaPro v8/Ecoinvent v3

• Methods and impact categories: ‒ Global warming potential (GWP 100a, IPCC 2013)

‒ Cumulative energy demand (CED v1.08)

• Determination of upstream energy and emission factors as part of the life cycle analysis, by:‒ fuel type‒ electricity generation technology(composition of electricity mix)

Example of well‐to‐tank (WTT) stages of petroleum‐based transport fuels

Electricity generation, transmission, transformation and distribution to end users

7

From “well” to “tank”: Energy operational processes (2)

21%

12%

3%15%31%

15%

1% 1%

2011

22%

9%

4%19%26%

17%

2% 1%

2012

21%

15%

5%14%

21%

20%

2% 1%

2013

Global warming potential (GWP 100a, IPCC 2013)

Electricity (ES mix)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2011 2012 2013

kg CO2 eq

/kWh

Oil

Co‐generation

Wind

Natural gas

Hard coal

Solar

Hydro

Nuclear

Global warming potential (GWP 100a, IPCC 2013)

Cumulative energy demand (CED v1.08)

Transport fuels (EU)

0.00

0.50

1.00

1.50

MJ inp

ut/M

J outpu

t

0.000.010.020.030.040.050.06

kg CO2 eq

/MJ

8

• Dynamic emission factors from Handbook Emission Factors for Road Transport (HBEFA)

• Integrated in a MongoDB:– Inputs: 

Traffic situation: <area type, road type, speed limit, level of service>Road gradient: 0%, ±2%, ±4%, and ±6% Car engine technology:  Diesel, Petrol (4‐stroke), Petrol (2‐stroke), LPG, BifuelCNG/Petrol, Flex‐fuel E85Engine size class:  Small (<1.4 L), Medium (>=1.4 L and <2 L), Large (>=2 L)Emission class: Up to Euro 6Fuel type (for bifuel vehicles)

– Outputs:Emission factors for CO2, CH4, N2OFuel consumption

From “tank” to “wheels”: Vehicle operational processes for passenger cars (PCs)

9

• Physics‐based vehicle model → Estimation of traction power, i.e. power required to overcome the forces opposing to the movement of the vehicle and drive it at speed u

• EV components model → Transformation of traction powerrequirements (at wheels) into EV battery power requirements

From “tank” to “wheels”: Vehicle operational processes for electric vehicles (EVs) (1)

Normal forward drivingRegenerative braking

Battery Motor & controller

Gear system Wheels

Accessories

Energy flows in typical battery powered EVs 

10

• What’s new in modeling of motor operation?– Efficiency‐load curves based on motor type:

Synchronous

Induction

– Normalisation of efficiency based on motor size 

– Modeling of “overtorque” conditions

From “tank” to “wheels”: Vehicle operational processes for electric vehicles (EVs) (2)

11

• What’s new in modeling of energy recuperation?– Symmetric torque‐speed curve:

Motor mode

Generator mode

– Maximum torque limitation on energy recuperation

– Maximum regeneration capability (%) as function of vehicle speed

No energy recuperation  at low vehicle speeds

Maximum energy recuperation for vehicle speeds above a minimum threshold

From “tank” to “wheels”: Vehicle operational processes for electric vehicles (EVs) (3)

12

• Definition of 3 “average” models based on available electric cars in the market 

From “tank” to “wheels”: Vehicle operational processes for electric cars (1)

Based on:

• Citroen C‐Zero

• Peugeot Ion

•Mitsubishi i‐Miev

• VW e‐Up!

Low power model

Based on:

• Renault Zoe

• Renault Fluence ZE

• Nissan Leaf

• KIA Soul

Medium power model

Based on:

• Ford Focus Electric

• BMW i3

•MercedesBenz Class b Electric

High power model

13

• Realistic driving cycles for urban traffic conditions 

From “tank” to “wheels”: Vehicle operational processes for electric cars (2)

Free flow

Heavy flow Stop and go flow

Saturated flow

14

• Extraction of energy consumption factors: Indicative simulation results for stop and go flow and various road gradients

From “tank” to “wheels”: Vehicle operational processes for electric cars (3)

15

• Model: The Core (GG)

• Regenerative braking: No

• Driving cycle: World Motorcycle Test Cycle (WMTC) – part 1

• Road gradient: 0%

From “tank” to “wheels”: Vehicle operational processes for electric scooter

Vehicle speed over time

Power “at wheels”

16

From “well” to “wheels”: Full energy/vehicle pathway for PCs and EVs

SimaPro/Ecoinvent

Own model

HBEFA

HBEFA

SimaPro/Ecoinvent

17

From “well” to “wheels”: Full energy/vehicle pathway for public transport (PT)

SimaPro/Ecoinvent SimaPro/Ecoinvent

18

Energy Efficiency Assessment Module as a MOVESMART web‐service

• Purpose: Integration of components for energy efficiency assessment of multimodal  routes

• Challenge: Low response time

19

Concluding remarks

• Worst case scenario:– 15 km route with PC in Vitoria‐Gasteiz– 136 road segments

• Achievement:  Response time <0.6 secwith Intel Core i5 and 4GB RAM

• Potential improvements:– Current implementation is built with Jersey and runs on Grizzly: Test other frameworks, e.g. Vert.x and Akka

– Load road network characteristics and energy/consumption databases in memory

20

Questions?

Dr. Konstantinos N. GenikomsakisDeustoTech EnergyResearcherkostas.genikomsakis@deusto.es

top related