dark matter: why, where, what, how?

Post on 22-Jan-2016

34 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

N. Bernal, P. Binetruy, D. Cerdeno, E. Dudas, A. Falkowski, A. Goudelis, O. Lebedev, C. Munoz, E. Nezri, S. Pokorski, A. Romagnoni. Dark Matter: Why, Where, What, How?. Yann Mambrini Laboratoire de Physique Théorique Orsay, Université Paris XI. - PowerPoint PPT Presentation

TRANSCRIPT

Dark Matter:Dark Matter:

Why, Where, What, How? Why, Where, What, How?

Yann Mambrini Laboratoire de Physique Théorique Orsay, Université Paris XI

Krakow, January 6th 2010

N. Bernal, P. Binetruy, D. Cerdeno, E. Dudas, A. Falkowski, A. Goudelis, O. Lebedev, N. Bernal, P. Binetruy, D. Cerdeno, E. Dudas, A. Falkowski, A. Goudelis, O. Lebedev, C. Munoz, E. Nezri, S. Pokorski, A. Romagnoni C. Munoz, E. Nezri, S. Pokorski, A. Romagnoni

IV)IV) Two SUSY candidates : neutralino and gravitinoTwo SUSY candidates : neutralino and gravitino

I)I) The DM puzzleThe DM puzzle

II)II) Direct Detection : principle, experiment and predictionDirect Detection : principle, experiment and prediction

V)V) Complementarity with accelerator physics (LHC, ILC)Complementarity with accelerator physics (LHC, ILC)

III)III) Indirect detection : principle, experiment and predictionIndirect detection : principle, experiment and prediction

OverviewOverview

VII)VII) Conclusions and PerspectivesConclusions and Perspectives

VI)VI) Extra U(1) candidate and sommerfeld effectExtra U(1) candidate and sommerfeld effect

Dark Matter EvidencesDark Matter Evidences

CMB (WMAP)CMB (WMAP) Galactic ScaleGalactic Scale

SUSY : neutralino, gravitino.. SUSY : neutralino, gravitino.. (Jungman)(Jungman)

KK modes (Extra Dim.) KK modes (Extra Dim.) (Servant, Tait)(Servant, Tait)

Extra U(1) boson Extra U(1) boson (Arkani-Ahmed, Weiner)(Arkani-Ahmed, Weiner)

Sterile right handed neutrino Sterile right handed neutrino (Shaposhnikov)(Shaposhnikov)

Weak scale scalar Weak scale scalar (Tytgat)(Tytgat)

Astroparticle (part 0) : data....Astroparticle (part 0) : data....

WMAPWMAP : 0.094 < : 0.094 < hh<<0.1290.129

DAMA excess, direct detection (< 10 GeV DM)DAMA excess, direct detection (< 10 GeV DM)

INTEGRAL : 511 keV line excess (< MeV DM)INTEGRAL : 511 keV line excess (< MeV DM)

HEAT : Positron excess, (100 GeV DM)HEAT : Positron excess, (100 GeV DM)

EGRET : gamma excess (100 GeV DM)EGRET : gamma excess (100 GeV DM)

HESS, gamma excess (10 TeV DM)HESS, gamma excess (10 TeV DM)

PAMELA/ATTIC (> 1 TeV DM)PAMELA/ATTIC (> 1 TeV DM)

CDMS (10-100 GeV DM)CDMS (10-100 GeV DM)

Astroparticle (part I) : Relic Density (Astroparticle (part I) : Relic Density ())

= = -3 H n -3 H n (H = R / R)(H = R / R)..

Boltzmann EquationBoltzmann Equation

.. dndn dtdt

I

J

- < - < v> n v> n22[ [ - n- neqeq ] ]22

h ~ ~ 0.1 h ~ ~ 0.1 3.10 cm s 3.10 cm s

< < v > v >

-1-1 33 22 -27-27

XENON (1 evt per kg per year) : 10 kg – 100kg – 1TXENON (1 evt per kg per year) : 10 kg – 100kg – 1T

U U

H

NUCLEUSNUCLEUS

Direct Detection : principleDirect Detection : principle

FERMI (2008)FERMI (2008)

HESS (Namibie, 2004)HESS (Namibie, 2004)

d 1 dN1 dN < < v > v > d d d E d E 2 dE2 dE44 M M

∫∫ dldl22==

(cm , s ) ~ 10(cm , s ) ~ 10 1010 -13-2 -1 < < v > (100 GeV) v > (100 GeV)

10 cm s M10 cm s M22

22

-29-29 33 -1-1 J ∆J ∆

h ~ ~ 0.1 h ~ ~ 0.1 →→~~1010 J J 3.10 cm s 3.10 cm s

< < v > v >

-1-1 33 -11-11 22 -27-27

Indirect detection from GCIndirect detection from GC

Positrons fluxPositrons flux

1 dNe+1 dNe+ 2 dEe+2 dEe+

==QsourceQsource

MM< < v > v >

e+

e-

22

[particle/cm3] df(E,r)[particle/cm3] df(E,r) dtdt

== QQsourcesourceK(E) * K(E) * f(E,r) f(E,r) ++

3 kpc3 kpc

20 kpc20 kpc

Dsource (E) ~ Dsource (E) ~ E*K(E)E*K(E) b(E)b(E)

~ 1.8 (E/1GeV)~ 1.8 (E/1GeV)-0.2-0.2

..db(E)db(E) dEdE

* f(E,r) * f(E,r) ++

[Salati][Salati]

SUSY for dummiesSUSY for dummies

~~Hd (Higgsino down)Hd (Higgsino down)

~~Hu (Higgsino up)Hu (Higgsino up)

~~B ( Bino)B ( Bino)

~~W ( Wino)W ( Wino)

BB

WW

HdHd

HuHu

BosonsBosons FermionsFermions

(Stau)(Stau) LL = M = M11 BB + M BB + M22 WW + WW + Hu Hd Hu Hd

~~~~ ~~ ~~ ~~ ~~

+M+MZZ B Hu + M B Hu + MZZ W Hd + M W Hd + M22staustau ~~ ~~~~~~~~~~

Neutralino : Neutralino : ii= Z= ZiBiB B + Z B + ZiWiW W + Z W + Ziuiu Hu + Z Hu + Zidid Hd Hd

Neutralino Dark MatterNeutralino Dark Matter

M1 M1 0 . . 0 . . 00 M2M2 . . . . . . 0 -μ. . 0 -μ . . . . -μ-μ 0 0

~~ ~~ ~~ ~~WW HdHd HuHu

M=M=

WW~~

HH++~~

BB

M = 2 mM = 2 m

large tanlarge tanBinoBino

AA

AA ff

ff11

StauStau ZZ

tautau

22M ~ mM ~ m

BinoBino

StauStau

++WW

ZZ

33

M ~ mM ~ m

HiggsinoHiggsino

++

The relic density constraintsThe relic density constraints

M0M0

M1/2M1/2

Neutralino Neutralino ≡≡ HiggsinoHiggsino

LightLight

High fluxesHigh fluxes

Neutralino Neutralino ≡≡ BinoBino

M1= M / 2M1= M / 2

High fluxesHigh fluxes

Neutralino Neutralino ≡≡ BinoBino

M1 = M / 2M1 = M / 2

Low fluxesLow fluxes

Complementarity between Complementarity between different detection modes different detection modes

ff

ff

qq qq

e-e-

e+e+

qq

qq

HEATHEATPamelaPamelaAMSAMS

EGRETEGRETHESSHESS

FERMIFERMI

CDMS XENONCDMS XENON

qq

qq

e-e-

e+e+

ILCILC

LHCLHC WMAPWMAP

Application to neutralino DM Application to neutralino DM

Gravitino DM Gravitino DM

In alternative scenario, the gravitino can be the lightest SUSY In alternative scenario, the gravitino can be the lightest SUSY particle (40 % of the SUSY publications in 2009)particle (40 % of the SUSY publications in 2009)

It can happen if the SUSY breaking is not gravitationally mediated It can happen if the SUSY breaking is not gravitationally mediated (Gauge Mediation, sequestred sector..) : the mass of the gravitino (Gauge Mediation, sequestred sector..) : the mass of the gravitino

is “liberated” from the SUSY spectrum is “liberated” from the SUSY spectrum

The gravitino couple only gravitationally with the visible sector : it The gravitino couple only gravitationally with the visible sector : it is stable and is produced in the reheating epoch of the universe : its is stable and is produced in the reheating epoch of the universe : its

thermal relic depends on the reheating temperature, thermal relic depends on the reheating temperature, hh22 ~ T ~ TRR / M / Mgravitinogravitino

BUT the next to lightest SUSY particle is long lived too because can BUT the next to lightest SUSY particle is long lived too because can only decay into SM + gravitino with gravitational type interaction :only decay into SM + gravitino with gravitational type interaction :

It can affect the primordial nucleosynthesis (BBN).It can affect the primordial nucleosynthesis (BBN).

MMstaustau

MMgravitinogravitino

BBN constraints BBN constraints

NLSP NLSP (stau)(stau)

SMSM(tau)(tau)

LSP LSP (gravitino)(gravitino)

1 / M1 / Mplanckplanck

=> Long lived NLSP => Long lived NLSP (> 5000 seconds)(> 5000 seconds)

tautau

qq

neutrinoneutrino

qq

BBNBBN

TTRR=10=1099 GeV GeV

TTRR=10=1077 GeV GeV

BBNBBN (5000 seconds)(5000 seconds)

Extra U(1) candidates

Sommerfeld Enhancement

ConclusionsConclusions

Several candidates can respect WMAP Several candidates can respect WMAP constraintsconstraints

Different experiments reach different parts of Different experiments reach different parts of the parameter space the parameter space

Strong correlation/complementarityStrong correlation/complementarity

Future sensitivity will be able to test 80 Future sensitivity will be able to test 80 percent of SUSY parameter spacepercent of SUSY parameter space

MMii ( r ( ri i ) r) rii = [ M = [ MCDMCDM ( r ( rff ) + M ) + Mbb (r (rf f )] r)] rff

N-Body simulationN-Body simulation(NFW, Moore..)(NFW, Moore..)

Today baryon Today baryon distributiondistribution??????

Baryon fall in the Galactic CenterBaryon fall in the Galactic Center

Redistribution of mass Redistribution of mass in the gravitational potentialin the gravitational potential

BaryonsBaryons

NeutralinosNeutralinos

(r) ~ 1/r (r) ~ 1/r (NFW (NFW compressed)compressed)

1.51.5

Baryon falls in the central region Baryon falls in the central region to form galaxyto form galaxy

ReReReReRedistribution of masses Redistribution of masses

in the gravitational potentialin the gravitational potential

( r )( r )arb. unitsarb. units

200200

100100

LogLog1010 ( r( r )) 00 11-1-1-2-2-3-3

NFWNFW

NFW NFW compressedcompressed

Adiabatique CompressionAdiabatique Compression

(r) ~ 1/r (r) ~ 1/r

Indirect detection : Mass measurementIndirect detection : Mass measurement

GLAST, 3yrsGLAST, 3yrs

XENON, 3 yrsXENON, 3 yrs

Complementarity Direct,Complementarity Direct,Indirect and ILCIndirect and ILC

SummarySummary

MasseMasse

50 GeV50 GeV

100 GeV100 GeV

175 GeV175 GeV

500 GeV500 GeV

Direct Direct detectiondetection

Indirect Indirect detectiondetection

LeptonicLeptoniccollidercollider

+/- 5 GeV+/- 5 GeV +/- 10 GeV+/- 10 GeV

+/- 10 GeV+/- 10 GeV +/- 20 GeV+/- 20 GeV +/- 40 GeV+/- 40 GeV

+/- 25 GeV+/- 25 GeV+/- 60 GeV+/- 60 GeV +/- 90 GeV+/- 90 GeV

The background The background

e-e-

e+e+

BackgroundBackgroundEE

Nbr evtsNbr evts

A leptonic collider as aA leptonic collider as aDark Matter detectorDark Matter detector

e-e-

e+e+

e-e-

e+e+ILCILCWMAPWMAP

KeKe

annann prodprod

Colinear or soft-gamma approximationColinear or soft-gamma approximation

Direct Detection : the backgroundDirect Detection : the background

XENON XENON

SUSYSUSY

top related