effets de sel en chimie organique et organométalliqueicmub.u-bourgogne.fr/cours/jlacour_c_salt...

Post on 12-Sep-2018

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Effets de sel en chimie organique et organométallique

Prof. Jérôme Lacour, Organic Chemistry Department

Université de Dijon, ICMUB, 20.03.08

Salts Effects in Organic and Organometallic Chemistry

Introduction and General Aspects

Kinetic effects in catalysis

Thermodynamic effects insupramolecular chemistry

Structural characterization

Perspectives

Salts Effects in Organic and Organometallic Chemistry

Introduction and General Aspects

Kinetic effects in catalysis

Thermodynamic effects insupramolecular chemistry

Structural Characterization

Perspectives

The Various Types of Ion Pairs

A+ X-

The Various Types of Ion Pairs

A+ X-

ContactTight

Intimate

SS

SS

S

S

SS

SS

S

LooseSolvent Separated

A+ X-S

The Various Types of Ion Pairs

A+ X-

ContactTight

Intimate

A+ X-S

LooseSolvent Separated

A+ X-

DISSOCIATION

S

SS

S

S

The Various Types of Ion Pairs

AGGREGATION

A+ X-

A+X-

A+ X-

A+X-

E E

+-

Penetrated

G. Boche, Angew. Chem., Int. Ed. Engl., 1992, 31, 731

A+ X-

ContactTight

Intimate

A+ X-S

LooseSolvent Separated

1. Donor Solvents – DN scaleSolvents possessing a lone pair (Lewis base)Strongly solvating cations

2. Acceptor Solvents – AN scaleLewis acid solvents accepting lone pairsand therefore solvating strongly anions

Donor and Acceptor Solvents

Importance of Solvents

1. Polar Protic (εr > 15)Dissociated Ions

2. Apolar Aprotic (εr < 15, μ < 2.5 D)Strongly Associated IP or Aggregates

3. Polar Aprotic (εr > 15, μ > 2.5 D)Dissociated Ions or Weakly Associated

Protic and Aprotic /Polar or Apolar Solvents

S : A+DN

S X-AN

Electrostatic Modulation

Coulombic Interactions

qq’1

r4 π εr

Eint =

εr = dielectric constant of the mediumr = distance between the two chargesq et q’ = charges

Applied to Ion Pairs

1qq’

εr r4 πEass =

εr = dielectric constant of the mediumr = sum of the ionic radii of the solvated speciesq et q’ = charge on each of the ions

A+ X-Contact

TightIntimate

A+ X-S

LooseSolvent Separated

High εrLow εr

Electrostatic Modulation

Minimum distance for nointeraction between two ions

εr = dielectric constant of the mediume = charge on the electronZ1, Z2 = Valence of the ionsk = Boltzmann constantT = absolute temperature (K)

Z1Z2e2

k T2 εr

dmin =

280

εr

dmin = (in Å at 25 °C)

A+ X-

H2O εr = 80 dmin = 3.6 Å Dissociated

DISSOCIATION

H2O

X-

C6H6 εr = 2 dmin = 140 Å IonicAssociation

A+Contact

TightIntimate

CIP

C6H6

dmin

« HSAB Symbiotic Effect »

H+ > Li+ > Na+ > K+ > Rb+ > Cs+

F- > Cl- > Br- > I-

Ph4As+ > Ph3C+ >> R4N+ > K+ > Na+ > Li+

Ph4B- > Ph3C- >> I- > Br- > Cl- > F-

A+

X-

« Hard » Ions

High charge density

Not bulkyLocalized chargeLow polarizability

A+

X-

« Soft » Ions

Low charge density

BulkyOften of delocalized chargeUsually Polarizable

A+ X- A+ X-

Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533

« HSAB Symbiotic Effect »

Hard anions – Low HOMOsHard cations – Very high LUMOs

Interaction under Charge Control

The interaction between a hard cation and a hard anion or betweentwo soft ions is stronger than that between two ions of different type

A+

X-

« Hard » Ions

H+ > Li+ > Na+ > K+ > Rb+ > Cs+

F- > Cl- > Br- > I-

Soft anions – Very high HOMOsSoft cations – Low LUMOs

Interaction under Orbital Control

A+

X-

« Soft » Ions

Ph4As+ > Ph3C+ >> R4N+ > K+ > Na+ > Li+

Ph4B- > Ph3C- >> I- > Br- > Cl- > F-

Salts Effects in Organic and Inorganic Chemistry

Introduction and General Aspects

Kinetic effects in catalysis

Thermodynamic effects insupramolecular chemistry

Structural Characterization

Perspectives

Evans et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 768

Diels-Alder Reactions

Evans et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 768

Diels-Alder Reactions

Evans et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 768

Diels-Alder Reactions

Diels-Alder Reactions

Note: temperature or anion effect ?

OTfSbF6OTfSbF6

ee 87% ~ rapport 14.4:1; ee 96% ~ rapport 49:1

Diels-Alder Reactions

Diels-Alder Reactions

SbF6- TfO-

Diels-Alder Reactions

Angew. Chem. Int. Ed. 1999, 38, 1220

CF3

CF3 4

B

BArF

Diels-Alder Reactions

3 CH···F interactions

Angew. Chem. Int. Ed. 1999, 38, 1220

Carbo and Hetero Diels-Alder Reactions

J. Chem. Soc., Perkin Trans. 2 1997, 1183

Carbo and Hetero Diels-Alder Reactions

DN ANDCM - 20.4MeNO2 2.7 20.5DMF 26.6 16.0

MeCN 14.1 18.9

THF 20.0 8.0

MeNO2 εr 35.9 CH2Cl2 εr 8.9

J. Chem. Soc., Perkin Trans. 2 1997, 1183

Angew. Chem. Int. Ed. 1998, 37, 2897

CF3

CF3 4

B

Moisture!

TOF: 1a 41 min-1 while 1e 70-135 min-1

Hydrovinylation Reactions

J. A. Chem. Soc. 1999, 121, 9899

ethylene (1 atm)0.35 mol% [(allyl)Ni-Br]2

Ph3P, AgOTf

Chem. Eur. J. 1999, 5, 1963.

ethylene (1 atm)0.7 mol% [(allyl)Ni-Br]2

R3P*, AgOTf∗

MeO MeO

PPh2

O

R = OMe, OBn

R

Hydrovinylation Reactions

J. A. Chem. Soc. 1999, 121, 9899

ethylene (1 atm)0.35 mol% [(allyl)Ni-Br]2

R3P, AgOTf

ethylene (1 atm)0.7 mol% [(allyl)Ni-Br]2

R3P*, NaBARF∗

MeO MeO

Chem. Eur. J. 1999, 5, 1963.

PPh2

O

R = OMe, OBn

R

No rxn with NaBARF

BARF

Hydrovinylation Reactions

J. A. Chem. Soc. 1999, 121, 9899

ethylene (1 atm)0.35 mol% [(allyl)Ni-Br]2

R3P, AgX

P

Me

MeX

5a H

5b OCH2Ph

5c CH2OCH2Ph

5d CH2OCH3

X

Hydrovinylation Reactions

J. Am. Chem. Soc. 1999, 121, 9899

H2C

XNi

H2C

HC

P

Ar

X = OTf, ClO4

H2C

X

NiH2C

HC

P

Ar

X = SbF6, BARF

5a

See also D. Voigt J. Organomet. Chem. 1998, 552, 187

H2C

ONi

H2C

HC

P

Ar

R

H2C

XNi

H2C

HC

P

Ar

RO

X = OTf, ClO4X = SbF6, BARF

5c

P

Me

MeX

5a H

5b OCH2Ph

5c CH2OCH2Ph

5d CH2OCH3

X

Salts Effects in Organic and Inorganic Chemistry

Introduction and General Aspects

Kinetic effects in catalysis

Thermodynamic effects insupramolecular chemistry

Structural Characterization

Perspectives

Cation-π interactions

NR

Host-Guest Chemistry

Böhmer, Collet, Ito, Kubik, Rebek, Sanders, Shinkai, etc.

A+X-

?

Initial Results

N 9

From chloride to iodide x 19 decrease

Quite bizarre

Tetrahedron Lett. 1998, 39, 3779

More complete stories

J. Am. Chem. Soc. 1999, 121, 11908J. Am. Chem. Soc. 2002, 124, 8307

Picrate > trifluoroacetate > I- >Br- > Cl- > tosylate > acetate

NO2

NO2O2NO

Explanation?

J. Am. Chem. Soc. 1999, 121, 11908J. Am. Chem. Soc. 2002, 124, 8307

Explanation?

J. Am. Chem. Soc. 1999, 121, 11908J. Am. Chem. Soc. 2002, 124, 8307

Ion pair dissociation energy

Guest appears to respond to the cation’s chargedensity exposed to the receptor, which is determinedby the anion’s charge density through a polarizationscheme

Not so simple, see Hunter Chem. Commun. 2003, 834

Beware – The whole ion pair may need to be considered

2 3

Δ-4 Λ-4

Beware – The whole ion pair may need to be considered

2 3

Δ-4 Λ-4

Salts Effects in Organic and Inorganic Chemistry

Introduction and General Aspects

Kinetic effects in catalysis

Thermodynamic effects insupramolecular chemistry

Structural Characterization

Perspectives

A+ X-

?

nOe and PGSEexperiments

NOEs and PGSE experiments

For organic compounds, see Pochapsky Magn. Reson. Chem. 2000, 38, 90 and incl. ref.

NOEs and PGSE experiments - Reviews

NOEs and PGSE experiments - Reviews

Qualitative NMR Investigations

Review : Euro. J. Inorg. Chem. 2003, 195

19F, 1H HOESY

Qualitative NMR Investigations

1H NOESY

Review : Euro. J. Inorg. Chem. 2003, 195

Qualitative NMR Investigations

R = H, R’’ = Me

R = i-Pr, R’’ = Me

Organometallics 1999, 18, 4367

X-

X-

Qualitative NMR Investigations

Organometallics 1999, 18, 3061

decreasing NOEsTfO- > BF4

- > PF6 - > BARF

For a recent account, see Chem.Eur. J. 2007, 13, 1570

Quantitative NMR Investigations

Organometallics 1999, 18, 1

From qualitative to quantitative information ?

Quantitative NMR Investigations

Organometallics 1999, 18, 1

Quantitative experiments – Diffusion Coefficients

Helv. Chim. Acta 2001, 84, 3833

CIP

Quantitative experiments – Diffusion Coefficients

Helv. Chim. Acta 2001, 84, 3833

CIP

SSIP

Quantitative experiments – Diffusion Coefficients

Ar = pTol, R = tBu

Chem. Commun. 2002, 286

Solvent CD2Cl2

anion

cation

Quantitative experiments – Diffusion Coefficients

Chem. Commun. 2002, 286

No strong ion-pairing in methylene chlorideAr = pTol, R = tBu

PGSE and aggregation studies

excess of MX- 2 MCl

Aggregation increases with non-coordinating anions such as BPh4−

PGSE and aggregation studies

excess of MX- 2 MCl

CD2Cl2

Salts Effects in Organic and Inorganic Chemistry

Introduction and General Aspects

Kinetic effects in catalysis

Thermodynamic effects insupramolecular chemistry

Structural Characterization

Perspectives

Towards Real Non-Coordinating Anions

Chem. Eur. J. 2002, 8, 2088

Towards Real Non-Coordinating Anions

Chem. Eur. J. 2002, 8, 2088

Towards Real Non-Coordinating Anions

Chem. Eur. J. 2002, 8, 2088

PPh3

(PPh3)2

Just a beautiful picture ?

Angew. Chem. 2003, 115, 3611

19F NMR δ –26 ppmAnhydrous [TBA][F] δ –73 ppm

Chiral counterions

Chiral counterions

Chiral counterions

PPh3 conv. 39% ee 64%P(o-tolyl)3 conv. 35% ee 74%

Chiral counterions

See also JACS 2006, 128, 13368

Chiral counterions

See also JACS 2006, 128, 13368

Chiral counterions

Chiral counterions

Chiral counterions

Acknowledgments

Merci pour votre attention

Martina AUSTERI; Renaud BACH; Rémy BERNARD; Frédéric BURON; Samuel CONSTANT; ValérieDESVERGNES-BREUIL; France FAVARGER; Richard FRANTZ; Helena GONCALVES-FARBOS; Catherine GOUJON-GINGLINGER; Stéphane GRASS; Virginie HEBBE-VITON; Christelle HERSE; Jonathan JODRY; Benoit LALEU; Nathalie L’HELIAS; David LINDER; Anne LONDEZ; Claire MARSOL; Alexandre MARTINEZ; Nathalie MEHANNA; Christophe MICHON; Pierre MOBIAN; David MONCHAUD; Jessica MULLER, Cyril NICOLAS; Roman NOVIKOV; Céline PEROLLIER; Dalit RECHAVI; Ankit SHARMA; Franck TORRICELLI; Simone TORTOIOLI; Jerome VACHON; Laurent VIAL; Walid ZEGHIDA

top related