eigenvalues of the sum of matrices from unitary similarity

Post on 08-Apr-2022

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Eigenvalues of the sum of matrices

from unitary similarity orbits

Chi-Kwong LiDepartment of Mathematics

The College of William and Mary

Based on some joint work with:Yiu-Tung Poon (Iowa State University),

Nung-Sing Sze (University of Connecticut),

Chi-Kwong Li Eigenvalues of the sum of matrices.

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

Chi-Kwong Li Eigenvalues of the sum of matrices.

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

Chi-Kwong Li Eigenvalues of the sum of matrices.

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

It is natural to make predictions about U∗AU + V ∗BV based oninformation of A and B.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

It is natural to make predictions about U∗AU + V ∗BV based oninformation of A and B.

Knowing E(A,B) is helpful in the study of perturbations,approximations, stability, convergence, spectral variations, ....

Chi-Kwong Li Eigenvalues of the sum of matrices.

Introduction

Basic problem

Let A,B ∈ Mn. Determine the set E(A,B) of eigenvalues of matrices ofthe form

U∗AU + V ∗BV, U, V are unitary,

or simply,A + V ∗BV V is unitary.

Why study?

It is natural to make predictions about U∗AU + V ∗BV based oninformation of A and B.

Knowing E(A,B) is helpful in the study of perturbations,approximations, stability, convergence, spectral variations, ....

Especially, in the study of quantum computing and quantuminformation theory, all measurements, control, perturbations, etc.are related to unitary similarity transforms.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Chi-Kwong Li Eigenvalues of the sum of matrices.

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Chi-Kwong Li Eigenvalues of the sum of matrices.

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Example Let A =

(

10 00 20

)

and B =

(

3 00 4

)

.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Example Let A =

(

10 00 20

)

and B =

(

3 00 4

)

.

If A + V ∗BV has eigenvalues c1 ≥ c2, then c1 ∈ [23, 24], c2 ∈ [13, 14],

Chi-Kwong Li Eigenvalues of the sum of matrices.

Hermitian matrices

Example Let A =

(

1 00 2

)

and B =

(

3 00 4

)

. Then E(A,B) = [4, 6].

Just consider the eigenvalues of

(

1 00 2

)

+

(

cos t − sin tsin t cos t

)(

3 00 4

)(

cos t sin t− sin t cos t

)

with t ∈ [0, π].

Example Let A =

(

10 00 20

)

and B =

(

3 00 4

)

.

If A + V ∗BV has eigenvalues c1 ≥ c2, then c1 ∈ [23, 24], c2 ∈ [13, 14],

and E(A,B) = [13, 14] ∪ [23, 24].

Chi-Kwong Li Eigenvalues of the sum of matrices.

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

If V is unitary and A + V ∗BV has eigenvalues c1 ≥ · · · ≥ cn, then

cj = [bj + an, bj + a1] ∩ [aj + bn, aj + b1] for j = 1, . . . , n.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

If V is unitary and A + V ∗BV has eigenvalues c1 ≥ · · · ≥ cn, then

cj = [bj + an, bj + a1] ∩ [aj + bn, aj + b1] for j = 1, . . . , n.

It follows that E(A,B) equals

[an + bn, a1 + b1] \n−1⋃

j=1

((aj+1 + b1, aj + bn) ∪ (bj+1 + a1, bj + an)) .

Chi-Kwong Li Eigenvalues of the sum of matrices.

Results on Hermitian matrices

Theorem

Let A = diag (a1, . . . , an) and B = diag (b1, . . . , bn) with

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

If V is unitary and A + V ∗BV has eigenvalues c1 ≥ · · · ≥ cn, then

cj = [bj + an, bj + a1] ∩ [aj + bn, aj + b1] for j = 1, . . . , n.

It follows that E(A,B) equals

[an + bn, a1 + b1] \n−1⋃

j=1

((aj+1 + b1, aj + bn) ∪ (bj+1 + a1, bj + an)) .

Consequently, E(A,B) = [an + bn, a1 + b1] if

b1 − bn ≥ max1≤j≤n−1

(aj − aj+1) and a1 − an ≥ max1≤j≤n−1

(bj − bj+1).

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

There exist Hermitian matrices A, B and C = A + B with eigenvaluesa1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn, and c1 ≥ · · · ≥ cn if and only if

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

There exist Hermitian matrices A, B and C = A + B with eigenvaluesa1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn, and c1 ≥ · · · ≥ cn if and only if

n∑

j=1

(aj + bj) =

n∑

j=1

cj ,

and

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [Klychko, Fulton, A. Horn, Thompson, Kuntson, Tao, ... ]

Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be given.

There exist Hermitian matrices A, B and C = A + B with eigenvaluesa1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn, and c1 ≥ · · · ≥ cn if and only if

n∑

j=1

(aj + bj) =

n∑

j=1

cj ,

and∑

r∈R

ar +∑

s∈S

bs ≥∑

t∈T

ct

for all subsequences R,S, T of (1, . . . , n) determined by theLittlewood-Richardson rules.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Normal matrices

Example 1 Suppose σ(A) = {1,−1} and σ(B) = {i,−i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Normal matrices

Example 1 Suppose σ(A) = {1,−1} and σ(B) = {i,−i}.

Then E(A,B) equals

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 2 Suppose σ(A) = {1,−1} and σ(B) = {0.8i,−0.8i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 2 Suppose σ(A) = {1,−1} and σ(B) = {0.8i,−0.8i}.

Then E(A,B) equals

−1 −0.5 0 0.5 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Chi-Kwong Li Eigenvalues of the sum of matrices.

Proposition [LPS,2008]

Suppose A,B ∈ Mn are normal with

σ(A) = {a1, a2} and σ(B) = {b1, b2}.

Then E(A,B) are two (finite) segments of the hyperbola with end pointsin {a1 + b1, a1 + b2, a2 + b1, a2 + b2}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 3 Suppose w = ei2π/3,σ(A) = {−iw,−iw2} and σ(B) = {−i,−wi,−w2i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 3 Suppose w = ei2π/3,σ(A) = {−iw,−iw2} and σ(B) = {−i,−wi,−w2i}.

Then E(A,B) equals

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 4 Suppose w = ei2π/3,σ(A) = {−0.95wi,−0.95w2i) and σ(B) = {−i,−wi,−w2i}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 4 Suppose w = ei2π/3,σ(A) = {−0.95wi,−0.95w2i) and σ(B) = {−i,−wi,−w2i}.

Then E(A,B) equals

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 5 Suppose σ(A) = {0, 1 + i} and σ(B) = {0, 1, 4}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Example 5 Suppose σ(A) = {0, 1 + i} and σ(B) = {0, 1, 4}.

Then E(A,B) equals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chi-Kwong Li Eigenvalues of the sum of matrices.

Proposition [LPS,2008]

Suppose σ(A) = {a1, a2} and σ(B) = {b1, b2, b3}. ThenE(A,B) = E(a1, a2; b1, b2, b3) consists of connected components enclosedby the three pairs of hyperbola segments

E(a1, a2; b1, b2), E(a1, a2; b1, b3), E(a1, a2; b2, b3).

Chi-Kwong Li Eigenvalues of the sum of matrices.

One more example on normal matrices

Example 6 Suppose σ(A) = {0, 1, 4, 6} and σ(B) = {0, i, 2i).

Chi-Kwong Li Eigenvalues of the sum of matrices.

One more example on normal matrices

Example 6 Suppose σ(A) = {0, 1, 4, 6} and σ(B) = {0, i, 2i).

Then E(A,B) equals

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Chi-Kwong Li Eigenvalues of the sum of matrices.

Results on normal matrices

Theorem [LPS,2008]

Suppose A,B ∈ Mn are normal with σ(A) = {a1, . . . , ap} andσ(B) = {b1, . . . , bq}. Then

E(A,B) = (∪E(ai1, ai2

, ai3; bj1

, bj2)) ∪ (∪E(ai1

, ai2; bj1

, bj2, bj3

)) .

Chi-Kwong Li Eigenvalues of the sum of matrices.

Results on normal matrices

Theorem [LPS,2008]

Suppose A,B ∈ Mn are normal with σ(A) = {a1, . . . , ap} andσ(B) = {b1, . . . , bq}. Then

E(A,B) = (∪E(ai1, ai2

, ai3; bj1

, bj2)) ∪ (∪E(ai1

, ai2; bj1

, bj2, bj3

)) .

Theorem [Wielandt,1955], [LPS,2008]

Suppose A,B ∈ Mn are normal. Then µ /∈ E(A,B) if and only if there isa circular disk containing the eigenvalues of A or µI − B, and excludingthe eigenvalues of the other matrices.

Chi-Kwong Li Eigenvalues of the sum of matrices.

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Chi-Kwong Li Eigenvalues of the sum of matrices.

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Proposition

Let A ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Proposition

Let A ∈ Mn.

Then µ ∈ σ(A) if and only if (µ, |µ|2) ∈ DW (A).

Chi-Kwong Li Eigenvalues of the sum of matrices.

General matrices

The Davis-Wielandt Shell of A ∈ Mn is the set

DW (A) = {(x∗Ax, ‖Ax‖2) : x ∈ Cn, x∗x = 1}

⊆ {(z, r) ∈ C × R : |z|2 ≤ r}.

Proposition

Let A ∈ Mn.

Then µ ∈ σ(A) if and only if (µ, |µ|2) ∈ DW (A).

Then A is normal if and only if DW (A) is a polyhedron.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

DW (A) ∩ DW (µI − B) 6= ∅.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

DW (A) ∩ DW (µI − B) 6= ∅.

For any ξ ∈ C,

conv σ(|A + ξI|) ∩ conv σ(|B − ξI − µI|) 6= ∅.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Theorem [LPS,2008]

Suppose A,B ∈ Mn. Then µ ∈ E(A,B) if and only if any one of thefollowing holds.

DW (A) ∩ DW (µI − B) 6= ∅.

For any ξ ∈ C,

conv σ(|A + ξI|) ∩ conv σ(|B − ξI − µI|) 6= ∅.

Equivalently, singular values of A + ξI and the singular values ofB − ξI − µI do not lie in two separate closed intervals.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Determine all possible eigenvalues for∑k

j=1U∗

j AjUj for givenA1, . . . , Ak ∈ Mn.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Determine all possible eigenvalues for∑k

j=1U∗

j AjUj for givenA1, . . . , Ak ∈ Mn.

Study the spectrum of A + V ∗BV for infinite dimensional boundedlinear operators A,B.

Chi-Kwong Li Eigenvalues of the sum of matrices.

Further research

Develop computer programs to generate E(A,B) for generalA,B ∈ Mn.

Determine the entire set or a subset of eigenvalues of A + V ∗BVfor given (normal) matrices A,B ∈ Mn.

Determine all possible eigenvalues for∑k

j=1U∗

j AjUj for givenA1, . . . , Ak ∈ Mn.

Study the spectrum of A + V ∗BV for infinite dimensional boundedlinear operators A,B.

Study the above problems for unitary matrices chosen from acertain subgroups such as SU(2) ⊗ · · · ⊗ SU(2) (m copies).

Chi-Kwong Li Eigenvalues of the sum of matrices.

Thank you for your attention!

Chi-Kwong Li Eigenvalues of the sum of matrices.

top related