complexity - controlling chaos using cybernetics and good design

Post on 18-Dec-2014

2.419 Views

Category:

Technology

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

What is a complex system? How can it be controlled? What is cybernetics and why is it so cool?

TRANSCRIPT

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and TransportationWhat we did at work today (Rawwrrrr!) by Amit Gupta on Flickr (CC BY-NC)

ComplexityControlling  chaos  using  cyberne5cs  and  

good  design  P.O.  Arnäs,  PhD  

Per-­‐Olof.Arnas@chalmers.se  @Dr_PO

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

What  is  a  system?

�2

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A   set   consists   of  more   than   one  elementary  part

�3

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A  system  differs  from  a  set  when  it  displays  emergent  proper,es

A   set   consists   of  more   than   one  elementary  part

�4

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

The  whole  shows  proper5es  that  are  not  

found  in  its  parts

A  system  differs  from  a  set  when  it  displays  emergent  proper,es

A   set   consists   of  more   than   one  elementary  part

�5

Reduc5onism  is  not  applicable

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A   set   consists   of  more   than   one  elementary  part

A  system  differs  from  a  set  when  it  displays  emergent  proper,es

A  system  cannot  be  fully  understood  by  studying  its  parts  

separately

The  whole  shows  proper5es  that  are  not  

found  in  its  parts

Reduc5onism  is  not  applicable

�6

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A   set   consists   of  more   than   one  elementary  part

A  system  differs  from  a  set  when  it  displays  emergent  proper,es

A  system  cannot  be  fully  understood  by  studying  its  parts  

separately

The  whole  shows  proper5es  that  are  not  

found  in  its  parts

�7

Reduc5onism  is  not  applicable

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A  system  cannot  be  fully  defined  from  within

Gödel´s  incompleteness  theorem

�8

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A  system  cannot  be  fully  defined  from  whithin

Gödel´s  incompleteness  theorem

I  don´t  understand

I  don´t  understand

Neither  do  I

�9

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation2009  -­‐  October  -­‐  NodeXL  Facebook  Network  Marc  Smith  FR  Layout  by  Marc_Smith  on  flickr.com

I  don´t  understand

I  don´t  understand

Neither  do  I

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Si = (xi, yi, zi, vi)

”Trajectory”  –  a  succession  of  states

”State”  –  The  current  value  of  the  a6ributes

”A6ributes”  –  a  collec9on  of  the  system’s  variables  

(degrees  of  freedom):  

e.g.  X,  Y,  Z,  V

Important  terms

Image:  Bouncing  ball  strobe  edit,  CC-­‐BY    Richard  Bartz,  Wikimedia  Commons �11

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Transportation system

State space, S

Resources, R

Goods in initial state,

S0

Goods in goal state, S1

Trajectory = f(S0, S1, R)

Conceptual  model  of  a  transportaWon  process  as  a  trajectory  between  states  (adopted  from  Hultén,  1997).  

This process needs to be

controlled!

The system

s perspec

tive:

The transpo

rtation

process

�12

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A Transport Control System (TCS) is a system that controls the trajectory of a transportation process

Goa

l state

Syst

em s

tate,

output

Input

Feedback loop

Disturbance

Regulated system !

(transportation system)

Regulator !

(TCS)

COMPLE

XITY!!

!

COMPLEXITY!!!

COMPLEXITY!!!

COMPLEXITY!!!

�13

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

The main task

What we did at work today (Rawwrrrr!) by Amit Gupta on Flickr (CC BY-NC)

Handle complexity

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Complexity – 3 types

What we did at work today (Rawwrrrr!) by Amit Gupta on Flickr (CC BY-NC)

Each type is associated with a specific complexity driver

Complexity driver: A variable that indicates increase/decrease in complexity

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”Jan  2005  Map  of  the  Internet”  BY  ma_hewje_hall  on  flickr

1.  Descrip9ve  complexity

Difficulty  in  describing  the  system

”Variety”  =  The  total  number  of  states  the  system  can  assume  (state  space)

Complexity  driver:   The  size  of  the  state  space

�16

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

1.  Descrip9ve  complexity

Consignor Consignee

DomesWc port

Foreign port

Road  terminal, local

DomesWc   rail  terminal

Foreign   rail  terminal

�17

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

1.  Descrip9ve  complexity

Consignor Consignee

DomesWc port

Foreign port

Road  terminal, local

DomesWc   rail  terminal

Foreign   rail  terminal

Road  terminal, central

Road  terminal, local

�18

Incre

ased d

escrip

tive co

mplexit

y

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation Image:  ”Playing  chess”  BY  Jeffrey  Barke  on  flickr

2.  Computa9onal  complexityDifficulty  in  finding  the  

”best”  trajectory  through  the  state  space

The  controller  needs  to  know:

b)  which  of  the  possible  trajectories  should  be  chosen

a)  which  of  the  states  are  valid

Complexity  driver:   The  number  and  length  of  

valid  trajectories�19

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Consignor Consignee

DomesWc port

Foreign port

Road  terminal, local

DomesWc   rail  terminal

Foreign   rail  terminal

Road  terminal, central

Road  terminal, local

2.  Computa9onal  complexity

?

?

�20

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Consignor Consignee

DomesWc port

Foreign port

Road  terminal, local

DomesWc   rail  terminal

Foreign   rail  terminal

Road  terminal, central

Road  terminal, local

2.  Computa9onal  complexity

?

?

?

?

?Increa

sed computation

al complexit

y

�21

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”Jam  at  the  floaWng  market”  BY  Stuck  in  Customs  on  flickr

3.  Uncertainty-­‐based  complexityDifficulty  in  describing  the  

state  of  the  system

Complexity  driver:   The  number  of  decisions  that  must  be  made  during  the  transporta9on  process

The  amount  of  informa9on  needed  to  describe  the  state  of  the  system

Measured  by  the  informa,on  entropy

Controller  needs  to  ”step  into”  the  system  during  the  preocess  to  resolve  uncertainty

�22

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Consignor Consignee

DomesWc port

Foreign port

Road  terminal, local

DomesWc   rail  terminal

Foreign   rail  terminal

Road  terminal, central

Road  terminal, local

3.  Uncerta9nty-­‐based  complexity

✓✓

�23

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Consignor Consignee

DomesWc port

Foreign port

Road  terminal, local

DomesWc   rail  terminal

Foreign   rail  terminal

Road  terminal, central

Road  terminal, local

3.  Uncerta9nty-­‐based  complexity

?

Increased uncertainty-based complexity

?

?

?

?

�24

??

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Cyberne9cs

�25

?

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Cyberne9cs

�26

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Cyberne9cs

OutputIn In In In In

�27

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation Image:  ”Wheldrake  sundial”  BY  Darwin70  on  flickr

Cyberne9csLaunched  as  a  branch  of  systems  science  in  the  

1940´s Mathema9cs  as  a  modelling  language

W G

Xg h

f

CasW's   model   of   the   input/output   relaWon  (redrawn  from  CasW,  1989,  p.  109)

�28

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Processes  on  various  levels  (redrawn  from  NEVEM,  1989).  

�29

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

A Transport Control System (TCS) is a system that controls the trajectory of a transportation process

Goa

l state

Syst

em s

tate,

output

Input

Feedback loop

Disturbance

Regulated system !

(transportation system)

Regulator !

(TCS)

COMPLE

XITY!!

!

COMPLEXITY!!!

COMPLEXITY!!!

COMPLEXITY!!!

�30

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Organize  the  trains  into  groups.  How  can  they  be  grouped?  

Discuss  in  small  groups  and  try  to  find  the  most  logical  solu9on.

�31

Bild: Booch, 1991

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Bild: Booch, 1991

2-­‐4  wagons

7  types  of  cargo

2  types  of  wheels

2  wagon  sizes

4  wagon  types

4  wagon  roofs

�32

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

GOAL:  

Pizza Menu

�33

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation �34

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation �35

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”MacBook  Air  by  Jony  Ive”  BY  marcopako    on  flickr

Interface  designIn  order  to  handle  the  three  complexity  types,  a  

modelling/design  process  is  needed

With  a  cyberne9c  approach,  every  system  consists  of  a  number  of  black  boxes

Each  box  is  defined  by  its  interface

�36

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

The System

Visibleattributes

Sta

te

Visibleinputs

Interface

Inbound interface Outbound interfaceThe interface hides (encapsulates)

content and function

An interface is a representation of a system displaying its visible

state and its visible inputs.

�37

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”MacBook  Air  by  Jony  Ive”  BY  marcopako    on  flickr

The System

Visibleattributes

Sta

te vec

torVisible

inputs

Inbound interface Outbound interface

Dimension  1:  Interface  direcWon

An interface can be either inbound or outbound

Ope

ration

s vect

or

�38

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”MacBook  Air  by  Jony  Ive”  BY  marcopako    on  flickr

Dimension  2:  Interface  width

The width of the interface consists of the number of

attributes/operations

The SystemWidthWidth

More attributes (degrees of freeedom) – wider interface

More operations – wider interface

The interface width is reduced by

encapsulation

�39

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”MacBook  Air  by  Jony  Ive”  BY  marcopako    on  flickr

EncapsulaWon

The System

The System

Encaps

ulatio

n

of co

ntent

Encapsu

lation

of functi

on

Hidden attributes

Hidden inputs

�40

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”MacBook  Air  by  Jony  Ive”  BY  marcopako    on  flickr

Dimension  3:  Interface  depthThe variety of each attribute and operation together constitute the

interface depth

The System

Depth DepthThe interface depth

is reduced by applying constraints

The depth can range from binary to continuous

�41

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Image:  ”MacBook  Air  by  Jony  Ive”  BY  marcopako    on  flickr

Constraints

The System

The System

Stati

onary

conts

traint

s

Transitor

y

constrain

ts

Limiting states

Limiting operations

�42

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Interface WIDTH

Int

erfa

ce

DEP

TH

NARROW WIDE

SHALLOW

DEEP

Many parametersFew parameters

Binary parameters

Discreet parameters

Continous Parameters

with constraints

Continous Parameters

Constraints make interfaces more shallow

Encapsulation limits interface widthDegenerated

encapsulation

No encapsulation – open system

�43

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Reducing  complexity  –  some  ground  rules

Exclude  variables Diminish  state  space

Par99on  states Group  states  into  larger  

par99ons

Break  down  into  subsystems Create  internal  interfaces

Organise  subsystems  hierarchically Create  mul9ple  levels  of  abstrac9on

Image:  ”Jam  at  the  floaWng  market”  BY  Stuck  in  Customs  on  flickrImage:  ”Playing  chess”  BY  Jeffrey  Barke  on  flickrImage:  ”Jan  2005  Map  of  the  Internet”  BY  ma_hewje_hall  on  flickr

�44

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Key  tools  in  cyberne9cs

In In In In In

Feedback loop

Syst

em s

tate,

output

Input

Disturbance

Regulated system !(transportation

system)

Regulator !(TCS)

Black  boxes Encapsulate  func9on Encapsulate  content

Hierarchic  system  models

Control  Theory Regulator Trajectory  which  needs  to  be  controlled Finite  state  space

�45

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

�46

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

By  construc9ng  the  system  from  a  number  of  black  boxes,  complexity  can  be  reduced

�47

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

In

By  construc9ng  the  system  from  a  number  of  classes,  complexity  can  be  reduced

�48

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

How  would  a  programmer  

design  a  complex  system?

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation Image:  ”Wheldrake  sundial”  BY  Darwin70  on  flickr

A  parallel  historyIn  1967,  the  programming  

language  Simula  67  was  launched !

The  first  object-­‐oriented  language !

Used  to  build  discrete  event  simula9on  models

“…the  opera9on  of  a  system  is  represented  as  a  chronological  sequence  of  events.  Each  event  occurs  at  an  instant  in  9me  and  marks  a  change  of  state  in  the  system.”  (Wikipedia)

Discrete  event  simula9on

Si = (xi, yi, zi, vi)

Remember

TRAJECTORY

�50

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

The  canonical  form  of  a  complex  system  (redrawn  from  Booch,  1991).

�51

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Class  diagrams

�52

Consignment

11..4

Waybill

Waybill item

1*

Physical

-UN number-Substance information-Handling instructions-Emergency procedures-Contact information

DG fact sheet-Statement-Name-Signature

Sender certificate Dangerous Goods Declaration

-Product name-UN number-Quantity-Packing

DGD item

1

*

Consignment documentation

Electronic

-Consignor-Consignee-Customer number

Order

-Type of goods-UN number-DG class-Substance number-Substance Name

Order Item

Weight VolumeLength Number of pallets

Size

1

*

1

*

1 *

1

*

Product

1

*

+Overpack()+Open()+Move()+Fill()+Empty()

-Weight-Size-Position

Pallet

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

+MoveTo(in NewX, in NewY, in NewZ)+LiftUp(in Distance)+PutDown()

Pallet-Height-Width-Depth-Weight-Pos-X-Pos-Y-Pos-Z

A class is a template for real-world objects

This is the class Pallet that represents all objects that share the same data structure.

The topmost cell contains the name

The middle cell contains the attributes

The bottom cell contains the operations

�53

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

The class Box.

�54

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

An object of the class Pallet can contain several objects of the class Box. The denotations 1 and * means that one pallet (1) may contain many (*) boxes.

�55

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation Image: Connected. 362/365 by AndYaDontStop on Flickr.com

Object-­‐orienta9on  is  applied  cyberne9cs!

When  looking  at  the  core  concepts  of  object-­‐orienta9on  there  is  a  clear  analogy  with  cyberne9cs

Very  few  people  have  made  that  connec9on  during  the  last  40  years!  

Why?

Different  disciplines  (Systems  science/Mathema9cs  vs  Computer  science) Some  advances  have  been  made  towards  a  combina9on,  but  these  are  few

�56

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation Image: Connected. 362/365 by AndYaDontStop on Flickr.com

Systems  theory Object-­‐orienta9onSystem  model ↔ Object  model

State ↔ State

Outbound  (display)  interface ↔ A6ributes

Inbound  (control)  interface ↔ Opera9ons

Black  Box ↔ Object

Trajectory ↔ Path  in  Statechart

Encapsula9on ↔ Encapsula9on

Abstrac9on ↔ Abstrac9on

Hierarchic  architecture ↔ Hierarchic  architecture

Transforma9on ↔ Object  behaviour

�57

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Advantages  of  using  object-­‐orienta9on

Visualisa9on

Consistent  framework Sta9c  structure

Dynamic  behaviour Sequences Use  cases

Etc.

Design

Analysis

Object-­‐oriented  analysis  facilitates  future  (re-­‐)design

�58

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Three  approaches

123�59

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Long-­‐term  control  scope 1Time-­‐span:  Years  to  months

Important  tasks: Define  the  data-­‐structure  of  the  top-­‐level  classes  of  the  system,  i.e.  the  interface  widths. Define  acceptable  data  ranges  for  these  classes,  i.e.  the  interface  depths. Define  acceptable  use  cases. Descrip9ve  complexity  is  reduced  

by  robust  design  

Driving  ques9ons: What  states  should  the  

system  be  able  to  assume? What  component  types  are  required  for  the  system  to  

assume  these  states?  

�60

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Medium-­‐term  control  scope 2Time-­‐span:  Months  to  weeks

Driving  ques9ons: What  components  are  needed  in  the  system? How  are  the  various  interfaces  designed?  

Important  tasks: Define  actual  use  cases. Define  interface  width  of  all  classes. Apply  constraints  to  reduce  interface  depth.  

Computa9onal  complexity  is  reduced  by  good  planning  

�61

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Short-­‐term  (real9me)  control  scope3Time-­‐span:  Weeks  to  minutes

Driving  ques9on: What  state  changes  should  

be  performed  and  how?  

Important  tasks: Control  the  actual  trajectory  as  it  progresses  through  the  state  space.  

Uncertainty-­‐based  complexity  is  reduced  by  crea9ng  order  

�62

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Examples

Focusing  on  interfaces

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

HETEROGENEOUS GOODS

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Arnäs, Woxenius – Approach for handling heterogeneous goods in intermodal freight networks – revisited, WCTR 2013

Heterogeneous goods leads to increased complexity

Image: http://sobar.soso.com/t/74147926?fl=29

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Heterogeneous goods leads to increased complexity

Image: http://sobar.soso.com/t/74147926?fl=29

Density Handling Stowability Liability

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

What  makes  some  goods  heterogeneous? Four  dimensions:

Difficulty  of  handling

Poor  stowability

Extended  liability

Low/high  density

�67

CC-­‐BY  Per  Olof  Arnäs,  LogisWkfokus

Market  place

Customer  Order  Point/Warehouse

Resellers

Customers

ProducWon/FactoriesWholesaler,  ”Supply  chain  manager”

Fries

Deep

 fryers

CC-BY Dr Logistics – Per Olof Arnäs  

drlogistics.se - @DrLogistics

CC-­‐BY  Per  Olof  Arnäs,  LogisWkfokus

Market  place

Customer  Order  Point/Warehouse

Resellers

Customers

ProducWon/FactoriesWholesaler,  ”Supply  chain  manager”

Fries

Deep

 fryers

CC-BY Dr Logistics – Per Olof Arnäs  

drlogistics.se - @DrLogistics

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

Short  reading  list

• Klir,  G.  J.  (1991)  Facets  of  systems  science,  Plenum  Press,  New  York.

• Booch,  G.  (1991)  Object  oriented  design  with  applica9ons,  Benjamin/Cummings  Pub.  Co.,  Redwood  City,  Calif.

• Ashby,  W.  R.  (1956)  An  introduc9on  to  Cyberne9cs,  Chapman  &  Hall  Ltd,  London.

• Beer,  S.  (1959)  Cyberne9cs  and  management,  English  UniversiWes  Press  ltd,  London.

• CasW,  J.  L.  (1989)  Alternate  reali9es  :  mathema9cal  models  of  nature  and  man,  Wiley,  New  York  ;  Chichester.

�70

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

PhD-­‐theses

• Hultén,  L.  A.  R.  (1997)  Container  logisWcs  and  its  management,  Department  of  Transporta9on  and  Logis9cs,  Chalmers  University  of  Technology,  Göteborg

• Franzén,  S.  E.  R.  (1999)  Public  transporta9on  in  a  systems  perspec9ve  :  a  conceptual  model  and  an  analy9cal  framework  for  design  and  evalua9on,  Chalmers  tekniska  högsk.,  Göteborg.

• Waidringer,  J.  (2001)  Complexity  in  transporta9on  and  logis9cs  systems  :  an  integrated  approach  to  modelling  and  analysis,  Chalmers  tekniska  högsk.,  Göteborg.

• Nilsson,  F.  (2005)  AdapWve  LogisWcs  -­‐  using  complexity  theory  to  facilitate  increased  effecWveness  in  logisWcs,  Department  of  Design  Sciences,  Lund  University,  Lund,  Sweden

• Arnäs,  P.  O.  (2007)  Heterogeneous  Goods  in  TransportaWon  Systems  -­‐  A  study  on  the  uses  of  an  object-­‐oriented  approach,  Doktorsavhandlingar  vid  Chalmers  tekniska  högskola.  Ny  serie,  2625,  Chalmers  University  of  Technology,  Göteborg

�71

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

+ =

The Internet first became available for Swedish consumers around 1993

A (bad and expensive) mix between Teletext and the Yellow Pages

Not very pretty

Few people with computers

And  finally…  

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

15 years later, in 2008, Google Flu Trends was launched

Based on what people google and where their computer is located

Ten days ahead of the official flu

tracker

www.google.org

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

How  will  we  use  the  technology  in  10  years?

We have no idea.

!

...and neither does she, but she will be dissatisfied with stuff that we think are

pure science fiction and almost magic.

almost

The girl and the iPad by Niclas Lindh on Flickr (CC-BY)

Per Olof Arnäs, Technology Management and Economics, Division of Logistics and Transportation

How  will  we  use  the  technology  in  10  years?

The girl and the iPad by Niclas Lindh on Flickr (CC-BY)

Thank  you!  !

Per  Olof  Arnäs  per-­‐olof.arnas@chalmers.se  

@Dr_PO

top related