coherent control of ultracold molecules [1ex]brumer & shapiro e i w 1 e f w 1 w 3 w 1 shapiro...

Post on 05-May-2021

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Coherent controlof ultracold molecules

Christiane P. Koch

Institut fur Theoretische Physik, Freie Universitat Berlin

Basics on Quantum Control Summer School, CargeseAugust 21, 2008

overview

introduction 1:ultracold molecules

introduction 2:coherent control

4 examples:

making ultracoldmolecules with laser light

shaping the potentialenergy surfaces

quantum informationwith ultracold molecules

cooling molecules

summary

introduction 1:ultracold molecules

what means ultracold?

ultracold: T ≤ 100µK a single quantum state(or very few)

Bose-

Einstein

condensation

why ultracold molecules

internal degrees of freedom, permant dipole moment

interesting applications:

molecular Bose-Einstein condensatequantum computer

I cold , little decoherence

precision measurements & tests offundamental symmetries

I cold , long observation times

why ultracold molecules

internal degrees of freedom, permant dipole moment

interesting applications:

example: precisionmeasurements

I ultracold Sr2 moleculesI time dependence ofµ = me/mp

∆µ

µ=

∆ν

ν

ν transition frequencies

Zelevinsky, Kotochigova, Ye,PRL 100, 043201 (2008)

why ultracold molecules

internal degrees of freedom, permant dipole moment

interesting applications:

molecular Bose-Einstein condensatequantum computer

I cold , little decoherence

precision measurements & test offundamental symmetries

I cold , long observation times

ultracold collisions / reactionsI cold , tunneling & resonances

coherent control

why ultracold molecules

internal degrees of freedom, permant dipole moment

interesting applications:

molecular Bose-Einstein condensatequantum computer

I cold , little decoherence

precision measurements & test offundamental symmetries

I cold , long observation times

ultracold collisions / reactionsI cold , tunneling & resonances

coherent control

introduction 2:coherent control

what means coherent control?

quantum mechanics , probabilistic,deterministic theory

|ψ(t = 0)〉 Schrodinger equation |ψ(t > 0)〉

For |ψ(t = 0)〉 given,

what dynamics (, what H)

guarantees a certain |ψ(t > 0)〉?

principle of coherent control

QM: matter ∼ waves superposition principle

Ψs =1√2φs(rA) +

1√2φs(rB)

Ψa =1√2φs(rA) − 1√

2φs(rB)

+1 = e2πi − 1 = eπi

manipulation of relative phases of different partialwavepackets control of interferences

principle of coherent control

QM: matter ∼ waves superposition principle

Ψs =1√2φs(rA) +

1√2φs(rB)

Ψa =1√2φs(rA) − 1√

2φs(rB)

+1 = e2πi − 1 = eπi

manipulation of relative phases of different partialwavepackets control of interferences

principle of coherent control

QM: matter ∼ waves superposition principle

Ψs =1√2φs(rA) +

1√2φs(rB)

Ψa =1√2φs(rA) − 1√

2φs(rB)

+1 = e2πi − 1 = eπi

manipulation of relative phases of different partialwavepackets control of interferences

what is a wavepacket?

|Ψ(t)〉 =∑

i

ci e− i

~Ei t︸ ︷︷ ︸ |ϕi〉

time-dependent phases

coordinate representation:

〈R |Ψ(t)〉 = Ψ(R , t) =∑

i

cie− i

~Ei tϕi(R)

wavepacket dynamicsjava applets

wavepacket dynamics

50 100 150 200 250

1.17

1.18

1.19

1.2x 10

4

Pot

entia

l ene

rgy

[ cm

−1 ]

Intramolecular distance [ a0 ]

t = 250.0 ps

control in time domainTannor & Rice

spatially localizedwavepackets

manipulation of phase, variation of ∆t

Baumert, Grosser, Thalweiser, Gerber, PRL 67, 3753 (1991)

control in time domainTannor & Rice

spatially localizedwavepackets

manipulation of phase, variation of ∆t

Baumert, Grosser, Thalweiser, Gerber, PRL 67, 3753 (1991)

coherent control

the classic examples

Brumer & Shapiro

Ei

ω1

Ef

ω1 ω3

ω1

Shapiro & Brumer: Principles ofQuantum Control of MolecularProcesses. Wiley 2003

Tannor & Rice

Brixner & Gerber

Physikal. Blatter, April 2001

STIRAP

Bergmann, Theuer, Shore

Rev. Mod. Phys. 70, 1003 (1998)

all realized experimentally in the 1990s

but there’s more to control: optimization

coherent control

the classic examples

Brumer & Shapiro

Ei

ω1

Ef

ω1 ω3

ω1

Shapiro & Brumer: Principles ofQuantum Control of MolecularProcesses. Wiley 2003

Tannor & Rice

Brixner & Gerber

Physikal. Blatter, April 2001

STIRAP

Bergmann, Theuer, Shore

Rev. Mod. Phys. 70, 1003 (1998)

all realized experimentally in the 1990s

but there’s more to control: optimization

optimal control

theory: inversion problem

find the ’potential’, which

generates the desired dynamics!

Ψ(t = t0)

Schrodinger equation

Ψ(t = t0 +T )

5 10 15 20 25 30 35internuclear distance [ a0 ]

5 6 7internuclear distance [ a0 ]

CPK, Palao, Kosloff, Masnou-Seeuws,

Phys. Rev. A 70, 013402 (2004)

experiment:feedback-loops

pulse shaper

experiment

algorithm

but: black-boxoptimization of oftencomplex systems

average over dofthermal average

ultracold atoms & molecules

optimal control

theory: inversion problem

find the ’potential’, which

generates the desired dynamics!

Ψ(t = t0)

Schrodinger equation

Ψ(t = t0 +T )

5 10 15 20 25 30 35internuclear distance [ a0 ]

5 6 7internuclear distance [ a0 ]

CPK, Palao, Kosloff, Masnou-Seeuws,

Phys. Rev. A 70, 013402 (2004)

experiment:feedback-loops

pulse shaper

experiment

algorithm

but: black-boxoptimization of oftencomplex systems

average over dofthermal average

ultracold atoms & molecules

optimal control

theory: inversion problem

find the ’potential’, which

generates the desired dynamics!

Ψ(t = t0)

Schrodinger equation

Ψ(t = t0 +T )

5 10 15 20 25 30 35internuclear distance [ a0 ]

5 6 7internuclear distance [ a0 ]

CPK, Palao, Kosloff, Masnou-Seeuws,

Phys. Rev. A 70, 013402 (2004)

experiment:feedback-loops

pulse shaper

experiment

algorithm

but: black-boxoptimization of oftencomplex systems

average over dofthermal average

ultracold atoms & molecules

example 1:

making ultracold moleculeswith laser light

formation of ultracold moleculeslaser cooling does not work for molecules (to date)!

alternative cooling methods T & 30 mK

laser & evaporative cooling of atoms, then

photoassociation

10 20 30 40Interatomic distance R (a0)

−400

−200

0

200

11000

11200

11400

11600

11800

X1Σg+

λPA

Ene

rgy

(cm

−1)

Cs(6s)+Cs(6s)

1u

a3Σu+

0u+

0g−

Cs(6s)+Cs(6p3/2)

(i)(ii)(iii)

1g

Feshbach resonances

T ∼ 10 nK . . . 100 µK

formation of ultracold molecules

photoassociation

general (opticaltransitions)

first µK molecules

but spontaneous emission↔ coherence of BEC

Feshbach resonancesfirst molecules fromatomic BEC

first molecular BEC

but not generally availablenot generally feasible

high vibrational

excitation, J ∼> 0

5 10 15 20 25 30 35internuclear distance [ a0 ]

Na2, X 1Σ+g

v = 62

(vlast = 65)

1 can we find an optical analogon of magneticFeshbach resonances?

2 what about coherent photoassociation?

3 how do we get ’true’ molecules?

optical Feshbach resonances

d

2 atoms at the same site of an optical lattice

optical Feshbach resonancesCPK, Masnou-Seeuws, Kosloff, Phys. Rev. Lett. 94, 193001 (2005)

0 200 400 600 800internuclear distance R [ Å ]

0

0.002

| ϕ (R

) |2

I = 0

first trap level (ground state potential)

optical Feshbach resonancesCPK, Masnou-Seeuws, Kosloff, Phys. Rev. Lett. 94, 193001 (2005)

0 100 200 300 400R [ Å ]

0

0.01

| ϕ (R

) |2

I = 3 kW/cm2

I = 5 kW/cm2

I = 8 kW/cm2

∆L = 0.425 cm-1

0 200 400 600 800internuclear distance R [ Å ]

0

0.002

| ϕ (R

) |2

I = 0

0 100 200 300 400R [ Å ]

0

0.001

| ϕ (R

) |2

first trap level (ground state potential)ground state part of the

(1)

field−dressed wave functions

excited state part of the field−dressed wave function

optical Feshbach resonancesCPK, Masnou-Seeuws, Kosloff, Phys. Rev. Lett. 94, 193001 (2005)

0 100 200 300 400R [ Å ]

0

0.01

| ϕ (R

) |2

I = 3 kW/cm2

I = 5 kW/cm2

I = 8 kW/cm2

∆L = 0.425 cm-1

0 200 400 600 800internuclear distance R [ Å ]

0

0.002

| ϕ (R

) |2

I = 0

0 100 200 300 400R [ Å ]

0

0.001

| ϕ (R

) |2

decay by spontaneous emission

first trap level (ground state potential)ground state part of the

(1)

field−dressed wave functions

excited state part of the field−dressed wave function

optical Feshbach resonancesCPK, Masnou-Seeuws, Kosloff, Phys. Rev. Lett. 94, 193001 (2005)

0 100 200 300 400R [ Å ]

0

0.01

| ϕ (R

) |2

I = 3 kW/cm2

I = 5 kW/cm2

I = 8 kW/cm2

∆L = 0.425 cm-1

0 100R [ Å ]

0

0.01

| ϕ (R

) |2

I = 0

0 200 400 600 800internuclear distance R [ Å ]

0

0.002

| ϕ (R

) |2

I = 0

0 100 200 300 400R [ Å ]

0

0.001

| ϕ (R

) |2

decay by spontaneous emission

first trap level (ground state potential)ground state part of thelast level

stable molecule

(2) (1)

field−dressed wave functions

excited state part of the field−dressed wave function

Feshbach resonance due to intensity

when crossing theresonance, the lowest trapstate / continuum statebecomes a bound state

0 2 4 6 8 10 12Laser intensity [kW/cm2]

-3×10-4

-2×10-4

-1×10-4

0

Ene

rgy

[cm

-1]

0 1000 2000 3000 4000 5000internuclear distance R [a0]

|Ψ(R

)|2

I = 0, lowest trap stateI = 1 kW/cm2

I = 2 kW/cm2 (just above resonance)

I = 3 kW/cm2 (just below resonance)

I = 4 kW/cm2

∆L = -4.225 cm-1

Feshbach resonance due to intensity

when crossing theresonance, the lowest trapstate / continuum statebecomes a bound state

0 2 4 6 8 10 12Laser intensity [kW/cm2]

-3×10-4

-2×10-4

-1×10-4

0

Ene

rgy

[cm

-1]

0 1000 2000 3000 4000 5000internuclear distance R [a0]

|Ψ(R

)|2

I = 0, lowest trap stateI = 1 kW/cm2

I = 2 kW/cm2 (just above resonance)

I = 3 kW/cm2 (just below resonance)

I = 4 kW/cm2

∆L = -4.225 cm-1

Feshbach resonance due to intensity

when crossing theresonance, the lowest trapstate / continuum statebecomes a bound state

0 2 4 6 8 10 12Laser intensity [kW/cm2]

-3×10-4

-2×10-4

-1×10-4

0

Ene

rgy

[cm

-1]

0 200 400 600 800 1000internuclear distance R [a0]

|Ψ(R

)|2

I = 0, last bound level

I = 11 kW/cm2

I = 8 kW/cm2

I = 6 kW/cm2

I = 4 kW/cm2

∆L = -4.225 cm-1

0 1000 2000 3000 4000 5000internuclear distance R [a0]

|Ψ(R

)|2

I = 0, lowest trap stateI = 1 kW/cm2

I = 2 kW/cm2 (just above resonance)

I = 3 kW/cm2 (just below resonance)

I = 4 kW/cm2

∆L = -4.225 cm-1

optical Feshbach resonances

0 100 200 300 400R [ Å ]

0

0.01

| ϕ (R

) |2

I = 3 kW/cm2

I = 5 kW/cm2

I = 8 kW/cm2

∆L = 0.425 cm-1

0 100R [ Å ]

0

0.01

| ϕ (R

) |2

I = 0

0 200 400 600 800internuclear distance R [ Å ]

0

0.002

| ϕ (R

) |2

I = 0

0 100 200 300 400R [ Å ]

0

0.001

| ϕ (R

) |2

decay by spontaneous emission

first trap level (ground state potential)ground state part of thelast level

stable molecule

(2) (1)

field−dressed wave functions

excited state part of the field−dressed wave function

can we switch on the laser adiabaticallywhile avoiding spontaneous emission?

gain vs loss

projection :〈φbare|ϕdressed〉.= sudden switchoff of fieldgain

510

1520

2530

3540

−4.34−4.32

−4.3−4.28

−4.26−4.24

−4.22−4.2

0

0.2

0.4

0.6

Detuning [ cm−1 ]Intensity [ kW/cm2 ]

Pro

ject

ion

on la

st b

ound

sta

te

excited state partPexc = 〈e|ϕdressed〉.

= lifetime of |ϕdressed〉loss

510

1520

2530

3540

−4.34−4.32

−4.3−4.28

−4.26−4.24

−4.22−4.2

0.01

0.02

0.03

0.04

0.05

Detuning [ cm−1 ]Intensity [ kW/cm2 ]

Exc

ited

stat

e po

pula

tion

gain vs loss

projection :〈φbare|ϕdressed〉.= sudden switchoff of fieldgain

510

1520

2530

3540

−4.34−4.32

−4.3−4.28

−4.26−4.24

−4.22−4.2

0

0.2

0.4

0.6

Detuning [ cm−1 ]Intensity [ kW/cm2 ]

Pro

ject

ion

on la

st b

ound

sta

te

excited state partPexc = 〈e|ϕdressed〉.

= lifetime of |ϕdressed〉loss

510

1520

2530

3540

−4.34−4.32

−4.3−4.28

−4.26−4.24

−4.22−4.2

0.01

0.02

0.03

0.04

0.05

Detuning [ cm−1 ]Intensity [ kW/cm2 ]

Exc

ited

stat

e po

pula

tion

timescalesconstraint of adiabaticity

T Tad =~

E groundtrap

νtrap = 5 kHz,

E groundtrap ≈ 1.7 · 10−4 cm−1

Tad ≈ 3000 nsνtrap = 250 kHz,

E groundtrap ≈ 1.3 · 10−3 cm−1

Tad ≈ 45 ns

constraint of spont. emission

T Tspont =τatom√2Pdressed

exc

i.e. gain a factor 100 w.r.t.τatom ≈ 30 ns by choosingthe adiabatic path right!

Tspont ≈ 3000 ns

There is a time window allowing the adiabatic formation of

molecules via an optical Feshbach resonance while avoiding

spontaneous emission for sufficiently tight traps!

timescalesconstraint of adiabaticity

T Tad =~

E groundtrap

νtrap = 5 kHz,

E groundtrap ≈ 1.7 · 10−4 cm−1

Tad ≈ 3000 nsνtrap = 250 kHz,

E groundtrap ≈ 1.3 · 10−3 cm−1

Tad ≈ 45 ns

constraint of spont. emission

T Tspont =τatom√2Pdressed

exc

i.e. gain a factor 100 w.r.t.τatom ≈ 30 ns by choosingthe adiabatic path right!

Tspont ≈ 3000 ns

There is a time window allowing the adiabatic formation of

molecules via an optical Feshbach resonance while avoiding

spontaneous emission for sufficiently tight traps!

timescalesconstraint of adiabaticity

T Tad =~

E groundtrap

νtrap = 5 kHz,

E groundtrap ≈ 1.7 · 10−4 cm−1

Tad ≈ 3000 nsνtrap = 250 kHz,

E groundtrap ≈ 1.3 · 10−3 cm−1

Tad ≈ 45 ns

constraint of spont. emission

T Tspont =τatom√2Pdressed

exc

i.e. gain a factor 100 w.r.t.τatom ≈ 30 ns by choosingthe adiabatic path right!

Tspont ≈ 3000 ns

There is a time window allowing the adiabatic formation of

molecules via an optical Feshbach resonance while avoiding

spontaneous emission for sufficiently tight traps!

timescalesconstraint of adiabaticity

T Tad =~

E groundtrap

νtrap = 5 kHz,

E groundtrap ≈ 1.7 · 10−4 cm−1

Tad ≈ 3000 nsνtrap = 250 kHz,

E groundtrap ≈ 1.3 · 10−3 cm−1

Tad ≈ 45 ns

constraint of spont. emission

T Tspont =τatom√2Pdressed

exc

i.e. gain a factor 100 w.r.t.τatom ≈ 30 ns by choosingthe adiabatic path right!

Tspont ≈ 3000 ns

There is a time window allowing the adiabatic formation of

molecules via an optical Feshbach resonance while avoiding

spontaneous emission for sufficiently tight traps!

time-dep. simulations: ν = 250 kHzramps of field amplitude & frequency (final I = 8 kW/cm2 )

0

1

2

E(t

) [ 1

05 V/m

]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

| < Ψ

(t) |

ϕvba

re >

|2

-4.32-4.28-4.24

∆L [ cm

-1 ]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

Population

time-dep. simulations: ν = 250 kHzramps of field amplitude & frequency (final I = 8 kW/cm2 )

0

1

2

E(t

) [ 1

05 V/m

]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

| < Ψ

(t) |

ϕvba

re >

|2

-4.32-4.28-4.24

∆L [ cm

-1 ]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

Population

total population

time-dep. simulations: ν = 250 kHzramps of field amplitude & frequency (final I = 8 kW/cm2 )

0

1

2

E(t

) [ 1

05 V/m

]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

| < Ψ

(t) |

ϕvba

re >

|2

first trap state

-4.32-4.28-4.24

∆L [ cm

-1 ]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

Population

total population

time-dep. simulations: ν = 250 kHz

ramps of field amplitude & frequency (final I = 8 kW/cm2 )

0

1

2

E(t

) [ 1

05 V/m

]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

| < Ψ

(t) |

ϕvba

re >

|2

first trap statesecond trap statethird trap statefourth trap state

-4.32-4.28-4.24

∆L [ cm

-1 ]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

Population

total population

time-dep. simulations: ν = 250 kHz

ramps of field amplitude & frequency (final I = 8 kW/cm2 )

0

1

2

E(t

) [ 1

05 V/m

]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

| < Ψ

(t) |

ϕvba

re >

|2

last bound levelfirst trap statesecond trap statethird trap statefourth trap state

-4.32-4.28-4.24

∆L [ cm

-1 ]

0 20 40 60 80 100 120 140 160time [ ns ]

0

0.2

0.4

0.6

0.8

1

Population

total population

coherent photoassociation

atoms in a MOT thermal ensemble

0 50 100 150 200 250 300 350 400internuclear distance [ a

0 ]

0

5×10-13

1×10-12

ther

mal

den

sity

ρT

,box

[ a

0-3 ]

50 µK

0 4000 8000 12000 160000

5×10-13

1×10-12

PA is difficult

cold thermal ensemblecold collisions: s-wave

0 100 200 300

0 2000 4000 6000 8000 10000internuclear distance [ Å ]

T ≈ 50 µKT ≈ 80 µK

CPK, Kosloff, Luc-Koenig, Masnou-Seeuws, Crubellier, J Phys B 39, S1017 (2006)

’pump’-’dump’ photoassociation

making molecules with photoassociation:cw vs short pulses

10 20 30 40Interatomic distance R (a0)

−400

−200

0

200

11000

11200

11400

11600

11800

X1Σg+

λPA

Ene

rgy

(cm

−1)

Cs(6s)+Cs(6s)

1u

a3Σu+

0u+

0g−

Cs(6s)+Cs(6p3/2)

(i)(ii)(iii)

1g

Masnou-Seeuws & Pillet, Adv. At. Mol. Opt. Phys. 47, 53 (2001)

spontaneous emission

time-reversal symmetry

11700

11800

11900

Ene

rgy

[ cm

-1 ]

20 40 60 80 100 120internuclear distance [ units of Bohr radius a

0 ]

-200

-100

0

100

tP + 135 ps

tP + 40 ps

tP + 250 ps

t = 0

tP + 40 ps

CPK, Luc-Koenig, Masnou-Seeuws, PRA 73, 033408 (2006)

’pump’-’dump’ photoassociation

making molecules with photoassociation:cw vs short pulses

10 20 30 40Interatomic distance R (a0)

−400

−200

0

200

11000

11200

11400

11600

11800

X1Σg+

λPA

Ene

rgy

(cm

−1)

Cs(6s)+Cs(6s)

1u

a3Σu+

0u+

0g−

Cs(6s)+Cs(6p3/2)

(i)(ii)(iii)

1g

Masnou-Seeuws & Pillet, Adv. At. Mol. Opt. Phys. 47, 53 (2001)

spontaneous emission

time-reversal symmetry

11700

11800

11900

Ene

rgy

[ cm

-1 ]

20 40 60 80 100 120internuclear distance [ units of Bohr radius a

0 ]

-200

-100

0

100

tP + 135 ps

tP + 40 ps

tP + 250 ps

t = 0

tP + 40 ps

CPK, Luc-Koenig, Masnou-Seeuws, PRA 73, 033408 (2006)

why is making molecules possible?

0 1000 2000 3000 4000 5000 6000 7000internuclear distance [ units of Bohr radii ]

1 / R3 E

b = 6 x 10

-5 cm

-1

why is making molecules possible?

0 50 100 150 200 250internuclear distance [ units of Bohr radii ]

1 / R3 E

b = 1 cm

-1

why is making molecules possible?

0 20 40 60 80 100 120 140 160internuclear distance [ units of Bohr radii ]

1 / R3 E

b = 4 cm

-1

coherent photoassociation?

what is differentfrom previouspump-probeschemes?

initial state

timescales

y bandwidths

11700

11800

11900

Ene

rgy

[ cm

-1 ]

20 40 60 80 100 120internuclear distance [ units of Bohr radius a

0 ]

-200

-100

0

100

tP + 135 ps

tP + 40 ps

tP + 250 ps

t = 0

tP + 40 ps

CPK, Luc-Koenig, Masnou-Seeuws, PRA 73, 033408 (2006)

coherent photoassociation?

what is differentfrom previouspump-probeschemes?

initial state

timescales

y bandwidths

11700

11800

11900

Ene

rgy

[ cm

-1 ]

20 40 60 80 100 120internuclear distance [ units of Bohr radius a

0 ]

-200

-100

0

100

tP + 135 ps

tP + 40 ps

tP + 250 ps

t = 0

tP + 40 ps

CPK, Luc-Koenig, Masnou-Seeuws, PRA 73, 033408 (2006)

choice of pulses

role of laser detuning and spectral bandwidth

projection of Ψexc(R, tfinal) auf Vibrationsniveaus von He(R), 87Rb2

0 5 10 15 20 25binding energy [ cm-1 ]

0

5×10-6

proj

ectio

n

τP = 7 psτP = 5 ps

∆P = 5.97 cm-1

∆P = 8.57 cm-1

∆P = 22.1 cm-1

narrow band pulses

CPK, Kosloff, Masnou-Seeuws, PRA 73, 043409 (2006)

choice of pulses

role of laser detuning and spectral bandwidth

projection of Ψexc(R, tfinal) auf Vibrationsniveaus von He(R), 87Rb2

0 5 10 15 20 25binding energy [ cm

-1 ]

0

5×10-6

proj

ectio

n

τP = 7 ps

τP = 5 ps

∆P = 5.97 cm

-1

∆P = 8.57 cm

-1

∆P = 22.1 cm

-1

narrow band pulsesCPK, Kosloff, Masnou-Seeuws, PRA 73, 043409 (2006)

choice of pulses

role of laser detuning, spectral bandwidth & intensity

ground state wavefunction after the pulse

0

5×10-6

τP = 7 ps

τP = 5 ps

0

5×10-6

| Ψ (

R;t)

|2 [ a

rbitr

ary

units

]

20 40 60 80 100 120internuclear distance R [ units of Bohr radii a

0 ]

0

5×10-6

∆P = 5.97 cm

-1

∆P = 8.57 cm

-1

∆P = 22.1 cm

-1

CPK, Kosloff, Masnou-Seeuws, PRA 73, 043409 (2006)

photoassociation dynamics

50 100 150 200 250

1.17

1.18

1.19

1.2x 10

4

Pot

entia

l ene

rgy

[ cm

−1 ]

Intramolecular distance [ a0 ]

t = 250.0 ps

0100

200300

400 010

2030

4050

0

0.5

1

1.5

2

x 10−5

Ground state levelTime [ ps ]

Ove

rlap time-dependent

Franck-Condon factorspump-dump-delay

open questions: PA with pulses

10 20 30

internuclear distance R [ a0 ]

-1000

0

ener

gy [

cm

-1 ]

R transfer ?

bandwidth ?

first experiments

Salzmann et al., PRL 100, 233003 (2008)

et al. = . . . Fabian Weise . . .

11700

11800

11900

Ene

rgy

[ cm

-1 ]

20 40 60 80 100 120internuclear distance [ units of Bohr radius a

0 ]

-200

-100

0

100

tP + 135 ps

tP + 40 ps

t = 0

tP + 40 ps

v = 14

open questions: PA with pulses

10 20 30

internuclear distance R [ a0 ]

-1000

0

ener

gy [

cm

-1 ]

R transfer ?

bandwidth ?

first experiments

Salzmann et al., PRL 100, 233003 (2008)

et al. = . . . Fabian Weise . . .

11700

11800

11900

Ene

rgy

[ cm

-1 ]

20 40 60 80 100 120internuclear distance [ units of Bohr radius a

0 ]

-200

-100

0

100

tP + 135 ps

tP + 40 ps

t = 0

tP + 40 ps

v = 14

example 2:

laser induced resonance

or

shaping the potentialenergy surfaces

is the pump-dump scheme general?the perfect example: Cs2 0−g (P3/2)

1. excitation (pump)

20 40 60 80 100 120internuclear distance [ a

0 ]

11700

11800

11900

Ene

rgy

[ cm

-1 ]

at long range : 1/R3

(small ∆P)

2. stabilization (dump)

20 40 60 80 100 120internuclear distance [ a

0 ]

11700

11800

11900

Ene

rgy

[ cm

-1 ]

at short range :−1/R3 (∆D < 0)

efficiency of process

two possible dump mechanismssoftly repulsive wall

12800

12850

20 40 60 80 100internuclear distance [ a

0 ]

-200

-100

0ener

gy [

cm

-1 ]

0g

-

1g

a3Σ

u

+

resonant coupling

see also: Dion, Drag, Dulieu, Laburthe Tolra, Masnou-Seeuws, Pillet, PRL 86, 2253 (2001)

two possible dump mechanismssoftly repulsive wall

12800

12850

20 40 60 80 100internuclear distance [ a

0 ]

-200

-100

0ener

gy [

cm

-1 ]

0g

-

1g

a3Σ

u

+

resonant coupling

5000

10000

20 40internuclear distance [ a

0 ]

-4000

-2000

0ener

gy [

cm

-1 ]

0u

+

X1Σ

g

+

see also: Dion, Drag, Dulieu, Laburthe Tolra, Masnou-Seeuws, Pillet, PRL 86, 2253 (2001)

resonant vs non-res. SO coupling

10 20 30 40 50internuclear distance [ a

0 ]

6000

8000

10000

12000

ener

gy [

cm

-1 ]

0u

+

b3Π

u

A1Σ

u

10 20 30 40 50internuclear distance [ a

0 ]

10000

11000

12000

13000

energy [ cm-1 ]

1g

3Πg

1Πg

3Σg

potentials and dipole moments : M. Aymar & O. Dulieu (Laboratoire Aime Cotton, Orsay)

resonant coupling

-9.0

7

-13.

7

-35 -30 -25 -20 -15 -10 -5 0binding energy [ cm

-1 ]

0

2×10-3

4×10-3

6×10-3

rota

tiona

l con

stan

t [ a

.u. ]

0

1×10-1

2×10-1

110 112 114 116 118 120 122ground state vibrational level v’’

0

1×10-1

2×10-1

Fran

ck-C

ondo

n fa

ctor

Ebind

exc = 9.07 cm

-1

Ebind

exc = 13.7 cm

-1

comparison theory-experiment

Pechkis, Wang, Eyler, Gould, Stwalley, CPK, PRA 76, 022504 (2007)

resonant coupling

-9.0

7

-13.

7

-35 -30 -25 -20 -15 -10 -5 0binding energy [ cm

-1 ]

0

2×10-3

4×10-3

6×10-3

rota

tiona

l con

stan

t [ a

.u. ]

0

1×10-1

2×10-1

110 112 114 116 118 120 122ground state vibrational level v’’

0

1×10-1

2×10-1

Fran

ck-C

ondo

n fa

ctor

Ebind

exc = 9.07 cm

-1

Ebind

exc = 13.7 cm

-1

comparison theory-experiment

Pechkis, Wang, Eyler, Gould, Stwalley, CPK, PRA 76, 022504 (2007)

stabilization to the ground state?

time-dependent FC factors

0+u

200400

600 −15−10

−5

5

10

15

x 10−6

Energy [ cm−1 ]Time [ ps ]

Proj

ectio

n

1g

100200

300400 −6

−4−2

2468

x 10−7

Energy [ cm−1 ]Time [ ps ]Pr

ojec

tion

∆P = 4.1 cm−1

CPK, Kosloff, Masnou-Seeuws, PRA 73, 043409 (2006)

dynamics with resonant SO coupling

10000

15000

3Πu(5s+5p)

t = −24.0 ps

10000

15000

Pot

entia

l ene

rgy

[ cm

−1 ]

1Σu(5s+5p)

0 25 50 75 100 125 150−4000

0

4000

Intramolecular distance [ a0 ]

1Σg(5s+5s)

dynamics w/o resonant SO coupling

12000

13000

14000

3Σg(5s+5p)

t = −24.0 ps

12000

13000

14000

Pot

entia

l ene

rgy

[ cm

−1 ]

1Πg(5s+5p)

12000

13000

14000

3Πg(5s+5p)

0 25 50 75 100 125 150−200

0

200

Intramolecular distance [ a0 ]

3Σu(5s+5s)

stabilization to the ground statewith resonant spin-orbit coupling

0 20 40 60 80 100 120 140pulse energy [ nJ ]

0

0.2

0.4

0.6po

pula

tion

Pg

Pbound

10 20 30 40internuclear distance R [ a

0 ]

0

0.02

0.04

0.06

| Ψg (

R;t fi

nal)

|2 [ a

rb. u

. ]

-20 -15 -10 -5 0

energy [ cm-1

]

0

0.1

0.2

0.3

0.4

0.5

proj

ectio

n8.5 nJ

53 nJ8.5 nJ

route to v = 0 (generic case) : OCTstrong fields and / or many Raman transitions

0

0.2

0.4

0.6

0.8

1

Popu

latio

n

0 500 1000 1500 2000time [fs]

0

0.2

0.4

0.6

0.8

1ν = 62

ν = 0

excited state

ground state

example: Na2, vinitial = 62 (vlast = 65)

potentials: Tiemann group PRA (2000), Z Phys D (1996)

required pulse energy ∼ 4mJ

Koch, Palao, Kosloff, Masnou-Seeuws, PRA 70, 013402 (2004)

see also: Pe’er, Shapiro, Stowe, Shapiro, Ye, PRL 98, 113004 (2006)

can we do better?

route to v = 0 (generic case) : OCTstrong fields and / or many Raman transitions

0

0.2

0.4

0.6

0.8

1

Popu

latio

n

0 500 1000 1500 2000time [fs]

0

0.2

0.4

0.6

0.8

1ν = 62

ν = 0

excited state

ground state

example: Na2, vinitial = 62 (vlast = 65)

potentials: Tiemann group PRA (2000), Z Phys D (1996)

required pulse energy ∼ 4mJ

Koch, Palao, Kosloff, Masnou-Seeuws, PRA 70, 013402 (2004)

see also: Pe’er, Shapiro, Stowe, Shapiro, Ye, PRL 98, 113004 (2006)

can we do better?

field-induced resonant couplingin collaboration with R. Moszynski

5000

10000

15000

20000

25000

ener

gy [

cm-1

]

5 10 15 20 25 30internuclear distance R [ Bohr radii ]

-1000

-500

0

500

50 100 150

Ca2 X1Σg

+

Ca2 B1Σu

+

field-induced resonant couplingin collaboration with R. Moszynski

5000

10000

15000

20000

25000

ener

gy [

cm-1

]

5 10 15 20 25 30internuclear distance R [ Bohr radii ]

-1000

-500

0

500

50 100 150

Ca2 X1Σg

+

Ca2 (1)1Πg

Ca2 B1Σu

+

field-induced resonant couplingin collaboration with R. Moszynski

5000

10000

15000

20000

25000

ener

gy [

cm-1

]

5 10 15 20 25 30internuclear distance R [ Bohr radii ]

-1000

-500

0

500

50 100 150

coupling

field-induced resonant couplingin collaboration with R. Moszynski

5000

10000

15000

20000

25000

ener

gy [

cm-1

]

5 10 15 20 25 30internuclear distance R [ Bohr radii ]

-1000

-500

0

500

50 100 150

pump

coupling

field-induced resonant couplingin collaboration with R. Moszynski

5000

10000

15000

20000

25000

ener

gy [

cm-1

]

5 10 15 20 25 30internuclear distance R [ Bohr radii ]

-1000

-500

0

500

50 100 150

pump

coupling

wavepacket motion

field-induced resonant couplingin collaboration with R. Moszynski

5000

10000

15000

20000

25000

ener

gy [

cm-1

]

5 10 15 20 25 30internuclear distance R [ Bohr radii ]

-1000

-500

0

500

50 100 150

pump

dump

coupling

wavepacket motion

field-induced resonant couplingin collaboration with R. Moszynski

5000

10000

15000

20000

25000e

ne

rgy [

cm

-1 ]

5 10 15 20 25 30

internuclear distance R [ Bohr radii ]

-1000-500

0500

50 100 150

pump

dump

coupling

wavepacket motion

field-induced resonant couplingin collaboration with R. Moszynski

ener

gy

internuclear distance R

pump

dump

coupling

wavepacket motion

when is the coupling resonant?

20 40 60internuclear distance [ a

0 ]

12400

12800

13200

ener

gy

[ c

m-1

]

0u

+( A

1Σu

+ )

0u

+( b

3Πu )

Ebind

= 9.07 cm-1

H =

(T + V1(R) W

W T + V2(R)

)

spin-orbit coupling:

W = VSO(R) −→ 237.6 cm−1

for Rb

field-induced coupling:

W = ~Ω =1

2µ(R) · E (t)

if µ(R) ∼ 1 at.u.then E0 ∼ 1.0× 107 V/cm

I ∼ 1.4× 1011 W/cm2

when is the coupling resonant?

20 40 60internuclear distance [ a

0 ]

12400

12800

13200

ener

gy

[ c

m-1

]

0u

+( A

1Σu

+ )

0u

+( b

3Πu )

Ebind

= 9.07 cm-1

H =

(T + V1(R) W

W T + V2(R)

)

spin-orbit coupling:

W = VSO(R) −→ 237.6 cm−1

for Rb

field-induced coupling:

W = ~Ω =1

2µ(R) · E (t)

if µ(R) ∼ 1 at.u.then E0 ∼ 1.0× 107 V/cm

I ∼ 1.4× 1011 W/cm2

res. coupling & photoassociation

coupling needs to be comparable to levelspacings

-5000 -4000 -3000 -2000 -1000 0

binding energy [ cm-1

]

1×10-6

1×10-4

1×10-2

1×100

1×102

leve

l sp

ac

ing

[ c

m-1

]

-30 -20 -10 0

1×10-6

1×10-4

1×10-2

1×100

Ca2 B

1Σu

+

level spacings drop to ∼ 1 cm−1 in range of PA detunings

res. coupling & photoassociation

coupling needs to be comparable to levelspacings

-5000 -4000 -3000 -2000 -1000 0

binding energy [ cm-1

]

1×10-6

1×10-4

1×10-2

1×100

1×102

leve

l sp

ac

ing

[ c

m-1

]

-30 -20 -10 0

1×10-6

1×10-4

1×10-2

1×100

Ca2 B

1Σu

+

level spacings drop to ∼ 1 cm−1 in range of PA detunings

minimal model for Ca2

HCa2 =

0BBBBBBBBBB@

HX1Σ+

g (1S+1S)µ12(R) · E1(t) 0 0 0

µ12(R) · E∗1 (t) HB1Σ+

u (1P+1S)µ23(R) · E2(t) 0 0

0 µ23(R) · E∗2 (t) H(1)1Πg (1D+1S)

ξ(R) 0

0 0 ξ(R) H(1)3Σ+

g (3P+1S)ζ(R)

0 0 0 ζ(R) H(1)3Πg (3P+1S)

1CCCCCCCCCCA

10 20internuclear distance [ Bohr radii ]

0

5000

10000

15000

20000

25000

ener

gy

[ c

m-1

]

1 1S+

1S

1P+

1S

1D+

1S

3P+

1S

23

4

50

1

2

3

4

dip

ole [ cm

-1 ]

µ12

µ23

WSO

34

WSO

45

10 200

10

20

30

SO

cou

plin

g [ cm

-1 ]

choice of coupling laserI = 3.5× 108 W/cm2 −3.2× 109 W/cm2

ω2 = 11351 cm−1 (881 nm) y target X1Σ+g level: v ′′ = 1

-10 0 10time [ ns ]

0

25

50

E(t) [ M

V/

m ]

coupling

du

mp

pu

mp

ener

gy

internuclear distance R

pump

dump

coupling

wavepacket motion

10 ns pulse isconstant on

timescale of 100 ps

feasible & robust

CPK & Moszynski, submitted

choice of coupling laserI = 3.5× 108 W/cm2 −3.2× 109 W/cm2

ω2 = 11351 cm−1 (881 nm) y target X1Σ+g level: v ′′ = 1

-10 0 10time [ ns ]

0

25

50

E(t) [ M

V/

m ]

coupling

du

mp

pu

mp

ener

gy

internuclear distance R

pump

dump

coupling

wavepacket motion

10 ns pulse isconstant on

timescale of 100 ps

feasible & robustCPK & Moszynski, submitted

dynamics w/ induced res. coupling

photoassociation (pump) pulse

0 20 40 60 80 100 120 140 1600

5

x 10−5

B1Σu+

0 20 40 60 80 100 120 140 1600

1

2

x 10−4

(1)1Πg

0 20 40 60 80 100 120 140 1600

5

x 10−5

Intramolecular distance [ a0 ]

X1Σg+

dynamics w/ induced res. coupling

stabilization (dump) pulse

0 20 40 60 80 100 120 140 1600

0.05

0.1B1Σ

u+

t = 93.0 ps

0 20 40 60 80 100 120 140 1600

0.1

0.2(1)1Π

g

0 20 40 60 80 100 120 140 1600

1

2x 10

−3

Intramolecular distance [ a0 ]

X1Σg+

how many molecules?

10 100 1000 10000pulse energy [ nJ ]

1×10-6

1×10-4

1×10-2

tran

sfer

pro

bab

ilit

y

Ic = 5.6 x 10

9 W/cm

2

10 100 1000 10000pulse energy [ nJ ]

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

tran

sfer

pro

bab

ilit

y

Ic = 3.2 x 10

9 W/cm

2

Ic = 1.4 x 10

9 W/cm

2

typical MOT conditions: Nmol = 12.5, 10 kHz rep.rate: 1 mol/ms

accumulate molecules over many pump-dump cycles

employ dissipation to achieve

unidirectionality

collisional decay to v = 0 within 1 ms if

ρ ∼ 10−13 cm−3

can be improved: flux enhancement & speed up of decay

how many molecules?

10 100 1000 10000pulse energy [ nJ ]

1×10-6

1×10-4

1×10-2

tran

sfer

pro

bab

ilit

y

Ic = 5.6 x 10

9 W/cm

2

10 100 1000 10000pulse energy [ nJ ]

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

tran

sfer

pro

bab

ilit

y

Ic = 3.2 x 10

9 W/cm

2

Ic = 1.4 x 10

9 W/cm

2

typical MOT conditions: Nmol = 12.5, 10 kHz rep.rate: 1 mol/ms

accumulate molecules over many pump-dump cycles

employ dissipation to achieve

unidirectionality

collisional decay to v = 0 within 1 ms if

ρ ∼ 10−13 cm−3

can be improved: flux enhancement & speed up of decay

how many molecules?

10 100 1000 10000pulse energy [ nJ ]

1×10-6

1×10-4

1×10-2

tran

sfer

pro

bab

ilit

y

Ic = 5.6 x 10

9 W/cm

2

10 100 1000 10000pulse energy [ nJ ]

1×10-6

1×10-5

1×10-4

1×10-3

1×10-2

tran

sfer

pro

bab

ilit

y

Ic = 3.2 x 10

9 W/cm

2

Ic = 1.4 x 10

9 W/cm

2

typical MOT conditions: Nmol = 12.5, 10 kHz rep.rate: 1 mol/ms

accumulate molecules over many pump-dump cycles

employ dissipation to achieve

unidirectionality

collisional decay to v = 0 within 1 ms if

ρ ∼ 10−13 cm−3

can be improved: flux enhancement & speed up of decay

field-induced resonant coupling’shaping’ the potentials

ener

gy

internuclear distance R

pump

dump

coupling

wavepacket motion

-10 0 10time [ ns ]

0

25

50coupling

du

mp

pu

mpa b

c

qualitative & substantial change of dynamics

implementing resonance phenomenon of coldmolecules via coherent control

acknowledgements

people

work on alkalis

Francoise Masnou-Seeuws & ElianeLuc-Koenig, Orsay (France)

Ronnie Kosloff, Jerusalem (Israel)

work on Ca2

Robert Moszynski, Warsaw (Poland)

funding

Deutsche Forschungsgemeinschaft

example 3:

quantum informationwith ultracold molecules

quantum information= squaring the circle

particles with no

interaction

little decoherence

controlled

interaction

two-qubit gates

scalability

polar molecules in periodic arrangementspolar molecules = dipole-dipole interaction

in a static electric field

DeMille, PRL 88, 067901 (2002)

electrostatic trap on a chip

Cote, Nat. Phys. 2, 583 (2006)

quantum information= squaring the circle

particles with no

interaction

little decoherence

controlled

interaction

two-qubit gates

scalability

polar molecules in periodic arrangementspolar molecules = dipole-dipole interaction

in a static electric field

DeMille, PRL 88, 067901 (2002)

electrostatic trap on a chip

Cote, Nat. Phys. 2, 583 (2006)

quantum information= squaring the circle

particles with no

interaction

little decoherence

controlled

interaction

two-qubit gates

scalability

polar molecules in periodic arrangementspolar molecules = dipole-dipole interaction

in a static electric field

DeMille, PRL 88, 067901 (2002)

electrostatic trap on a chip

Cote, Nat. Phys. 2, 583 (2006)

coherent control: shielding

cancel dipole-dipole interaction with external field control in

rotational Hamiltonian

coherent control: shielding

cancel dipole-dipole interaction with external field control in

rotational Hamiltonian

coherent control: shielding

cancel dipole-dipole interaction with external field control in

rotational Hamiltonian

example 4:

vibrational cooling ofultracold molecules

vibrational cooling – theory

vibrational cooling – theory

vibrational cooling – theory

vibrational cooling – theory

the cooling target

dark ground state

maximum excitation

solutions

vibrational cooling – theory

the cooling target

dark ground state

maximum excitation

solutions

vibrational cooling – theory

the cooling target

dark ground state

maximum excitation

solutions

vibrational cooling – theory

the cooling target

dark ground state

maximum excitation

solutions

cooling = maintaining adark ground state

vibrational cooling – exp.

vibrational cooling – exp.

a crude way of maintaing a dark ground state . . .

vibrational cooling – exp.

. . . but it works!

summary

pump-dump photoassociation: initial state &timescales

shaping the potentials 1: mimic resonantcoupling with an external field

shaping the potentials 2: shield moleculesfrom each other by manipulation with ac or dcelectric fields

vibrational cooling: maintain a dark targetstate

ultracold & ultrafast = pretty cool

summary

pump-dump photoassociation: initial state &timescales

shaping the potentials 1: mimic resonantcoupling with an external field

shaping the potentials 2: shield moleculesfrom each other by manipulation with ac or dcelectric fields

vibrational cooling: maintain a dark targetstate

ultracold & ultrafast = pretty cool

summary

pump-dump photoassociation: initial state &timescales

shaping the potentials 1: mimic resonantcoupling with an external field

shaping the potentials 2: shield moleculesfrom each other by manipulation with ac or dcelectric fields

vibrational cooling: maintain a dark targetstate

ultracold & ultrafast = pretty cool

summary

pump-dump photoassociation: initial state &timescales

shaping the potentials 1: mimic resonantcoupling with an external field

shaping the potentials 2: shield moleculesfrom each other by manipulation with ac or dcelectric fields

vibrational cooling: maintain a dark targetstate

ultracold & ultrafast = pretty cool

summary

pump-dump photoassociation: initial state &timescales

shaping the potentials 1: mimic resonantcoupling with an external field

shaping the potentials 2: shield moleculesfrom each other by manipulation with ac or dcelectric fields

vibrational cooling: maintain a dark targetstate

ultracold & ultrafast = pretty cool

top related