climate change prior to 1900. the ice core record indicates that greenhouse gases co-varied with...

Post on 15-Dec-2015

217 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Climate change prior to 1900

The ice core record indicates that greenhouse gases co-varied with antarctic temperature over glacial-interglacial cycles, suggesting a close link between natural atmospheric greenhouse gas variations and temperature.

Variations in CO2 over the last 420 kyr broadly followed antarctic temperature, typically by several centuries to a millennium (Mudelsee, 2001).

The sequence of climatic forcings and responses during deglaciations (transitions from full glacial conditions to warm interglacials) are well documented. High-resolution ice core records of temperature proxies and CO2 during deglaciation indicates that antarctic temperature starts to rise several hundred years before CO2 (Monnin et al., 2001; Caillon et al., 2003).

During the last deglaciation, and likely also the three previous ones, the onset of warming at both high southern and northern latitudes preceded by several thousand years the first signals of significant sea level increase resulting from the melting of the northern ice sheets linked with the rapid warming at high northern latitudes (Petit et al., 1999; Shackleton, 2000; Pépin et al., 2001).

IPCC, 4th Report, 2007

(A) The ice-equivalent eustatic sea level history over the last glacial-interglacial cycle according to the analysis of Waelbroeck et al. (2002). The smooth black line defines the mid-point of their estimates for each age and the surrounding hatched region provides an estimate of error. The red line is the prediction of the ICE-5G(VM2)

(B) The fit of the ICE-5G(VM2) model prediction (red line) to the extended coral-based record of RSL history from the island of Barbados in the Caribbean Sea (Fairbanks, 1989; Peltier and Fairbanks, 2006) over the age range from 32 ka to present. The actual ice-equivalent eustatic sea level curve for this model is shown as the step-discontinuous brown line. The individual coral-based estimates of RSL (blue) have an attached error bar that depends upon the coral species. The data denoted by the coloured crosses are from the ice-equivalent eustatic sea level reconstruction of Lambeck and Chappell (2001) for Barbados (cyan),Tahiti (grey), Huon (black), Bonaparte Gulf (orange) and Sunda Shelf (magenta).

IPCC, 4th Report, 2007

Younger Dryas

Towards the end of the last Ice Age, climate warmed, then suddenly cooled again for almost 1000 yrs

Younger Dryas

The Younger Dryas saw a rapid return to glacial conditions in the higher latitudes of the Northern Hemisphere between 12,900 – 11,500 years before present (BP) in sharp contrast to the warming of the preceding interstadial deglaciation. The transitions each occurred over a period of a decade or so.Thermally fractionated nitrogen and argon isotope data from Greenland ice core GISP2 indicates that the summit of Greenland was ~15 °C colder than today during the Younger Dryas. In the UK, coleopteran (fossil beetle) evidence suggests mean annual temperature dropped to approximately -5 °C, and periglacial conditions prevailed in lowland areas, while icefields and glaciers formed in upland areas. Nothing of the size, extent, or rapidity of this period of abrupt climate change has been experienced since.

The Younger Dryas

Possible Cause for the Younger Dryas

North Atlantic deep water formation – cut off by the cap of relatively light freshwater

Figure 15-2

Cameron Lee C. , The Younger Dryas Period

Cameron Lee C. , The Younger Dryas Period

Cameron Lee C. , The Younger Dryas Period

Cameron Lee C. , The Younger Dryas Period

Cameron Lee C. , The Younger Dryas Period

Cameron Lee C. , The Younger Dryas Period

The Atlantic Conveyor

Did the Younger Dryas was

caused by the shutdown of the

Atlantic Conveyor?

• As the Laurentide ice sheet retreated, melt water was diverted from the Mississippi River to the St. Lawrence River

• North Atlantic ocean became capped with freshwater not dense enough to sink thermohaline circulation shut down for ~1000 yrs

Replacing salty oceans with fresh water could trigger a Positive Feedback Loop:

• No salty water than no downwelling

• No downwelling than less warm water reaching northern part of North Atlantic• Less warm water than cooler air

• Cooler air than colder temperatures

• Colder than more intense sea ice growth

• More sea ice growth than glacier advance

• More ice than higher albedo

• Higher albedo than less heat in climate system and thus reinforces colder temperatures and sustains colder climate

http://www.falw.vu/~renh/YD-worldmap.JPG

TIME BP

Northern Europe North America

17 000 Glaciers retreat in Alps Major collapse of part of ice sheets

16 000 Wet period over US with lake levels showing highest levels around 15 000 BP

15 000 abrupt warming (~14 900 BP) with forest expansion, known as Bölling interstadial

14 000 Return to colder conditions, around 14 000 BP for about 500 years, known as Older Dryas.Warming around 13 500 BP, although colder than in Bölling, known as Allerød interstadial.

Cordilleran ice sheet retreat

Changes at the and of Last Ice Age Bu

rrou

gh

s, Clim

ate

Ch

an

ge, 2

001

TIME BP

Northern Europe North America

13 000 Around 12 900 BP a sudden and dramatic cooling, known as Younger Dryas

Drainage of meltwater from Laurentide ice sheet switches from Gulf of Mexico to St Lawrence.Surges of iceberges out of Hudson Bay cooled the North Atlantic, probably triggering the Younger Dryas

12 000 Around 11 600 BP sharp and sustained warming, its initial stage is knows as Pre-Boreal

Readvance of Laurentide ice sheet may redirected melting water back to Gulf of Mexico switching off the Younger Dryas

11 000 Spreading of forests across northern Europe

Cordilleran ice sheet melts rapidly and disappears at around 10 000 BP

10 000 Forests established at high latitudes, but fennoscandian ice sheet did not disappear until around 8500 BP.

Laurentide ice sheet declines more slowly and finally melts at around 7000 BP.

Bu

rrou

gh

s, Clim

ate

Ch

an

ge, 2

001

Period Central England Europe

Boreal 5500-6900 BC

Temperatures: JA: 16.3; DJF: 3.2, annual: 9.3

~1-2°C warmer than today

Atlantic3000-5500 BC

Temperatures: JA: 17.8; DJF: 5.2, annual: 10.7Wetter than today

Rapid peat build-up in N. Europe, but cold spells in Alps (5500-4500 BC)

Sub-boreal1000-3000 BC

Temperatures: JA: 16.8; DJF: 3.7, annual: 9.7

Generally dry and warm until ~1500 BC, much cooler and wetter until ~1200 BC, than warmer

Sub-atlantic 900 BC onwards

Temperatures: JA: 15.1; DJF: 4.7, annual: 9.3 (900 -450 BC)

(At present JA: 15.8; DJF: 4.2, annual: 9.4 )

Cooler, wetter 900-450 BC, than warmer, drier until ~AD 400 than colder and more variable until ~AD 1000

Changes during the Holocene

Period Sahara North America

Pre-boreal6900-8300

Lake Chad 52 m higher (area 400 000 km2)

Boreal 5500-6900 BC

Wetter in Egypt Laurentide ice sheet expanded (Cochrane readvance 4700-6500 BC)

Atlantic3000-5500 BC

Lake Chad still 30-40 m higher than present, moist except 3500-3800 BC

Sharp cooling in White Mountains 3300-2800 BC

Sub-boreal1000-3000 BC

Moist period ended ~2350 BC, thereafter much drier

Cooling in White Mountains ~1200 BC.Northern Great Plains warmer (1-2°C) and drier until ~2000 BC

Sub-atlantic 900 BC onwards

Generally arid but some evidence of more winter rain in North Africa

Northern Great Plains drier than now until AD 1200; with extreme drought AD 200-370, 700-850, 1000-1200. White Mountains coldest ~900 AD

Changes during the Holocene

Climate change in the human history

-32.0 -31.0

Greenland Temp. (°C)

0

500

1000

1500

2000

2500

Bermuda Rise SST (°C)

West African SST (°C, anomaly)

Age (yr BP)

21 22 23 24 25

Medieval Warm Period

Mid-Neoglacial

Little Ice Agea

b

-6 -4 -2 0 2

Medieval Warm Period and Little Ice Age were the most evident climate fluctuations during last millenium

Medieval Warm Period - Medieval Climatic Optimum

Although there is no evidence of sudden change there are some pointers to the fact that the climate of northern Europe became more warmer during the ninth and tenth centuries:• Expansion of economic and agricultural activity to the north,• Grain was grown in the Norway further north than today,• Crops were grown in Britain at higher levels than it is economic today,• Norse colonization of Iceland and Greenland.

Tree rings evidence shown than warmer period in northern Fennoscandia lasted from 870 to 1100, but on Greenland warmer period lasted from around 600 to the fourteenth century.

Eric The Red was a Viking explorer. He was born in around 950 in Norway. His father was banished from Norway because he killed a man. In 982 Eric the Red was banished from Iceland for three years because he also killed a man. He sailed to Greenland. After three year he returned to Iceland and than led a group of colonists to Greenland in 986.His exploration to Greenland had 400 to 500 settlers in 14 ships

Farm under the Sand (Western Settlement)

It happens in Greenland...that all that is taken there from other countries iscostly there, because the country lies so far from other countries that peoplerarely travel there. Every item, with which they might help the country, theymust buy from other countries, both iron and all the timber with which theybuild houses. People export these goods from there: goatskins, ox-hides,sealskins and the rope...which they cut out of the fish called walrus andwhich is called skin rope, and their tusks...The people have been christened, and have both churches and priests....(King's Mirror, 13th c Norway)

The mild climatic period was fairy short lived , around ~ AD1200 the ever-increasing cold was making life extremely difficult, and after some years no supply ships were able to reach Greenland through the ice-choked seas.

By about 1350, the settlements in southwestern Greenland had been abandoned.

In 1408 a wedding was performed in the Hvalsey Church. It was not only the last service at Hvalsey, but also last written record of the Vicking presence in the region.

Hvalsey Church,Greenland

http://explorenorth.com/library/weekly/aa121799.htm

The Little Ice Age

• ~1450 to 1900 A.D.• Regional (global?) expansion of mountain glaciers• Cooling of a few tenths of a degree C• NW Europe, Western U.S., S. America• Best explanation is– increased volcanism– decrease in sun’s radiation output• Maunder Minimum

The little ice age ~1600 to ~1850

Extensive advance of glaciers in EuropeLong, severe wintersWas it global?

Abraham Hondius, 1684

A Frost Fair on the Thames at Temple Stairs (1684)

Recent Warming since 1850 AD

• Coincident with Industrial Revolution andrapid and large increase in CO2

• Climate changes in Europe

• Climate changes in south-eastern Asia

• Climate changes in Balitc Sea Region

• El-Nino

Fourth Report of IPCC IPCC SREX

Assessment of Climate Change for the Baltic Sea Basinhttp://www.hzg.de/institute/coastal_research/projects/baltex/bacc_downloads/index.html

top related