corso di dottorato in ottimizzazione strutturale: applicazione mensola strallata - bontempi

Post on 21-Jun-2015

94 Views

Category:

Education

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Appunti del corso di dottorato: INTRODUZIONE ALL'OTTIMIZZAZIONE STRUTTURALE Ia parte Lezione del 28 maggio 2014 Lecture of the Ph.D. Course on STRUCTURAL OPTIMIZATION May, 28, 2014

TRANSCRIPT

Franco Bontempi

Ordinario di Tecnca delle Costruzioni

Facolta’ di Ingegneria Civile e Industriale

Sapienza Universita’ di Roma

Introduzione alla

OTTIMIZZAZIONE STRUTTURALE:

APPLICAZIONE AD UNA

MENSOLA STRALLATA

2

Ottimizzazione Strutturale

franco.bontempi@uniroma1.it

3

Object of the course

• Introduction of basic and advanced ideas

and aspects of structural design without to

much stress on the analytical apparatus

but with some insigth on the computational

techniques.

Ottimizzazione Strutturale

franco.bontempi@uniroma1.it

4

General Scheduling

• 1st Day:

Basic definitions of structure, requirements,

values, optimization, …;

• 2nd Day:

Advanced specific case of structural optimization

(service / ultimate / extreme scenarios);

• 3rd Day:

Advanced concepts (structural systems,

advanced criteria, tools of design)

EVOLUTION OF THE DESIGN

OF A CABLE-STAYED BRACKET

THE OBJECT

An innovative device for

precast/prestressed beam support

ww

w.f

ran

co

bo

nte

mp

i.o

rg

7

CONNECTION REGIONS

• Presence of high stress levels;

• Diffusive field of stress - so-called D-regions;

• Geometrical complexity, related to the position and interference of different structural parts converging there;

• Requirements of minimum space usage, essentially due to architectural appearance;

• Necessity to guarantee a substantial good structural behavior - strength, ductility, and robustness;

• Demand from constructability point of view.

ww

w.f

ran

co

bo

nte

mp

i.o

rg

8

REINFORCED CONCRETE

CORBELS

ww

w.f

ran

co

bo

nte

mp

i.o

rg

9

STRUCTURAL STEEL CORBELSw

ww

.fra

nc

ob

on

tem

pi.o

rg

10

BEAM SUPPORTw

ww

.fra

nc

ob

on

tem

pi.o

rg

11

BASIS OF DESIGN (1)

• simplicity:

the structural configuration of the connection must be made by very regular and flat parts, by which

– the stress state has the most possible uniformity;

– there are no stress concentrations;

– the load transfer is obtained by the most straight path;

– it is possible to develop a complete integration between steel parts and concrete mass, with an

accurate structural anchorage.

ww

w.f

ran

co

bo

nte

mp

i.o

rg

12

BASIS OF DESIGN (2)

• dependability:

the structural configuration must be have

– suitable functional performance characteristics

(Serviceability Limit States, SLS),

– appropriate strength capacity

(Ultimate Limit States, ULS),

– capacity to support accidental situations, without

showing disproportionate consequences when

triggered by limited damage

(Structural Robustness).

ww

w.f

ran

co

bo

nte

mp

i.o

rg

CONCEPTUAL DESIGN

Definition and optimization

of the structural configuration

ww

w.f

ran

co

bo

nte

mp

i.o

rg

14

STRUCTURAL SCHEME

Versione iniziale

Versione finale

beam SX beam DX

column

ww

w.f

ran

co

bo

nte

mp

i.o

rg

15

LOAD SCHEMES

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

SYM ASYM

ww

w.f

ran

co

bo

nte

mp

i.o

rg

16

ww

w.f

ran

co

bo

nte

mp

i.o

rg

17

ww

w.f

ran

co

bo

nte

mp

i.o

rg

18

ww

w.f

ran

co

bo

nte

mp

i.o

rg

19

STRUCTURAL PARTSw

ww

.fra

nc

ob

on

tem

pi.o

rg

20

FIRST ANALYSIS (A):

two dimensional geometry

co

lum

n

a

Vsd

Vsd

a/2

Vsd*=Vsd/2

Vsd* =Vsd/2

co

lum

n

a

Vsd

Vsd

co

lum

n

a

Vsd

Vsd

a/2

Vsd*=Vsd/2

Vsd* =Vsd/2

ww

w.f

ran

co

bo

nte

mp

i.o

rg

21

• the steel parts, the longitudinal bars and the

stirrups are represented by bars working both

in tension and in compression, while concrete

parts are lumped into bars with no tension

behavior;

• one model a segment of concrete column

sufficient to extinguish the diffusive effects

connected with this D-region, i.e. until a B-

region is reached, governed by the so-called

Bernoulli stress regime;

FIRST ANALYSIS (B):

mechanical modeling by S&T

ww

w.f

ran

co

bo

nte

mp

i.o

rg

22

S & T Model Definitionw

ww

.fra

nc

ob

on

tem

pi.o

rg

23

Strut & Tie Models

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

ww

w.f

ran

co

bo

nte

mp

i.o

rg

24

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

Strut & Tie Results

stirrups longitudinal bars

concretesteel bracket

ww

w.f

ran

co

bo

nte

mp

i.o

rg

25

Hybrid models

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

ww

w.f

ran

co

bo

nte

mp

i.o

rg

26

Global responseEnd of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

End of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

Y

X

Y

X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

27

Local response

>290

<-290

>290

<-290

>290

<-290

ww

w.f

ran

co

bo

nte

mp

i.o

rg

28

EVOLUTION OF THE FORM (1)

600.0

250.0

15.0

60.2

70.0

145.0

56°

66°

50°

378.5

188.0

320.1ww

w.f

ran

co

bo

nte

mp

i.o

rg

29

EVOLUTION OF THE FORM (2)

600.0

369.4

55°

66°

50°

224.4

15.0

60.0

70.0

145.0

280.0

399.4

126.0

100.8

195.0

230.7

188.0

69.7

ww

w.f

ran

co

bo

nte

mp

i.o

rg

30

EVOLUTION OF THE FORM (3)

Versione iniziale

Versione finale

ww

w.f

ran

co

bo

nte

mp

i.o

rg

31

CONSTRUCTABILITY (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

32

CONSTRUCTABILITY (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

33

CONSTRUCTABILITY (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

34

CONSTRUCTABILITY (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

EXTENDED ANALYSIS

Detailed assessment

ww

w.f

ran

co

bo

nte

mp

i.o

rg

36

THREE-DIMENSIONAL

GEOMETRY

ww

w.f

ran

co

bo

nte

mp

i.o

rg

37

Results for

concrete core and steel frame

ww

w.f

ran

co

bo

nte

mp

i.o

rg

38

Results for

steel bottom frame and attacment

ww

w.f

ran

co

bo

nte

mp

i.o

rg

39

EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

40

ww

w.f

ran

co

bo

nte

mp

i.o

rg

41

ww

w.f

ran

co

bo

nte

mp

i.o

rg

42

MODELS OF EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

43

BASIC FORMw

ww

.fra

nc

ob

on

tem

pi.o

rg

44

IMPROVEMENTSw

ww

.fra

nc

ob

on

tem

pi.o

rg

45

ENHANCED FORMw

ww

.fra

nc

ob

on

tem

pi.o

rg

46

COMPRESSION ONLY CONTACTw

ww

.fra

nc

ob

on

tem

pi.o

rg

NEXT STEP

Two way beam support

ww

w.f

ran

co

bo

nte

mp

i.o

rg

48

TWO WAY SUPPORT (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

49

TWO WAY SUPPORT (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

50

ENHANCHED 2WAY SUPPORTw

ww

.fra

nc

ob

on

tem

pi.o

rg

51

CONCLUSIONS• The evolution of the design of a bracket component,

supported by a cable-stayed system, is presented.

• This apparently simple element conceals a rather complex structural geometry, developed to be suitable both for strength requirements and constructability. The so devised solution can assure:– Manufacturing of precast elements without exterior parts;

– Minimal size of the bracket and completely hidden insertion in the supported beams;

– Compliance with different standards.

• The evolution of the leading concepts and of the geometry of this element is explained together with the numerical analysis obtained both by synthetic models, like strut & tie, and by full non linear finite element models.

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Stro N

GERwww.stronger2012.com

52

ADETTAGLI BASE

ww

w.f

ran

co

bo

nte

mp

i.o

rg

54

INDEX PART 1

Basis of the Problem

Strut & Tie Modeling

Finite Element Analysis by

Substrucuring Technique and S&T

Improvement Strategies

Models and Programs Validation

ww

w.f

ran

co

bo

nte

mp

i.o

rg

55

INDEX PART 2

Thickness Improvement

Shaping

Results for Shaping Type B

ww

w.f

ran

co

bo

nte

mp

i.o

rg

PART 0Synthesis

ww

w.f

ran

co

bo

nte

mp

i.o

rg

57

Vsd [kN] thickNess (th) [mm]

600 8

850 10

1050 12

1500 18

SCENARIOUS

Lateral

Plate

Original Optimized Shaped

Weight (kg) 9,6 9,1 9,9

ww

w.f

ran

co

bo

nte

mp

i.o

rg

58

STRUCTURAL RESPONSE (I)

Upper edge displacement

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 500 1000 1500 2000

Load [KN]

Ux

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

59

Y

X

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0 500 1000 1500 2000

Load [KN]

Str

es

s_

x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,00%

0,02%

0,04%

0,06%

0,08%

0,10%

0,12%

0 500 1000 1500 2000

Load [KN]

To

tal S

tra

in_

x

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12%

Total Strain_x

Str

ess_x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

STRUCTURAL RESPONSE (II)w

ww

.fra

nc

ob

on

tem

pi.o

rg

60

End of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

STRUCTURAL RESPONSE (III)w

ww

.fra

nc

ob

on

tem

pi.o

rg

61

ALTERNATIVE GEOMETRIC

CONFIGURATIONS

TIPO B

1

2 3450°

31°

288.8

83.2

69.0

30.0

TYPE B

ww

w.f

ran

co

bo

nte

mp

i.o

rg

62

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

63

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

64

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

65

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

66

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

67

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

68

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

69

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

PART 1Framework

of the structural problem

ww

w.f

ran

co

bo

nte

mp

i.o

rg

BASIS OF THE

PROBLEM

ww

w.f

ran

co

bo

nte

mp

i.o

rg

72

DESIGN CRITERIA

• SIMPLICITY:

1. the load path from the loading appliction points to

the main internal region of the structural element

must be the simplest and the quitest; it means that

– the stress flow should be regular;

– stress concentrations should be avoided;

– the loading transfer should prefer direct

placement;

– integration between steel parts and concrete

must be accurate and anchorage truthful;

• DEPENDABILITY;

ww

w.f

ran

co

bo

nte

mp

i.o

rg

73

PERFORMANCE CRITERIA (i)

• Ultimate Limit State:

1. strength verified by partial safety factors

disequations; there are admitted yielded

parts of the bracket and damaged portions

of the concrete in the structural element;

– the strength capacity will be verified by non

linear analysis, starting from unloaded to

collapse loading;

ww

w.f

ran

co

bo

nte

mp

i.o

rg

74

PERFORMANCE CRITERIA (ii)

• Serviceability Limit State:

1. the structural behavior should be elastic-

linear until an adequate loading level

(usually, the ultimate loading level / 1.5);

– in particular, steel parts must not be yielded

anywhere and the concrete must experience

a low stress level;

2. the displacements of the bracket for service

loading must be limited;

ww

w.f

ran

co

bo

nte

mp

i.o

rg

75

PERFORMANCE CRITERIA (iii)

• Structural Robustness:

1. the connection device failure should develop

after major failure of the structural elemnt at

which the connection device is inserted;

2. the connection device must be able to

support the failure of one of the external ties,

i.e. each tie and directly connected parts

must be able anyway to support the double

of the service limit loading;

ww

w.f

ran

co

bo

nte

mp

i.o

rg

76

tie-rod

frame

tie shield

tie junction

closure plate

C junction

bottom rib

external plate

external bracket

rigid block

adjacent concrete

STRUCTURAL PARTSw

ww

.fra

nc

ob

on

tem

pi.o

rg

77

LOADING SYSTEMS:

SYM. vs ASYM.

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

ww

w.f

ran

co

bo

nte

mp

i.o

rg

78

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-2000 0 2000 4000 6000 8000 10000

N

M

SYM

ASYM

M [kNm]

compressionN [kN]

tension

stirrups

longitudinal

bars

As=5 ø 22

As’=5 ø 22

ø 8/2b 9 cm

COLUMN REINFORCEMENT DESIGN

Reinforcement

ACTION N [kN] M [kNm]

SYM 2100 0

ASYM 1050 462

50 cm

60 cm

79

STRUCTURAL MODELING (i)

• A slice of half column is considered

(plane stress assumption)

co

lum

n

a

Vsd

Vsd

a/2

Vsd*=Vsd/2

Vsd* =Vsd/2

ww

w.f

ran

co

bo

nte

mp

i.o

rg

STRUT & TIE

MODELING

ww

w.f

ran

co

bo

nte

mp

i.o

rg

81

STRUCTURAL MODELING (model #1)

Strut & Tie modeling of the stayed bracket

STEP #1 STEP #2

STEP #3 STEP #4

ww

w.f

ran

co

bo

nte

mp

i.o

rg

82

STRUCTURAL MODELING (model #2)

Alternative S&T modeling of the stayed bracket

STEP #1

STEP #3 STEP #4

STEP #2

ww

w.f

ran

co

bo

nte

mp

i.o

rg

83

STRUCTURAL MODELING (model #3)

Alternative S&T modeling of the stayed bracket

STEP #1

STEP #3 STEP #4

STEP #2

ww

w.f

ran

co

bo

nte

mp

i.o

rg

84

STRUCTURAL MODELING

OF CONCRETE PART (I):

trusswork discretization

ablslAA

absaAA

basbAA

ba

ba

ba

dd

yy

xx

2

2

2

2

2

83

2

383

2

383

2

,

,

,

ww

w.f

ran

co

bo

nte

mp

i.o

rg

85

4321,,, uuuu

VIVIVIIIIIINNNNNN ,,,,,

ax

yu

x

by

yv

y

abxv

yu yx

bl

aNNNNN

VIVIII

x

al

bNNNNN

VIVIVIII

y

lNNN VIV

xy

xyyx NNN ,,

STRUCTURAL MODELING

OF CONCRETE PART (II):

stress representation

ww

w.f

ran

co

bo

nte

mp

i.o

rg

86

LOADING SYSTEMS: SYM.

Reinforcment

Bars

Vsd

C + SteelCSteel

VsdVsd

ww

w.f

ran

co

bo

nte

mp

i.o

rg

87

LOADING SYSTEMS: ASYM.

Reinforcment

BarsC + SteelCSteel

Vsd Vsdww

w.f

ran

co

bo

nte

mp

i.o

rg

Model S&T #1

Results for SYM

loading system

ww

w.f

ran

co

bo

nte

mp

i.o

rg

89

Vsd = 1050 kN – cap element stress

• max tension = 389,7 MPa

• min compression = -232,5 MPa• tension = 582,7 MPa

90

Vsd = 1050 kN – reinforcement bar stress

• max tension = 96,3 MPa

• min compression = -59,1 MPa

stirrups longitudinal

ww

w.f

ran

co

bo

nte

mp

i.o

rg

91

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -17,7 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Model S&T #1

Results for ASYM

loading system

ww

w.f

ran

co

bo

nte

mp

i.o

rg

93

Vsd = 1050 kN – cap element stress

• max tension = 228,1 MPa

• min compression = -424,3 MPa• tension = 582,7 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

94

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 280,9 MPa

• min compression = -125,4 MPa

95

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -25,1 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Model S&T #2

Results for SYM

loading system

ww

w.f

ran

co

bo

nte

mp

i.o

rg

97

Vsd = 1050 kN – cap element stress

• max tension = 422,1 MPa

• min compression = -295,7 MPa• tension = 582,7 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

98

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 143,9 MPa

• min compression = -49,4 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

99

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -19,8 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Model S&T #2

Results for ASYM

loading system

ww

w.f

ran

co

bo

nte

mp

i.o

rg

101

Vsd = 1050 kN – cap element stress

• max tension = 631,8 MPa

• min compression = -718,7 MPa• tension = 582,7 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

102

Vsd = 1050 kN – reinforcement bar stress

• max tension = 331,3 MPa

• min compression = -115,5 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

103

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -23,1 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Model S&T #3

Results for SYM

loading system

ww

w.f

ran

co

bo

nte

mp

i.o

rg

105

Vsd = 1050 kN – cap element stress

• max tension = 380,1 MPa

• min compression = -303,7 MPa• tension = 582,7 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

106

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 120 MPa

• min compression = -83,6 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

107

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -28,8 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Sinthesis of the Results for

S&T Models

ww

w.f

ran

co

bo

nte

mp

i.o

rg

109

SUMMARY OF RESULTS (SYM) Vsd = 1050 kN

SYM Vsd= 1050 kN Limit

Model 1 2 3 Design

SMAXBIEL [N/mm^2] 582,71 582,71 582,71 580

TENSION [kN] 696,1 696,1 696,1

SMAXTEL [N/mm^2] 389,75 422,02 380,1 290

TENSION [kN] 423,2 458,3 412,8

SMINTEL [N/mm^2] -232,46 -295,7 -303,68 -290

SMAXSTAF [N/mm^2] 96,3 143,86 120,02 374

SMINSTAF [N/mm^2] -0,02 29,99 -24,88 -374

SMAXLONG [N/mm^2] -52,93 -36,34 -48,85 374

SMINLONG [N/mm^2] -59,16 -49,41 -83,6 -374

SMAXCLS [N/mm^2] 0 0 0 1,5

SMINCLS [N/mm^2] -17,72 -19,84 -28,8 -28

ww

w.f

ran

co

bo

nte

mp

i.o

rg

110

SUMMARY OF RESULTS (ASYM) Vsd = 1050 kN

ASYM Vsd= 1050 kN Limit

Model 1 2 Design

SMAXBIEL [N/mm^2] 582,71 582,71 580

TENSIONE [kN] 696,1 696,1

SMAXTEL [N/mm^2] 228,09 631,84 290

TENSION [kN] 305,18 341,2

SMINTEL [N/mm^2] -424,31 -718,65 -290

SMAXSTAF [N/mm^2] 164,65 297,32 374

SMINSTAF [N/mm^2] 1,75 0 -374

SMAXLONG [N/mm^2] 280,92 331,34 374

SMINLONG [N/mm^2] -125,4 -115,55 -374

SMAXCLS [N/mm^2] 0 0 1,5

SMINCLS [N/mm^2] -25,08 -23,11 -28

ww

w.f

ran

co

bo

nte

mp

i.o

rg

111

Legenda

Output Descrizione Valore di

Design

[N/mm^2]

SMAXBIEL tensione massima negli elementi rappresentanti i tiranti 580

SMAXTEL tensione massima negli elementi rappresentanti il telaio 290

SMINTEL tensione minima negli elementi rappresentanti il telaio -290

SMAXSTAF tensione massima negli elementi rappresentanti le armature lente

secondarie del pilastro

374

SMINSTAF tensione massima negativa negli elementi rappresentanti le armature lente

secondarie del pilastro

- 374

SMAXLONG tensione massima negli elementi rappresentanti le armature lente

principali del pilastro

374

SMINLONG tensione massima negativa negli elementi rappresentanti le armature lente

principali del pilastro

- 374

SMAXCA tensione massima negli elementi rappresentanti il calcestruzzo 1,5

SMINCA tensione massima negativa negli elementi rappresentanti il calcestruzzo -28

ww

w.f

ran

co

bo

nte

mp

i.o

rg

FINITE ELEMENT

ANALYSIS BY

SUBSTRUCTING

TECHNIQUE AND S&T

ww

w.f

ran

co

bo

nte

mp

i.o

rg

113

STRUCTURAL MODELING

Reinforcement

ww

w.f

ran

co

bo

nte

mp

i.o

rg

114

STRUCTURAL MODELING: CAPw

ww

.fra

nc

ob

on

tem

pi.o

rg

115

RIGID

LINKS

BEAM ELEMENTS

STRUCTURAL MODELING: LINKSw

ww

.fra

nc

ob

on

tem

pi.o

rg

ELASTIC MODELS

ww

w.f

ran

co

bo

nte

mp

i.o

rg

117

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATION

118

Vsd = 1050 kN – cap element stress:

elastic analysis (stress X)

>290

<-290

119

Vsd = 1050 kN – cap element stress:

elastic analysis (stress Y)

>290

<-290

120

>290

<-290

Vsd = 1050 kN – cap element stress:

elastic analysis (Von Mises) (I)w

ww

.fra

nc

ob

on

tem

pi.o

rg

121

Vsd = 1050 kN – cap element stress:

elastic analysis (Von Mises) (II)

>580

<-580

ww

w.f

ran

co

bo

nte

mp

i.o

rg

122

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 96,6 MPa

• min compression = -61,3 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

123

concrete

• max tension = 0 MPa

• min compression = -18,2 MPa

• tension = 582,7 MPa

Vsd = 1050 kN – ties and concrete stressw

ww

.fra

nc

ob

on

tem

pi.o

rg

124

SUMMARY OF RESULTS (SYM) Vsd= 1050 kN

SIMM Vsd= 1050 kN Limit

Model 1 substruct Design

SMAXBIEL [N/mm^2] 582,71 582,72 580

TENSION [kN] 696,1 696,1

SMAXTEL

(SMTEL_x)[N/mm^2] 389,75 653,2 290

TENSION [kN] 423,2 388,07

only “substructured” SMTEL_y [N/mm^2] 291,5 290

only “model 1” SMINTEL [N/mm^2] -232,46 -290

only “substructured” SmTEL_x [N/mm^2] -530,4 -290

only “substructured” SmTEL_y [N/mm^2] -641,62 -290

SMAXSTAF [N/mm^2] 96,3 90,32 374

SMINSTAF [N/mm^2] -0,02 -6,93 - 374

SMAXLONG [N/mm^2] -52,93 -55,52 374

SMINLONG [N/mm^2] -59,16 -61,29 - 374

SMAXCLS [N/mm^2] 0 0 1,5

SMINCLS [N/mm^2] -17,72 -18,21 -28

Linear elastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

ELASTO-PLASTIC MODELS

ww

w.f

ran

co

bo

nte

mp

i.o

rg

126

ELASTIC- PLASTIC MATERIAL LAW

WITH VON MISES CRITERION

62519.4

]N/mm[ 10000

max

2

max

00138.0

]N/mm[ 290 2

y

y

][N/mm 210000 2

0 E

*100/1 01 EE

x10^(-3)

E0

E1

y

ymax

ww

w.f

ran

co

bo

nte

mp

i.o

rg

127

>290

<-290

Vsd = 1050 kN – cap element stress:

e-plastic analysis (stress X)w

ww

.fra

nc

ob

on

tem

pi.o

rg

128

>290

<-290

Vsd = 1050 kN – cap element stress:

e-plastic analysis (stress Y)w

ww

.fra

nc

ob

on

tem

pi.o

rg

129

>290

<-290

Vsd = 1050 kN – cap element stress:

e-plastic analysis (Von Mises) (I)w

ww

.fra

nc

ob

on

tem

pi.o

rg

130

>580

<-580

Vsd = 1050 kN – cap element stress:

e-plastic analysis (Von Mises) (II)w

ww

.fra

nc

ob

on

tem

pi.o

rg

131

Vsd = 1050 kN – cap element strain:

e-plastic analysis (Von Mises strain) w

ww

.fra

nc

ob

on

tem

pi.o

rg

132

Vsd = 1050 kN – reinforcement bar stress

• max tension = 132 MPa

• min compression = -54,9 MPa

stirrups longitudinal

ww

w.f

ran

co

bo

nte

mp

i.o

rg

133

Vsd = 1050 kN – ties and concrete stress

concrete

• max tension = 0 MPa

• min compression = -19,8 MPa• tension = 582,7 MPa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

134

SUMMARY OF RESULTS (SYM) Vsd= 1050 kN

SIMM Vsd= 1050 kN Limit

Model elastic e-plastic Design

SMAXBIEL [N/mm^2] 582,72 582,72 580

TENSION [kN] 696,1 696,1

SMTEL_x [N/mm^2] 653,2 560 290

TENSION [kN] 388,07 371,09

SMTEL_y [N/mm^2] 291,5 324,26 290

SmTEL_x [N/mm^2] -530,4 -515,65 -290

SmTEL_y [N/mm^2] -641,62 -632,07 -290

SMAXSTAF [N/mm^2] 90,32 122,93 374

SMINSTAF [N/mm^2] -6,93 15,55 - 374

SMAXLONG [N/mm^2] -55,52 -42,81 374

SMINLONG [N/mm^2] -61,29 -54,89 - 374

SMAXCLS [N/mm^2] 0 0 1,5

SMINCLS [N/mm^2] -18,21 -19,77 -28

elastic steel

e-plastic steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

135

-25

-20

-15

-10

-5

0

0 200 400 600 800 1000 1200

Load

Uy

Load application

Structural response (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

136

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 200 400 600 800 1000 1200Load

Ux

Spigolo alto

Structural response (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

137

0,000

0,001

0,001

0,002

0,002

0,003

0 200 400 600 800 1000 1200

Load

Ela

sti

c S

train

_x

Centre of Diaphram

-0,010

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 200 400 600 800 1000 1200

Load

Pla

sti

c S

tra

in_

x

Centre of Diaphram

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 200 400 600 800 1000 1200

Load

To

tal S

tra

in_

x

Centre of Diaphram

Structural response (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

138

0

50

100

150

200

250

300

350

400

450

0,0000 0,0100 0,0200 0,0300 0,0400 0,0500 0,0600

Total Strain_x

Str

ess_x

Centre of Diaphram

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

Load

Str

es

s_

x

Centre of Diaphram

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 200 400 600 800 1000 1200

Load

To

tal S

train

_x

Centre of Diaphram

Structural response (4)w

ww

.fra

nc

ob

on

tem

pi.o

rg

139

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic steel

140

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

ww

w.f

ran

co

bo

nte

mp

i.o

rg

141

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

>290

<-290

ww

w.f

ran

co

bo

nte

mp

i.o

rg

142

>290

<-290

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)w

ww

.fra

nc

ob

on

tem

pi.o

rg

143

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

>580

<-580

ww

w.f

ran

co

bo

nte

mp

i.o

rg

144

Vsd = 1050 kN – reinforcement bar stress

• max tension = 348,9 MPa

• min compression = -116,1 MPa

stirrups longitudinal

ww

w.f

ran

co

bo

nte

mp

i.o

rg

145

• max tension = 0 MPa

• min compression = -23,5 MPa

• tension = 582,7 MPa

Vsd = 1050 kN – ties and concrete stress

concrete

ww

w.f

ran

co

bo

nte

mp

i.o

rg

IMPROVEMENT

STRATEGIES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

147

COMMENTS• The actual configuration of the Stayed Bracket

seems to be not able in sustaining adequately the load of Vsd=1050 kN both in symmetric and asymmetric load scenarios.

• In general, the frame stresses are greater than the yielding values, also if they are less than the failure values.

• The amplitude of the yielded zone suggest to adopt strategies to improve the stayed bracket performances:

Strategy 1: improve the frame thickNess

Strategy 2: improve the frame size

Strategy 3: downloading

ww

w.f

ran

co

bo

nte

mp

i.o

rg

148

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONw

ww

.fra

nc

ob

on

tem

pi.o

rg

149

th0

Strategy 1: improve the frame thickNess

Actual Improved

th1

ww

w.f

ran

co

bo

nte

mp

i.o

rg

150

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

Strategy 1: improve the frame thickNess

Actual thickNess

th = 6 mm

Improved thickNess

th = 10 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

151

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

Strategy 1: improve the frame thickNess

>290

<-290

Actual thickNess

th = 6 mm

Improved thickNess

th = 10 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

152

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)

>290

<-290

Actual thickNess

th = 6 mm

Strategy 1: improve the frame thickNess

Improved thickNess

th = 10 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

153

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

Actual thickNess

th = 6 mm

Strategy 1: improve the frame thickNess

Improved thickNess

th = 10 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

154

Vsd = 1050 kN – cap element strain – e-

plastic analysis (Von Mises strain)

Strategy 1: improve the frame thickNess

Actual thickNess

th = 6 mm

Improved thickNess

th = 10 mm

155

Vsd = 1050 kN – cap element strain

e-plastic analysis (Von Mises strain) Improved thickNess

th = 10 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

156

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises)

th = 10mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

157

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises)

>290

<-290

th = 10mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

158

h0 h1

Strategy 2: improve the frame size

Actual Improved

ww

w.f

ran

co

bo

nte

mp

i.o

rg

159

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

160

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

>290

<-290

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

161

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)

>290

<-290

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

162

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

163Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATION

Vsd = 850

kN

thickNess:

th = 6 mm

Strategy 3: downloading

ww

w.f

ran

co

bo

nte

mp

i.o

rg

164

Vsd = 850/1050 kN – cap element stress

e-plastic analysis (Von Mises)

Vsd = 850 kN Vsd = 1050 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

165

Vsd = 850/1050 kN – cap element stress

e-plastic analysis (Von Mises)

Vsd = 850 kN

386 N/mm^2MAX in questa

zona

Vsd = 1050 kN

560 N/mm^2

166

Vsd = 850/1050 kN – cap element strain –

e-plastic analysis (Von Mises)

Vsd = 850 kN Vsd = 1050 kNLa scala è

diversa

ww

w.f

ran

co

bo

nte

mp

i.o

rg

167

SYM_Vsd = 850 kN

Stress e-plastic analysis (Von Mises) Strain e-plastic analysis (Von Mises)

th = 10 mmw

ww

.fra

nc

ob

on

tem

pi.o

rg

MODELS

& PROGRAMS

VALIDATIONS

ww

w.f

ran

co

bo

nte

mp

i.o

rg

169

COMPARISON BETWEEN TWO F.E.

PROGRAMSw

ww

.fra

nc

ob

on

tem

pi.o

rg

170

>290

<-290

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

ww

w.f

ran

co

bo

nte

mp

i.o

rg

171

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

>290

<-290

>290

<-290

ww

w.f

ran

co

bo

nte

mp

i.o

rg

172

>290

<-290>290

<-290

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)w

ww

.fra

nc

ob

on

tem

pi.o

rg

173

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

>580

<-580

ww

w.f

ran

co

bo

nte

mp

i.o

rg

174

Upper edge displacement

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 200 400 600 800 1000 1200

Load [KN]

Ux

[m

m]

ANSYS STRAUSY

X

STRUCTURAL RESPONSE COMPARISON (I)w

ww

.fra

nc

ob

on

tem

pi.o

rg

175

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

0 200 400 600 800 1000 1200

Load [KN]

Str

ess_x [

MP

a]

ANSYS STRAUS

Y

X

Centre of Diaphram

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

0 200 400 600 800 1000 1200

Load [KN]

To

tal S

tra

in_

x

ANSYS STRAUS

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

0,00% 1,00% 2,00% 3,00% 4,00% 5,00% 6,00%

Total Strain_x

Str

es

s_

x [

MP

a]

ANSYS STRAUS

STRUCTURAL RESPONSE COMPARISON (II)w

ww

.fra

nc

ob

on

tem

pi.o

rg

176

End of external bracket displacement

-25,00

-20,00

-15,00

-10,00

-5,00

0,00

0 200 400 600 800 1000 1200

Load [KN]

Uy [

mm

]

ANSYS STRAUS

STRUCTURAL RESPONSE COMPARISON (III)w

ww

.fra

nc

ob

on

tem

pi.o

rg

PART 2Solutions

for the structural problem

ww

w.f

ran

co

bo

nte

mp

i.o

rg

THICKNESS

IMPROVEMENT

ww

w.f

ran

co

bo

nte

mp

i.o

rg

179

Vsd [kN] thickNess (th) [mm]

600 8

850 10

1050 12

1500 18

SCENARIOSw

ww

.fra

nc

ob

on

tem

pi.o

rg

180

th0

Strategy 1: improve the frame thickNess

Actual Improved

th

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th= 8 mm

Vsd = 600 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

182

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

183

>290

<-290

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

184

>580

<-580

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

185

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

186

>290

<-290

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

187

>580

<-580

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

th= 10 mm

Vsd = 850 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

189

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

190

>290

<-290

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

191

>580

<-580

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

192

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

193

>290

<-290

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

194

>580

<-580

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th = 12 mm

Vsd = 1050 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

196

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

197

>290

<-290

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

198

>580

<-580

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

199

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

200

>290

<-290

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

201

>580

<-580

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th = 18 mm

Vsd = 1500 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

203

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

204

>290

<-290

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

205

>580

<-580

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

206

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

ww

w.f

ran

co

bo

nte

mp

i.o

rg

207

>290

<-290

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

208

>580

<-580

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

209

Summary for Proposed ThickNess:

von Mises stress / SYM / e-plastic analysis

>290

<-290

Vsd=1050 kN

th=12 mm

Vsd=1500 kN

th=18 mm

Vsd=600 kN

th=8 mm

Vsd=850 kN

th=10 mm

ww

w.f

ran

co

bo

nte

mp

i.o

rg

210

Y

X

Upper edge displacement

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 500 1000 1500 2000

Load [KN]

Ux

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

STRUCTURAL RESPONSE (I)w

ww

.fra

nc

ob

on

tem

pi.o

rg

211

Y

X

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0 500 1000 1500 2000

Load [KN]

Str

es

s_

x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,00%

0,02%

0,04%

0,06%

0,08%

0,10%

0,12%

0 500 1000 1500 2000

Load [KN]

To

tal S

tra

in_

x

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12%

Total Strain_x

Str

ess_x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

STRUCTURAL RESPONSE (II)w

ww

.fra

nc

ob

on

tem

pi.o

rg

212

End of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

STRUCTURAL RESPONSE (III)w

ww

.fra

nc

ob

on

tem

pi.o

rg

SHAPING

ww

w.f

ran

co

bo

nte

mp

i.o

rg

214

30.0

69.0

83.2

288.8

TIPO C

1

195.0

25.2

31°50° 432

ALTERNATIVE CONFIGURATIONS

TIPO A

31°50° 432

1

30.0

90.0

83.2

288.8

TIPO B

1

2 3450°

31°

288.8

83.2

69.0

30.0

ACTUAL

TYPE B TYPE C

TYPE AACTUAL

ww

w.f

ran

co

bo

nte

mp

i.o

rg

215

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

Actual

Tipo ATYPE A

ww

w.f

ran

co

bo

nte

mp

i.o

rg

216

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

Actual

Tipo BTYPE B

ww

w.f

ran

co

bo

nte

mp

i.o

rg

217

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

Actual

Tipo CTYPE C

ww

w.f

ran

co

bo

nte

mp

i.o

rg

RESULTS FOR

SHAPING

TYPE B

ww

w.f

ran

co

bo

nte

mp

i.o

rg

219

ALTERNATIVE GEOMETRIC

CONFIGURATIONS

TIPO B

1

2 3450°

31°

288.8

83.2

69.0

30.0

TYPE B

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th = 8 mm

Vsd =600 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

221

>290

<-290

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

222

>580

<-580

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

223

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

224

>290

<-290

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

225

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th = 10 mm

Vsd = 850 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

227

>290

<-290

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

228

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

229

>290

<-290

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

230

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th= 12 mm

Vsd = 1050 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

232

>290

<-290

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

233

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

234

>290

<-290

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

235

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th = 18 mm

Vsd = 1500 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

237

>290

<-290

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

238

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

239

>290

<-290

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

240

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

ww

w.f

ran

co

bo

nte

mp

i.o

rg

RESULTS FOR

STRUCTURAL

ROBUSTNESS

ww

w.f

ran

co

bo

nte

mp

i.o

rg

th = 12 mm

Vsd = 1050*1,33 kN = 1396 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

243

>290

<-290

Vsd = 1050*1,33= 1396,5 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

244

>290

<-290

von MISES I

Vsd = 1050*1,33= 1396,5 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>580

<-580

von MISES II

ww

w.f

ran

co

bo

nte

mp

i.o

rg

B3D

246

ANALISI E VERIFICHE STRUTTURALI

DELLE CONFIGURAZIONI

per Vsd = 1050 Kn

IN PRESENZA DI PLUVIALE / A 2 VIE

ISOTROPADicembre 2007

ww

w.f

ran

co

bo

nte

mp

i.o

rg

INFLUENZA DELLA

PRESENZA DEL PLUVIALE

Vsd = 1050 Kn

ww

w.f

ran

co

bo

nte

mp

i.o

rg

248

Definizione del modello (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

249

Definizione del modello (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

250

Definizione del modello (3)

251

Definizione del modello (4)w

ww

.fra

nc

ob

on

tem

pi.o

rg

252

Definizione del modello (5)w

ww

.fra

nc

ob

on

tem

pi.o

rg

253

Stato di sforzo nel conglomerato (1)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

254

Stato di sforzo nel conglomerato (2)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

255

Stato di sforzo nel conglomerato (3)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

256

Stato di sforzo nel conglomerato (4)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

257

Stato di sforzo nel conglomerato (5)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

258

Stato di sforzo nel conglomerato (6)w

ww

.fra

nc

ob

on

tem

pi.o

rg

259

Stato di sforzo nel conglomerato (7)w

ww

.fra

nc

ob

on

tem

pi.o

rg

260

Stato di sforzo nel conglomerato (8)w

ww

.fra

nc

ob

on

tem

pi.o

rg

261

Stato di sforzo nel conglomerato (9)w

ww

.fra

nc

ob

on

tem

pi.o

rg

262

Stato di sforzo nel conglomerato (10)w

ww

.fra

nc

ob

on

tem

pi.o

rg

263

Stato di sforzo nel conglomerato (11!)

Von Mises !

ww

w.f

ran

co

bo

nte

mp

i.o

rg

264

Stato di sforzo nel conglomerato (12!)

Von Mises !

ww

w.f

ran

co

bo

nte

mp

i.o

rg

265

Stato di sforzo nei piatti verticali (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

266

Stato di sforzo nei piatti verticali (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

267

Stato di sforzo nei piatti verticali (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

268

Stato di sforzo nei piatti di chiusuraw

ww

.fra

nc

ob

on

tem

pi.o

rg

269

Stato di sforzo negli attacchi a Cw

ww

.fra

nc

ob

on

tem

pi.o

rg

CONFIGURAZIONE A 2 VIE

ISOTROPA

Vsd = 1050 Kn

ww

w.f

ran

co

bo

nte

mp

i.o

rg

271

Definizione del modello (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

272

Definizione del modello (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

273

Definizione del modello (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

274

Definizione del modello (4)w

ww

.fra

nc

ob

on

tem

pi.o

rg

275

Discretizzazione conglomeratow

ww

.fra

nc

ob

on

tem

pi.o

rg

276

Discretizzazione piatti verticaliw

ww

.fra

nc

ob

on

tem

pi.o

rg

277

Discretizzazione singolo piatto verticalew

ww

.fra

nc

ob

on

tem

pi.o

rg

278

Discretizzazione piatti chiusuraw

ww

.fra

nc

ob

on

tem

pi.o

rg

279

Stato di sforzo nel conglomerato (1)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

280

Stato di sforzo nel conglomerato (2)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

281

Stato di sforzo nel conglomerato (3)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

282

Stato di sforzo nel conglomerato (4)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

283

Stato di sforzo nel conglomerato (5)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

284

Stato di sforzo nel conglomerato (6)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

285

Stato di sforzo nel conglomerato (7)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

286

Stato di sforzo nel conglomerato (8)

Sforzi verticali

ww

w.f

ran

co

bo

nte

mp

i.o

rg

287

Stato di sforzo nel conglomerato (9)w

ww

.fra

nc

ob

on

tem

pi.o

rg

288

Stato di sforzo nel conglomerato (10)w

ww

.fra

nc

ob

on

tem

pi.o

rg

289

Stato di sforzo nel conglomerato (11)w

ww

.fra

nc

ob

on

tem

pi.o

rg

290

Stato di sforzo nel conglomerato (12)w

ww

.fra

nc

ob

on

tem

pi.o

rg

291

Stato di sforzo nel conglomerato (13)w

ww

.fra

nc

ob

on

tem

pi.o

rg

292

Stato di sforzo nel conglomerato (14)w

ww

.fra

nc

ob

on

tem

pi.o

rg

293

Stato di sforzo nel conglomerato (15)w

ww

.fra

nc

ob

on

tem

pi.o

rg

294

Stato di sforzo nel conglomerato (16)w

ww

.fra

nc

ob

on

tem

pi.o

rg

295

Stato di sforzo nel conglomerato (17)w

ww

.fra

nc

ob

on

tem

pi.o

rg

296

Stato di sforzo nel conglomerato (18!)

Von Mises !

ww

w.f

ran

co

bo

nte

mp

i.o

rg

297

Stato di sforzo nel conglomerato (19!)

Von Mises !

ww

w.f

ran

co

bo

nte

mp

i.o

rg

298

Stato di sforzo piatti verticali (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

299

Stato di sforzo piatti verticali (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

300

Stato di sforzo piatti verticali (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

301

Stato di sforzo piatti verticali (4)w

ww

.fra

nc

ob

on

tem

pi.o

rg

302

Stato di sforzo piatti verticali (5)w

ww

.fra

nc

ob

on

tem

pi.o

rg

303

Stato di sforzo nei piatti di chiusuraw

ww

.fra

nc

ob

on

tem

pi.o

rg

304

Stato di sforzo attacchi a Cw

ww

.fra

nc

ob

on

tem

pi.o

rg

Stro N

GERwww.stronger2012.com

305

CMENSOLA ESTERNA

ww

w.f

ran

co

bo

nte

mp

i.o

rg

307

ANALISI E VERIFICHE STRUTTURALI

DELLA MENSOLA DI APPOGGIO

per Vsd = 1050 kNMaggio 2008

ww

w.f

ran

co

bo

nte

mp

i.o

rg

308

EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

309

ww

w.f

ran

co

bo

nte

mp

i.o

rg

310

ww

w.f

ran

co

bo

nte

mp

i.o

rg

311

MODELS OF EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

vertical

longitudinal

transversal

CONFIGURAZIONI

Configurazione iniziale e

rinforzata

ww

w.f

ran

co

bo

nte

mp

i.o

rg

313

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

314

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

315

Rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

316

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

317

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

318

Rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

319

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

320

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

321

Rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

322

Deformabilità senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

323

Deformabilità con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

324

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

325

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

326

Mensola senza rinforzo:

vista superiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

327

Mensola con rinforzo:

vista superiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

328

Mensola senza rinforzo:

vista inferiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

329

Mensola con rinforzo:

vista inferiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

330

Mensola senza rinforzo:

vista di lato

ww

w.f

ran

co

bo

nte

mp

i.o

rg

331

Mensola con rinforzo:

vista di lato

ww

w.f

ran

co

bo

nte

mp

i.o

rg

332

Mensola senza rinforzo:

vista di fronte

ww

w.f

ran

co

bo

nte

mp

i.o

rg

333

Mensola con rinforzo:

vista di fronte

ww

w.f

ran

co

bo

nte

mp

i.o

rg

ANALISI NON LINEARE

Analisi elasto-plastica con

elementi di contatto della

configurazione iniziale

ww

w.f

ran

co

bo

nte

mp

i.o

rg

335

Moltiplicatore = 0.60w

ww

.fra

nc

ob

on

tem

pi.o

rg

336

Moltiplicatore = 0.80w

ww

.fra

nc

ob

on

tem

pi.o

rg

337

Moltiplicatore = 0.94w

ww

.fra

nc

ob

on

tem

pi.o

rg

338

Moltiplicatore = 0.60w

ww

.fra

nc

ob

on

tem

pi.o

rg

339

Moltiplicatore = 0.80w

ww

.fra

nc

ob

on

tem

pi.o

rg

340

Moltiplicatore = 0.94w

ww

.fra

nc

ob

on

tem

pi.o

rg

341

Moltiplicatore = 0.60w

ww

.fra

nc

ob

on

tem

pi.o

rg

342

Moltiplicatore = 0.80w

ww

.fra

nc

ob

on

tem

pi.o

rg

343

Moltiplicatore = 0.94w

ww

.fra

nc

ob

on

tem

pi.o

rg

CONFIGURAZIONE FINALE

Verifiche in campo elasto plastico e

vincoli monolateri sul profilato a C

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Caratteristiche complessive:

• Azione verticale mensola: Vd=1050 kN;

• Acciaio mensola: Fe510 – S355;

• Tiranti: 2 Ø 42 classe 10.9 (M42);

• Bulloni ritegno: 2 Ø 16 classe 10.9 (M16):

resist. taglio Vrd,tot = 2x70 = 140 kN;

resist. trazione Nrd,tot = 2x99 = 180 kN;

• Peso mensola fusa: 15.7 kg.

345

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modb NOFLEX

Carico:

Verticale 1050 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

347

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

348

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

349

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

350

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

351

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

352

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

353

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

354

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modc NOFLEX

Carico:

Verticale 1050 kN

Longitudinale 250 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

356

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

357

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

358

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

359

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

360

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

361

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

362

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

363

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

364

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

365

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

366

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

367

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

368

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

369

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modd NOFLEX

Carico:

Verticale 1050 kN

Trasversale 250 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

371

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

372

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

373

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

374

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

375

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

376

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

377

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

378

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

379

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

380

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

381

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

382

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

383

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

384

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 mode NOFLEX

Carico:

Verticale 1050 kN

Trasversale 175 kN

Longitudinale 175 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

386

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

387

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

388

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

389

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

390

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

391

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

392

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

393

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

394

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

395

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

396

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

397

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

398

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

399

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

400

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

401

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modf NOFLEX

Carico:

Verticale 1050 kN

Longitudinale 500 kN

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

403

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

404

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

405

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

406

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

407

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

408

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

409

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

410

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

411

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

412

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

413

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

414

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

415

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

416

ww

w.f

ran

co

bo

nte

mp

i.o

rg

417

Pesi soluzioni

fattore

correttivo

utilizzo

SNODO TIRANTE ACCIAIO 39NiCrMo3 bonificato 668 PR/02 1.4 2 2.8 1.9 5.3

AGGANCIO MENSOLA - - PR/15 - 1 0.1 1.0 0.1

PIATTO 115x8 l40 S355JR - Fe510B 355 0.3 1 0.3 1.0 0.3

BARRA POSTERIORE MENSOLA S355JR - Fe510B 355 PR/14 5.5 1 5.5 1.0 5.5

NERVATURA MENSOLA S355JR - Fe510B 355 PR/13 1.2 4 4.8 1.0 4.8

PIATTO MENSOLA S355JR - Fe510B 355 PR/12 3.8 1 3.8 1.0 3.8

PESO COMPLESSIVO 17.3 1.1 19.8

SOLUZIONE FUSA INIZIALE

PESO COMPLESSIVO S355JR - Fe510B 14.3 1.0 14.3

CON RINFORZO

PESO COMPLESSIVO S355JR - Fe510B 16.0 1.0 16.0

SOLUZIONE COMPOSTA materiale tasso di lavoro (Mpa) codice peso (kg) # peso (kg) - peso (kg)

ww

w.f

ran

co

bo

nte

mp

i.o

rg

418

Stro N

GERwww.stronger2012.com

419

top related