convex optimization problems (i)ย ยท optimization problem consider the problem not a convex...

Post on 18-Oct-2020

30 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Convex Optimization Problems (I)

Lijun Zhangzlj@nju.edu.cnhttp://cs.nju.edu.cn/zlj

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Optimization Problems

Optimization variable: Objective function: Inequality constraints: ๐‘“ ๐‘ฅ Inequality constraint functions: Equality constraints: โ„Ž ๐‘ฅ Equality constraint functions:

Unconstrainedwhen ๐‘š ๐‘ 0

Basic Terminology

Optimization Problems

Domain

is feasible if it satisfies all the constraints

The problem is feasible if there exists at least one feasible point

๐’Ÿ dom ๐‘“ โˆฉ dom โ„Ž

Basic Terminology

Optimal Value โ‹†

Infeasible problem: โ‹†

Unbounded below: if there exist with as , then โ‹†

Optimal Points โ‹† is feasible and โ‹† โ‹†

Optimal Set

โ‹† is achieved if is nonempty

๐‘โ‹† inf ๐‘“ ๐‘ฅ |๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š, โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

๐‘‹ ๐‘ฅ|๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š, โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘, ๐‘“ ๐‘ฅ ๐‘โˆ—

Basic Terminology

-suboptimal Points a feasible with โ‹†

-suboptimal Set the set of all ๐œ€-suboptimal points

Locally Optimal Points

๐‘ฅ is feasible and solves the above problem Globally Optimal Points

min ๐‘“ ๐‘ง s. t. ๐‘“ ๐‘ง 0, ๐‘– 1, . . . , ๐‘š

โ„Ž ๐‘ง 0, ๐‘– 1, . . . , ๐‘ ๐‘ง ๐‘ฅ ๐‘…

Basic Terminology

Basic Terminology

Types of Constraints If ๐‘“ ๐‘ฅ 0, ๐‘“ ๐‘ฅ 0 is active at ๐‘ฅ If ๐‘“ ๐‘ฅ 0, ๐‘“ ๐‘ฅ 0 is inactive at ๐‘ฅ โ„Ž ๐‘ฅ 0 is active at all feasible points Redundant constraint: deleting it does not

change the feasible set Examples on and ๐‘“ ๐‘ฅ 1 ๐‘ฅโ„ : ๐‘โ‹† 0, the optimal value is not

achieved ๐‘“ ๐‘ฅ log ๐‘ฅ : ๐‘โ‹† โˆž, unbounded blow ๐‘“ ๐‘ฅ ๐‘ฅ log ๐‘ฅ : ๐‘โ‹† 1 ๐‘’โ„ , ๐‘ฅโ‹† 1 ๐‘’โ„ is optimal

Basic Terminology

Feasibility Problems

Determine whether constraints are consistent

Maximization Problems

It can be solved by minimizing ๐‘“ Optimal Value ๐‘โ‹†

find ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š

โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

max ๐‘“ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š

โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

๐‘โ‹† sup ๐‘“ ๐‘ฅ |๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š, โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

Basic Terminology

Standard Form

Box constraints

Reformulation

min ๐‘“ ๐‘ฅ s. t. ๐‘™ ๐‘ฅ ๐‘ข , ๐‘– 1, . . . , ๐‘›

min ๐‘“ ๐‘ฅ s. t. ๐‘™ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘›

๐‘ฅ ๐‘ข 0, ๐‘– 1, . . . , ๐‘›

min ๐‘“ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š

โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Equivalent Problems Two Equivalent Problems If from a solution of one, a solution of the

other is readily found, and vice versa A Simple Example

๐›ผ 0, ๐‘– 0, . . . , ๐‘š ๐›ฝ 0, ๐‘– 1, . . . , ๐‘ Equivalent to the problem 1

Change of Variables

is one-to-one and dom , and define

An Equivalent Problem

If ๐‘ง solves it, ๐‘ฅ ๐œ™ ๐‘ง solves the problem 1 If ๐‘ฅ solves 1 , ๐‘ง ๐œ™ ๐‘ฅ solves it

min ๐‘“ ๐‘ง s. t. ๐‘“ ๐‘ง 0, ๐‘– 1, . . . , ๐‘š

โ„Ž ๐‘ง 0, ๐‘– 1, . . . , ๐‘

๐‘“ ๐‘ง ๐‘“ ๐œ™ ๐‘ง , ๐‘– 0, . . . , ๐‘šโ„Ž ๐‘ง โ„Ž ๐œ™ ๐‘ง , ๐‘– 1, . . . , ๐‘

Transformation of Functions ๐œ“ : ๐‘ โ†’ ๐‘ is monotone increasing ๐œ“ , . . . , ๐œ“ : ๐‘ โ†’ ๐‘ satisfy ๐œ“ ๐‘ข 0 if and only if

๐‘ข 0 ๐œ“ , . . . , ๐œ“ : ๐‘ โ†’ ๐‘ satisfy ๐œ“ ๐‘ข 0 if and only

if ๐‘ข 0 Define

An Equivalent Problem

๐‘“ ๐‘ฅ ๐œ“ ๐‘“ ๐‘ฅ , ๐‘– 0, . . . , ๐‘šโ„Ž ๐‘ฅ ๐œ“ โ„Ž ๐‘ฅ , ๐‘– 1, . . . , ๐‘

min ๐‘“ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š

โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

Example

Least-norm Problems

Not differentiable at any with

Least-norm-squared Problems

Differentiable for all

Slack Variables if and only if there is an

that satisfies An Equivalent Problem

๐‘  is the slack variable associated with the inequality constraint ๐‘“ ๐‘ฅ 0

๐‘ฅ is optimal for the problem 1 if and only if ๐‘ฅ, ๐‘  is optimal for the above problem, where

๐‘  ๐‘“ ๐‘ฅ

min ๐‘“ ๐‘ฅ s. t. ๐‘  0, ๐‘– 1, . . . , ๐‘š

๐‘“ ๐‘ฅ ๐‘  0, ๐‘– 1, . . . , ๐‘š โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

Eliminating Equality Constraints

Assume is such that satisfies

if and only if there is some such that

An Equivalent Problem

If is optimal for this problem, is optimal for the problem

If is optimal for , there is at least one which is optimal for this problem

โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

๐‘ฅ ๐œ™ ๐‘ง

min ๐‘“ ๐‘ง ๐‘“ ๐œ™ ๐‘ง s. t. ๐‘“ ๐‘ง ๐‘“ ๐œ™ ๐‘ง 0, ๐‘– 1, . . . , ๐‘š

Eliminating linear equality constraints

Assume the equality constraints are all linear , and is one solution

Let be any matrix with , then

An Equivalent Problem ( )

๐‘˜ ๐‘› rank ๐ด

min ๐‘“ ๐น๐‘ง ๐‘ฅ s. t. ๐‘“ ๐น๐‘ง ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š

Linear algebra

Range and nullspace Let ๐ด โˆˆ ๐‘ , the range of ๐ด, denoted โ„› ๐ด ,

is the set of all vectors in ๐‘ that can be written as linear combinations of the columns of A:

โ„› ๐ด ๐ด๐‘ฅ|๐‘ฅ โˆˆ ๐‘ โŠ† ๐‘ The nullspace (or kernel) of A, denoted

๐’ฉ ๐ด , is the set of all vectors ๐‘ฅ mapped into zero by A:

๐’ฉ ๐ด ๐‘ฅ|๐ด๐‘ฅ 0 โŠ† ๐‘ if ๐’ฑ is a subspace of ๐‘ , its orthogonal

complement, denoted ๐’ฑ , is defined as:๐’ฑ ๐‘ฅ|๐‘ง ๐‘ฅ 0 for all ๐‘ง โˆˆ ๐’ฑ

Introducing Equality Constraints

Consider the problem

๐‘ฅ โˆˆ ๐‘ , ๐ด โˆˆ ๐‘ and ๐‘“ : ๐‘ โ†’ ๐‘

An Equivalent Problem

Introduce ๐‘ฆ โˆˆ ๐‘ and ๐‘ฆ ๐ด ๐‘ฅ ๐‘

min ๐‘“ ๐ด ๐‘ฅ ๐‘ s. t. ๐‘“ ๐ด ๐‘ฅ ๐‘ 0, ๐‘– 1, . . . , ๐‘š โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

min ๐‘“ ๐‘ฆ s. t. ๐‘“ ๐‘ฆ 0, ๐‘– 1, . . . , ๐‘š

๐‘ฆ ๐ด ๐‘ฅ ๐‘ , ๐‘– 0, . . . , ๐‘š โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

Optimizing over Some Variables

Suppose is partitioned as , with and

Consider the problem

An Equivalent Problem

where

min ๐‘“ ๐‘ฅ , ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š

min ๐‘“ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š

Example

Minimize a Quadratic Function

Minimize over

An Equivalent Problem=

Epigraph Problem Form

Epigraph Form

Introduce a variable is optimal for this problem if and

only if is optimal for and The objective function of the epigraph

form problem is a linear function of

Epigraph Problem Form

Geometric Interpretation

Find the point in the epigraph that minimizes

Making Constraints Implicit Unconstrained problem

for

It has not make the problem any easier

It could make the problem more difficult, because is probably not differentiable

Making Constraints Explicit A Unconstrained Problem

where

An implicit equality constraint An Equivalent Problem

Objective and constraint functions are differentiable

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Problem Descriptions Parameter Problem Description Functions have some analytical or closed

form Example: , where

and Give the values of the parameters

Oracle Model (Black-box Model) Can only query the objective and

constraint functions by oracle Evaluate and its gradient Know some prior information (convexity)

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Convex Optimization Problems Standard Form

The objective function must be convex The inequality constraint functions must

be convex The equality constraint functions

must be affine

Convex Optimization Problems

Properties Feasible set of a convex optimization

problem is convex

Minimize a convex function over a convex set -suboptimal set is convex The optimal set is convex If the objective is strictly convex, then the

optimal set contains at most one point

dom ๐‘“ โˆฉ ๐‘ฅ|๐‘“ ๐‘ฅ 0 โˆฉ ๐‘ฅ|๐‘Ž ๐‘ฅ ๐‘

Concave Maximization Problems

Standard Form

It is referred as a convex optimization problem if is concave and are convex

It is readily solved by minimizing the convex objective function

Abstract From Convex Optimization Problem Consider the Problem

Not a convex optimization problem ๐‘“ is not convex and โ„Ž is not affine

But the feasible set is indeed convex Abstract convex optimization problem

An Equivalent Convex Problem

min ๐‘“ ๐‘ฅ ๐‘ฅ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ ๐‘ฅ 1 ๐‘ฅโ„ 0 โ„Ž ๐‘ฅ ๐‘ฅ ๐‘ฅ 0

min ๐‘“ ๐‘ฅ ๐‘ฅ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ ๐‘ฅ 0 โ„Ž ๐‘ฅ ๐‘ฅ ๐‘ฅ 0

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Local and Global Optima

Any locally optimal point of a convex problem is also (globally) optimal

Proof by Contradiction is locally optimal implies

for some Suppose is not globally optimal, i.e.,

there exists and Define

๐‘“ ๐‘ฅ inf ๐‘“ ๐‘ง | ๐‘ง feasible, ๐‘ง ๐‘ฅ ๐‘…

๐‘ง 1 ๐œƒ ๐‘ฅ ๐œƒ๐‘ฆ, ๐œƒ๐‘…

2 ๐‘ฆ ๐‘ฅ โˆˆ 0,1

Local and Global Optima By convexity of the feasible set

It is easy to check

By convexity of

which contradicts

๐‘ง is feasible

๐‘ง ๐‘ฅ ๐œƒ ๐‘ฆ ๐‘ฅ๐‘… ๐‘ฆ ๐‘ฅ

2 ๐‘ฆ ๐‘ฅ๐‘…2 ๐‘…

๐‘“ ๐‘ง 1 ๐œƒ ๐‘“ ๐‘ฅ ๐œƒ๐‘“ ๐‘ฆ ๐‘“ ๐‘ฅ

๐‘“ ๐‘ฅ inf ๐‘“ ๐‘ง | ๐‘ง feasible, ๐‘ง ๐‘ฅ ๐‘…

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

An Optimality Criterion for Differentiable

Suppose is differentiable ๐‘“ ๐‘ฆ ๐‘“ ๐‘ฅ ๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ , โˆ€๐‘ฅ, ๐‘ฆ โˆˆ dom ๐‘“

An Optimality Criterion for Differentiable

Suppose is differentiable

Let denote the feasible set

is optimal if and only if and

๐‘“ ๐‘ฆ ๐‘“ ๐‘ฅ ๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ , โˆ€๐‘ฅ, ๐‘ฆ โˆˆ dom ๐‘“

๐‘‹ ๐‘ฅ|๐‘“ ๐‘ฅ 0, ๐‘– 1, , ๐‘š, โ„Ž ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘

๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0 for all ๐‘ฆ โˆˆ ๐‘‹

An Optimality Criterion for Differentiable

is optimal if and only if and

defines a supporting hyperplane to the feasible set at

๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0 for all ๐‘ฆ โˆˆ ๐‘‹

Proof of Optimality Condition

Sufficient Condition

Necessary Condition Suppose is optimal but

Define

So, for small positive ,

๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0๐‘“ ๐‘ฆ ๐‘“ ๐‘ฅ ๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ

โ‡’ ๐‘“ ๐‘ฆ ๐‘“ ๐‘ฅ

โˆƒ๐‘ฆ โˆˆ ๐‘‹, ๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0

๐‘“ ๐‘ง 0 ๐‘“ ๐‘ฅ ,๐‘‘๐‘‘๐‘ก ๐‘“ ๐‘ง ๐‘ก ๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0

Unconstrained Problems is optimal if and only if Consider and When is small, is feasible

Unconstrained Quadratic Optimization

๐‘ฅ is optimal if and only if ๐›ป๐‘“ ๐‘ฅ ๐‘ƒ๐‘ฅ ๐‘ž 0 If ๐‘ž โˆ‰ โ„› ๐‘ƒ , no solution, ๐‘“ is unbound below If ๐‘ƒ โ‰ป 0, unique minimizer ๐‘ฅโ‹† ๐‘ƒ ๐‘ž If ๐‘ƒ is singular, but ๐‘ž โˆˆ โ„› ๐‘ƒ , ๐‘‹ ๐‘ƒ ๐‘ž ๐’ฉ ๐‘ƒ

๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ ๐‘ก ๐›ป๐‘“ ๐‘ฅ 0 โ‡” ๐›ป๐‘“ ๐‘ฅ 0

min ๐‘“ ๐‘ฅ 1 2โ„ ๐‘ฅ ๐‘ƒ๐‘ฅ ๐‘ž ๐‘ฅ ๐‘Ÿ, where ๐‘ƒ โˆˆ ๐’

Problems with Equality Constraints Only

Consider the Problem

is optimal if and only if๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0, โˆ€ ๐ด๐‘ฆ ๐‘ ๐‘ฆ|๐ด๐‘ฆ ๐‘ ๐‘ฅ ๐‘ฃ ๐‘ฃ โˆˆ ๐’ฉ ๐ด

Problems with Equality Constraints Only

Consider the Problem

is optimal if and only if

โ‡” ๐›ป๐‘“ ๐‘ฅ ๐‘ฃ 0, โˆ€ ๐‘ฃ โˆˆ ๐’ฉ ๐ด

โ‡” ๐›ป๐‘“ ๐‘ฅ โŠฅ ๐’ฉ ๐ด โ‡” ๐›ป๐‘“ ๐‘ฅ โˆˆ ๐’ฉ ๐ด โ„› ๐ด

โ‡” ๐›ป๐‘“ ๐‘ฅ ๐‘ฃ 0, โˆ€ ๐‘ฃ โˆˆ ๐’ฉ ๐ด

๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0, โˆ€ ๐ด๐‘ฆ ๐‘ ๐‘ฆ|๐ด๐‘ฆ ๐‘ ๐‘ฅ ๐‘ฃ ๐‘ฃ โˆˆ ๐’ฉ ๐ด

โ‡” โˆƒ๐‘ฃ โˆˆ ๐‘ , ๐›ป๐‘“ ๐‘ฅ ๐ด ๐‘ฃ 0

Lagrange Multiplier Optimality Condition

๐ด๐‘ฅ ๐‘๐›ป๐‘“ ๐‘ฅ ๐ด ๐‘ฃ 0

Minimization over the Nonnegative Orthant Consider the Problem

is optimal if and only if

The Optimality Condition

The last condition is called complementarity

๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0, โˆ€๐‘ฆ โ‰ฝ 0

โŸบ๐›ป๐‘“ ๐‘ฅ โ‰ฝ 0๐›ป๐‘“ ๐‘ฅ ๐‘ฅ 0

๐‘ฅ โ‰ฝ 0, ๐›ป๐‘“ ๐‘ฅ โ‰ฝ 0, ๐‘ฅ ๐›ป๐‘“ ๐‘ฅ 0, ๐‘– 1, โ€ฆ , ๐‘›

โŸบ๐›ป๐‘“ ๐‘ฅ โ‰ฝ 0

๐›ป๐‘“ ๐‘ฅ ๐‘ฅ 0

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Equivalent Convex Problems Standard Form

Eliminating Equality Constraints

๐ด ๐‘Ž ; โ€ฆ ; ๐‘Ž , ๐‘ ๐‘ ; โ€ฆ ; ๐‘ ๐ด๐‘ฅ ๐‘, โ„› ๐น ๐’ฉ ๐ด The composition of a convex function with an

affine function is convex

Equivalent Convex Problems Introducing Equality Constraints If an objective or constraint function has the

form ๐‘“ ๐ด ๐‘ฅ ๐‘ , where ๐ด โˆˆ ๐‘ , we can replace it with ๐‘“ ๐‘ฆ and add the constraint ๐‘ฆ๐ด ๐‘ฅ ๐‘ , where ๐‘ฆ โˆˆ ๐‘

Slack Variables Introduce new constraint ๐‘“ ๐‘ฅ ๐‘  0 and

requiring that ๐‘“ is affine Introduce slack variables for linear inequalities

preserves convexity of a problem Minimizing over Some Variables It preserves convexity. ๐‘“ ๐‘ฅ , ๐‘ฅ needs to be

jointly convex in ๐‘ฅ and ๐‘ฅ

Equivalent Convex Problems Epigraph Problem Form

The objective is linear (hence convex) The new constraint function ๐‘“ ๐‘ฅ ๐‘ก is also

convex in ๐‘ฅ, ๐‘ก This problem is convex Any convex optimization problem is readily

transformed to one with linear objective.

Outline

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

Quasiconvex Optimization Standard Form

๐‘“ is quasiconvex and ๐‘“ , โ€ฆ , ๐‘“ are convex Have locally optimal solutions that are not

(globally) optimal

min ๐‘“ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š ๐ด๐‘ฅ ๐‘

Quasiconvex Optimization Standard Form

๐‘“ is quasiconvex and ๐‘“ , โ€ฆ , ๐‘“ are convex Have locally optimal solutions that are not

(globally) optimal Optimality Conditions for Differentiable Let ๐‘‹ denote the feasible set, ๐‘ฅ is optimal if

1. Only a sufficient condition2. Requires ๐›ป๐‘“ ๐‘ฅ to be nonzero

๐‘ฅ โˆˆ ๐‘‹, ๐›ป๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ฅ 0 for all ๐‘ฆ โˆˆ ๐‘‹ \ ๐‘ฅ

min ๐‘“ ๐‘ฅ s. t. ๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š ๐ด๐‘ฅ ๐‘

Representation via family of convex functions Rerpesent the sublevel sets of a quasiconvex

function via inequalities of convex functions. is convex,

is a nonincreasing function of Examples

๐‘“ ๐‘ฅ ๐‘ก โ‡” ๐œ™ ๐‘ฅ 0

๐œ™ ๐‘ฅ 0 ๐‘“ ๐‘ฅ ๐‘กโˆž otherwise

๐œ™ ๐‘ฅ dist ๐‘ฅ, ๐‘ง|๐‘“ ๐‘ง ๐‘ก

Quasiconvex Optimization via Convex Feasibility Problems Let , be a family of convex

functions such that

and for each , whenever Let ๐‘โ‹† be the optimal value of quasiconvex problem Consider the feasibility problem

If it is feasible, ๐‘โ‹† ๐‘ก. Conversely, ๐‘โ‹† ๐‘ก

find ๐‘ฅ s. t. ๐œ™ ๐‘ฅ 0

๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š ๐ด๐‘ฅ ๐‘

Bisection for QuasiconvexOptimization Algorithm

The interval ๐‘™, ๐‘ข is guaranteed to contain ๐‘โ‹†

The length of the interval after ๐‘˜ iterations is 2 ๐‘ข ๐‘™

log ๐‘ข ๐‘™ /๐œ– iterations are required

given ๐‘™ ๐‘โ‹†, ๐‘ข ๐‘โ‹†, tolerance ๐œ– 0repeat

1. ๐‘ก โ‰” ๐‘™ ๐‘ข /22. Solve the convex feasibility problem3. if it is feasible, ๐‘ข โ‰” ๐‘ก; else ๐‘™ โ‰” ๐‘ก

until ๐‘ข ๐‘™ ๐œ–

Bisection for QuasiconvexOptimization

An โˆ’suboptimal Solution โˆ—

โˆ—

โˆ— โˆ— โˆ—

find ๐‘ฅ s. t. ๐œ™ ๐‘ฅ 0

๐‘“ ๐‘ฅ 0, ๐‘– 1, . . . , ๐‘š ๐ด๐‘ฅ ๐‘

Summary

Optimization Problems Basic Terminology Equivalent Problems Problem Descriptions

Convex Optimization Standard Form Local and Global Optima An Optimality Criterion Equivalent Convex Problems Quasiconvex Optimization

top related