determination of density dependence of nuclear matter symmetry energy in hic’s isospin physics and...

Post on 21-Dec-2015

217 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Determination of Density Dependence of Nuclear Matter Symmetry Energy in HIC’s

ISOSPIN PHYSICS AND LIQUID GAS PHASE TRANSITION, CCAST, Beijing, Aug. 19-21, 2005

Lie-Wen Chen(Department of Physics, Shanghai Jiao Tong

University)

Collaborators: V. Greco, C. M. Ko (Texas A&M University)

B. A. Li (Arkansas State University)

Nuclear Matter Symmetry Energy Two-Nucleon Correlation Functions Light Cluster Production and

Coalescence Model Isospin Transport/Diffusion Discussions Summary

Contents

References: PRL90, 162701 (2003); PRC68, 017601 (2003); PRC68, 014605 (2003); NPA729, 809(2003);PRC69, 054606 (2004); PRL94, 032701 (2005);Nucl-th/0508024.

Neutron Stars …

Structures of Radioactive Nuclei, SHE …

Isospin Effects in HIC’s …

Isospin in Intermediate Energy Nuclear Physics

Many-Body Theory

Many-Body Theory

Transport Theory General Relativity

Nuclear Force

EOS for Asymmetric

Nuclear Matter

Density Dependence of the Nuclear Symmetry Energy

HIC’s induced by neutron-

rich nuclei (CSR,GSI,

RIA,…)Pre-eq. n/p

Isospin fractionation

Isoscaling in MF

n-p differential transverse flowProton differential elliptic flow

π-/π+…

Isospin diffusionTwo-nucleon correlation functions

Light clusters (t/3He)

Thickness of neutron skin

Most uncertain property of an asymmetric

nuclear matter

Nuclear Matter Symmetry Energy

EOS of Asymmetric Nuclear Matter

s2 4

ym ( )( , ) ( ,0) ( ), ( ) /n pE E OE (Parabolic law)

Isospin-Independent Part0 2 / 3

0

3( ,0) ( / )

2 1 5 F

a bE u u E u u

(Skyrme-like)

Nuclear Matter Symmetry Energy

0

sym 0

s

2

sym0 0sym 0

0 0

sym0

ym 0

( ) , ( )3 18

30 MeV (LD mass formula: )

( )3 (Many-Body Theory: : 50 200 M eV; Exp: ???)

( )

( ) Meyer & Swiatecki, NPA81; Pomorski & D

KE

E

L

K

ude

LE

E

k,

L

PRC67

0

2sym2

0 symsym

asy sym

2

isobaric incompres

( )9 (Many-Body Theory: : 700 466 MeV

The isospin part of the of asymmetric nuclear matter

(GMR : 566 1350 34 159M

siblity

( )6 eShlomo &Youngblood,PRC

EK

K L 47K

V)

Density dependence of the symmetry energy from SHF

2 2

L.W.Chen et (7 al40.4 ., (MeV) ( 2 )

(f

0.9)78. .

m

5 3 2

)n p

L S unpublis d

r r

he

S

BA Brown, PRL85

symThickness of neutron skin S vs. ( )E SkX~Variation Many-Body Theory

Most recent parameterization for studyingthe properties of neutron stars

sym sym 0( ) ( )E E u

H. Heiselberg& M. Hjorth-Jensen,Phys. Rep. 328(2000)

2 / 3 2sym sym

2 / 3 2sym 0

2 / 3sym 0

( , ) [ ( ( ) 12.7 ) ]

[ ( )( 1) 4.2 ]

2[ ( ) 12.7 ]

( (+) and ( ))

q

V E u

E u u

E u u

q n p

The symmetry potential acting on a nucleon

The neutron and proton symmetry potentials with the stiff (γ=2) and soft (γ =0.5) symmetry energies

γ =0.5:L=52.5 MeV and Ksym=-78.8 MeV γ=2.0: L=210.0 MeV and Ksym=630.0 MeV

Phenomenologically parameterizing the nuclear matter symmetry

energy

Isospin-dependent BUU (IBUU) model

Solve the Boltzmann equation using test particle method Isospin-dependent initialization Isospin-dependent mean field

Isospin-dependent N-N cross sections a. Experimental free space N-N cross section σexp

b. In-medium N-N cross section from the Dirac-Brueckner approach based on Bonn A potential σin-medium

c. Mean-field consistent cross section due to m* Isospin-dependent Pauli Blocking

0 sym

1(1 )

2 z CV V V V

Phase-space distributions ( , , ) satify the Boltzmann equation

( , , ) ( , )p r r p c NN

f r p t

f r p tf f I f

t

Two-Nucleon Correlation Functions

The two-particle correlation function is obtained by convoluting the emission function g(p,x), i.e., the probability of emitting a particle with momentum p from space-time point x=(r,t), with the relative wave function of the two particle, i.e.,

24 41 2 1 2

4 41 1 2 2

1 2 1 2

( / 2, ) ( / 2, ) ( , )( , )

( / 2, ) ( / 2, )

, ( ) / 2

( , ) is the relative two-particle wavefunction

d x d x g x g xC

d x g x d x g x

P P q rP q

P P

P p p q p p

q rThe two-particle correlation function is a sensitive probe to the space-time structure of particle emission source by final state interaction and quantum statistical effects (φ(q,r))

Correlation After Burner: including final-state nuclear and Coulomb interactions (Scott Pratt, NPA 566, 103 (1994))

How to detect the space-time structure of nucleon emission experimentally?

Pairs with P>500 MeV:n-n CF: 20%p-p CF: 20%n-p CF: 30%

Symmetry Energy Effects on Two-Nucleon Correlation Functions

Effects are very small for both isoscalar potential and N-N cross sections

Chen,Greco,Ko,Li, PRL90, PRC68, (2003)

The covariant coalescence model

3

1 131

The element of a spacelike hypersurface

1 2

( ;

at freeze-out

Coalescence pr

) ( , , ; , , )(2 )

obability (Wigner phase-space

:

densi

: ty)

MWi

C C i i i i i C M Mi i

i

WC

M C

d pN g p d f x p x x p p

E

d

Chen,Ko,Li, PRC68; NPA729

Butler,Pearson,Sato,Yazaki,Gyulassy,Frankel,Remler,Dove,Scheibl,Heinz,Mattiello,Nagle,Polleri,

Biro,Zimanyi,Levai,Csizmadia,Hwa,Yang,Ko,Lin,Voloshin,Molnar,Greco,Fries,Muller,Nonaka,Bass,…

Depends on constituents’ space-time structure at freeze-out

Neglecting the binding energy effect (T>>Ebinding),

Coalescence probability: Wigner phase-space density in the rest-frame of the cluster.

Rare process has been assumed (the coalescence process can be treated perturbatively).

Higher energy collisions and higher energy cluster production!

Light Cluster Production and Coalescence Model

0 1 2 3

21 1 2 1 3

10 0 0

22 1 2 2 3

20 0 0

23 1 3 2 3

30 0 0

The Lorentz Matrix

is the boosted four-ve

11 1 1

11 1 1

11

l

1 1

ocity .

b b b b

b b b b bb

b b b

b b b b bb

b b b

b b b b bb

b b b

b

L

Four-momentum: Four-coordina te : x x

y y

z z

E E t t

p p x x

p p y y

p p z z

L L

Dynamical coalescence model

3( , ) Re ( / 2) ( / 2)W ik rd r k d r R r R

Hulthen wave function

23/ 415

21

( ) 2( )

2 ( )i

r rri

ii

e er c e

r

1

1

2

0.23 fm

1.61 fm

1.89 fmr

Wigner phase-space density for Deuteron

0.0 0.5 1.0 1.5 2.0 2.50

1

2

3

4

(k)

k (1/fm)

0 2 4 6 8 10 120.0

0.1

0.2

0.3

0.4 Hulthen Hulthen wih 15 Gaussians

(r)

r (fm)

Wigner transformation

Chen,Ko,Li, NPA729

3

3

2 2 2 2 2 2 2 2 21 2 1 2t/ He

2 2 22 1 2 3 2 3 1 3 1 2

t/ He1 2 3 1 2 3

1 21 1 3

1 2 1

3

2

( , ; , ) 8 exp( / / )

1 ( ) ( ) ((t:

)

2 ( )

1 3( ), ( ) (Jacobi Trans

format22

1.61 fm; He: 1.74 fm)

W k k

m m m m m m m m mr

m m m m m m

m m

m m m m

2 2

ρ λ k k

ρ r r λ r r r

2 1 3 3 1 21 2 1 2 3

2 1 2 11 1 2 2

11

1 21 2 1 2 3

ion)

2 6( ), ( ( ) )

2( )

( ) and ( ) with

1 1 3 1 12 and

2

m m m m m mm m m m m

m m m m m

1 2 1 2 2k k k k k k k

t/3He Wigner phase-space density and root-mean-square radius:

Wigner phase-space density for t/3He

Assume nucleon wave function in t/3He can be described by the harmonic oscillator wave function, i.e.,

3/ 421

( ) exp( )2 2

with the harmonic oscillator frequency

mm r

r

10-5

10-4

10-3

10-2

10-1

data (b=6-7 fm) IBUU+Coalescence

(b=6.5 fm)

Ekin

(MeV)

(a) Deuteron

(d) Deuteron

10-7

10-6

10-5

10-4

10-3

10-2

(b) Triton

36Ar+58Ni@E/A=95 MeV, 60o<c.m.

<120o

data (b=4-5 fm) IBUU+Coalescence

(b=4.5 fm)

dM

/dE

kin (

MeV

-1)

(e) Triton

0 50 100 150 200 25010-7

10-6

10-5

10-4

10-3

10-2

(c) 3He

0 50 100 150 200 250 300

(f) 3He

Isospin symmetric collisions at E/A≈100 MeV

Deuteron energy spectra reproduced Low energy tritons slightly underestimated Inverse slope parameter of 3He underestimated; probably due to neglect of

• larger binding effect• stronger Coulomb effect• wave function

Data are taken from INDRA Collaboration (P. Pawlowski, EPJA9)

Try Coalescence modelat intermediate energies!

Chen,Ko,Li, NPA729

Symmetry Energy Effects on t/3He ratio

50 100 150 2001.5

2.0

2.5

52Ca+48Ca, E=80 AMeV, b=0 fm =0.5 =2.0 =0.5 with soft EOS =0.5 with

medium

Y(t)/

Y(3 He

)

t (fm/c)

Stiffer symmetry energy gives smaller t/3He ratio With increasing kinetic energy, t/3He ratio increases for soft symmetry energy but slightly decreases for stiff symmetry energy

Isospin Transport/Diffusion

How to measure Isospin Transport?

PRL84, 1120 (2000)

______________________________________

A+A,B+B,A+BX: isospin tracer

( );

( )

0 S

1

trong

r

e

e

r

Weak

E=50 AMeV and b=6 fm

_____________IBUU04

MDI interaction

Chen,Ko,Li,

PRL94,2005

MDI ~Finite Range Gogny Interaction

Lane Potential Chen,Ko,Li, PRL93,2005

asy

GMR ( ):

: 566 1350 34 159MeV)

Shlomo &Youngblood,PRC47

K

1

2

3

4

5

6

7

8

P<300 MeV/c

(b) pp

P>500 MeV/c

(d) nn

(c) np

0.0

0.5

1.0

1.5

52Ca+48CaE=80 AMeV, b=0 fm

(a) nn

C(q

)

q (MeV/c)

(e) pp

10 20 30 40

1.0

1.5

2.0

2.5

3.0

3.5

4.0

MDI with soft sym. pot. MDI with hard sym. pot.

10 20 30 40 50

(f) np

MDIDas, Das Gupta, Gale and LiPRC67, (2003)

Two-nucleon correlation functions

The sensitivity becomes weaker with momentum-dependence

1. Effects of momentum-dependence of nuclear potential

Pairs with P>500 MeV:n-p CF: 11%

Discussions

Stiff Symmetry Energy: MDI with 2

Soft Symmetry Energy: MDI with 1x

x

The isospin effects on two-particle correlation functions are really observed in recent experimental data !!!R. Ghetti et al., PRC69 (2004) 031605肖志刚等

0 20 40 60 80 1001.5

2.0

2.5

52Ca+48Ca E=80 AMeV, b=0 fm

Soft Sym. Pot. Hard Sym. Pot.

(a) SBKD

Y(t

)/Y

(3 He

)

Ek (MeV)

0 20 40 60 80 100 120

(b) MDI

t/3He ratio

Still sensitive to the stiffness of the symmetry energy

2. Effects of momentum-dependence of nuclear potential

Stiff Symmetry Energy:

MDI with 2

Soft Symmetry Energy:

MDI with 1x

x

3. Effects of in-medium cross sections on isospin transport

Li,Chen, Nucl-th/0508024.

np cross section is reduced in nuclear medium

3. Effects of in-medium cross sections on isospin transport

Ri(isospin transport/diffusion) Symmetry potential and np collisions

Li,Chen, Nucl-th/0508024.

asy

The parameter is found to be between 0.69 and 1.05

The K is norrowed down to 500 50 MeV, which agrees very well with

the giant resonance results about Sn isotopes (by Fujiwar

Compared wi

a)

208th the experimental data about the n-skin of Pb: 0.8

4. Have We Already Known the Density Dependence of Nuclear Matter Symmetry Energy at Sub-saturated

Densities?

W. D. Tian, Y. G. Ma, et al., Isoscaling + CQMD

__________________________________________________________________

arXiv:nucl-ex/0505011

Isocaling+AMD

sym

208

0

Isoscaling

E ( )=31.6( / )

0.7 is

Neutron-skin

Isospin Transport/Diffusion:

of Pb: 0.8

+AMD: 0.6 1

most ac

0.69 1

ce

.

.05

pta

05

ble

5. The High Density Behaviors of Nuclear Matter Symmetry

Li,Chen,Ko,Yong,Zuo, nucl-th/0504008; Li,Chen,Das, Das Gupta,Gale,Ko,Yong,Zuo, nucl-th/0504069

B. A. Li, PRL88 (2002) 192701

nucl-th/0504065, Phys.Rev. C71 (2005) 054907

Other possible observations: Kaons, Σ, …

———————————————————————————————————————————————————————————

Summary

Two-particle correlation functions and t/3He ratio are useful probes of the nuclear symmetry energy

The sub-saturated density behavior of the symmetry energy become more and more clear from the isospin diffusion and isoscaling, and n-skin of Pb

The high density behavior of the symmetry energy and the momentum dependence of the symmetry potential need much further effort

Thank you!谢谢大家!

top related