conductance through coupled quantum dots

Post on 24-Jan-2016

33 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Conductance through coupled quantum dots. J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA. Collaborators: R. Žitko , J. Stefan Inst., Ljubljana, Slovenia - PowerPoint PPT Presentation

TRANSCRIPT

www-f1.ijs.si/~bonca/work.html Hvar, 2005

J. BončaJ. BončaPhysics Department, FMF, University of Physics Department, FMF, University of

Ljubljana, Ljubljana,

J. Stefan Institute, Ljubljana, SLOVENIAJ. Stefan Institute, Ljubljana, SLOVENIA

Conductance through coupled quantum dots

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Collaborators:

R. Žitko, J. Stefan Inst., Ljubljana, Slovenia

A.Ramšak and T. Rejec, FMF, Physics dept., University of Ljubljana and J. Stefan Inst., Ljubljana, Slovenia

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Experimental motivation

Single QD: using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime

DQD system: Large td: Kondo regimes for odd DQD occupancy Small td: Two-stage Kondo regime Adding FM coupling

Three QD’s: Good agreement between CPMC and GS. Two regimes

t’’>: three peaks in G() due to 3 molecular levels t’’<: a single peak in G() of width ~ U

Introduction

www-f1.ijs.si/~bonca/work.html Hvar, 2005

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Double- and multiple- dot structures

Craig et el., Science 304, 565 (2004)

Holleitner et el., Science 297, 70 (2002)

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot (Anderson single impurity problem)

d

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d d+U

d

d+U/2

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

dd+U

d

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

Meir-Wingreen, PRL 68, 2512 (1992)

d+U

d

d+U/2

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

dd+U

d

d+U/2

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

d+U/2

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

d+U/2

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

d+U/2

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

d+U/2

U

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Quantum Dot

d

d+U

d

d+U/2 ~ gate voltage

U

=U>>

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Three alternative methods:

Constrained Path Monte Carlo method (CPMC), Zhang, Carlson and Gubernatis, PRL 74 ,3652 (1995);PRB 59, 12788 (1999).

Projection – variational metod (GS), Schonhammer, Z. Phys. B 21, 389 (1975); PRB 13, 4336 (1976), Gunnarson and Shonhammer, PRB 31, 4185 (1985), Rejec and Ramšak, PRB 68, 035342 (2003).

Numerical Renormalization Group using Reduced Density Matrix (NRG), Krishna-murthy, Wilkins and Wilson, PRB 21, 1003 (1980); Costi, Hewson and Zlatić, J. Phys.: Condens. Matter 6, 2519, (1994); Hofstetter, PRL 85, 1508 (2000).

www-f1.ijs.si/~bonca/work.html Hvar, 2005

How to obtain G from GS properties:

CPMC and GS are zero-temperature methods Ground state energy

Conditions: System is a Fermi liquid

N-(noninteracting) sites, N ∞

G0=2e2/h

Rejec, Ramšak, PRB 68, 035342 (2003)

~

~

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Comparison: CPMC,GS,NRG

• CPMC, • GS-variational,• Hartree-Fock:

• NRG:

Meir-Wingreen, PRL 68, 2512 (1992)

U<t;Wide-band

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Comparison: CPMC,GS,NRG

• CPMC, • GS-variational,• Hartree-Fock:

• NRG:

Meir-Wingreen, PRL 68, 2512 (1992)

U>>t;Narrow-band

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Side-coupled Double Quantum Dot

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Large td

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Large td –

Widths of conductance plateaus:Energies on isolated DQD:

1 2

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Large td –

Kondo temperatures:

Estimating TK using Scrieffer-Wolf:

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Large td –

Kondo temperatures:

Estimating TK using Scrieffer-Wolf:

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Large td –

Adding FM coupling

ES=1

ES=0

-Jad

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Small td – Two-stage Kondo effect

Jeff<TK:Two Kondo temperatures:

TK and TK0

TKTK0

Jeff<TK

Vojta et al., PRB 65, 140405 (2002); Hofstetter, Schoeller, PRL 88, 016803 (2002), Cornaglia and Grempel, PRB 71, 075305 (2005), Wiel et al., PRL 88, 126803 (2002).

Two energy scales: Jeff=4td2/U, TK

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Small td –

Two-stage Kondo effect

Jeff>TK

Jeff

0.25 0.50

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Small td –

Two-stage Kondo effect

Jeff~TK

TK

0.25 0.50

TK0

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Small td –

Two-stage Kondo effect

Jeff<TK

TK

0.25 0.50

TK0

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Small td –

Two-stage Kondo effect

Jeff<TK~T

TK

0.25 0.50 Experimental evidence

Wiel et al., PRL 88, 126803 (2002).

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Large td –

Adding FM coupling

Two-stage Kondo effect?

Voja et al., PRB 65, 140405 (2002), Hofstetter,

Schoeller, PRL 88, 016803 (2002),

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Three coupled quantum dots

Using CPMC: NCPMC [100,180] Using GS – variational: NGS [1000,2000]

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Three coupled QDs 1 2 3

Oguri, Nisikawa,Hewson, cond-mat/0504771

www-f1.ijs.si/~bonca/work.html Hvar, 2005

Using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime

DQD system: Large td: Kondo regimes for odd DQD occupancy

(analytical expressions for TK and widh G()) Small td: Two-stage Kondo regime (analytical

expressions for TK0)

Three QD’s: Good agreement between CPMC and GS. Two regimes

t’’>: three peaks in G() due to 3 molecular levels t’’<: a single peak in G() of width ~ U

Conclusions

top related