chapter 12 introduction to the laplace transformsdyang/courses/circuits/ch12... · 2014-06-09 ·...

Post on 03-Apr-2020

17 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Chapter 12 Introduction To The Laplace Transform 12.1 Definition of the Laplace Transform

12.2-3 The Step & Impulse Functions

12.4 Laplace Transform of specific functions

12.5 Operational Transforms

12.6 Applying the Laplace Transform

12.7 Inverse Transforms of Rational Functions

12.8 Poles and Zeros of F(s)

12.9 Initial- and Final-Value Theorems

2

Overview

Laplace transform is a technique that is

particularly useful in linear circuit analysis when:

1. Considering transient response (e.g. switching)

of circuits with multiple nodes and meshes.

2. The sources are more complicated than the

simple dc level jumps.

3. Introducing the concept of transfer function to

analyze frequency-dependent sinusoidal

steady-state response (Chapters 13, 14).

3

Key points

What is the definition of the Laplace transform?

What are the Laplace transforms of unit step,

impulse, exponential, and sinusoidal functions?

What are the Laplace transforms of the

derivative, integral, shift, and scaling of a

function?

How to perform partial fraction expansion for a

rational function F(s) and perform the inverse

Laplace transform?

4

Section 12.1

Definition of the Laplace

Transform

5

What is Laplace transform?

Transforming a real function f (t) of real variable t

to a complex function F(s) of complex variable s:

The integral will converge (1) over a portion of

the s-plane (e.g. Re(s) > 0), and (2) for most of the

functions except for those of little interest (e.g. t t).

F(s) is determined by f (t) only for t > 0-. Thus we

use it to predict the response after initial

conditions have been established.

.)()}({)(0

CdtetftfLsF st

kernel

6

Section 12.2, 12.3

The Step and Impulse

Functions

1. Definition of unit step function u(t)

2. Definition of impulse function d(t)

3. Laplace transforms of d(t) and d'(t)

7

u(t) can be approximated by the limit of a linear

ramp function:

The unit step function u(t)

.0for ,1

;0for ,0)(

t

ttu

8

Representation of time shift and reversal

)( atKu

)( taKu

Time reversal:

Time shift:

9

Example 12.1: A pulse of finite width (1)

y1 y2 y3

Q: Express the piecewise linear function f (t) as

superposition of 3 functions.

iii btaty )(

10

Example 12.1 (2)

For each interval, f (t) can be expressed as the

product of a linear function and a square pulse

(difference between two step functions).

For example, for 1 < t < 3, the corresponding

linear and square pulse functions are:

The entire function can be represented by:

).3()1()( and ,42)( 22 tututptty

).()()()()()()( 332211 tptytptytptytf

11

The impulse function d(t)

An idealized math representation of sharply

peaked stimulus:

d(t) has (1) zero duration, (2) infinite peak

amplitude, (3) unit area (strength).

.1)(

;otherwise ,0

;0 ,)(

dtt

tt

d

d

12

d(t) is the derivative of u(t)

)(lim)(0

tftu

)()(lim)(0

tutft

d

13

The sifting property of d-function

Sampling of f (t) at t = a (>0) can be formulated

by integral of f (t) times d(t-a):

It can be used in calculating the Laplace

transform of a d-function:

).()(lim)(

)()(lim)()(

0

00

afdtataf

dtattfdtattf

a

a

a

a

d

dd

.any for ,1)()( )0(

0CsedtettL sst

dd

14

The derivative of d-function

area = 1

total area = 0

one-sided

area = 1/

)(lim)(0

tft

d

)(lim)(0

tft

d

15

.2

)(lim

2

)(lim

2lim

11lim)(lim)(

2

0020

0 2

0

2000

ss

see

s

see

s

ee

dtedtedtetftL

ssssss

ststst

d

Laplace transform of d'(t)

)(lim)(0

tft

d

Even d'(t) has well defined Laplace transform!

16

Section 12.4

Laplace Transform of

Specific Functions

17

E.g. Unit step function

.0Re if ,1

1)()(

0

00

sss

e

dtedtetutuL

st

stst

Re

Im

18

E.g. Single-sided exponential function

(a > 0)

Re

Im

-a

.Re if ,1

)(0

)(

0

)(

0

asassa

e

dtedteeeL

tsa

tsastatat

19

E.g. Sinusoidal function

.11

2

1

2

1

2)(sinsin

220

)()(

00

sjsjsjdtee

j

dtej

eedtettL

tjstjs

sttjtj

st

20

List of Laplace transform pairs (1)

.!

,2

1

3

2

n

n

s

ntL

stL

Laplace

transform of

polynomial

functions:

astue

sttu

stu

t

sFtf

at

1)(lexponentia

1)(ramp

1)(step

1)(impulse

)()(Type

2

d

21

List of Laplace transform pairs (2)

Damping by exponential decay function causes

a shift along the real axis in the s-domain.

22

2

22

22

)()(sinsine damped

)(

1)(ramp damped

)(coscosine

)(sinsine

)()(Type

astute

astute

s

stut

stut

sFtf

at

at

22

Section 12.5

Operational Transforms

23

What are operational transforms?

Operational transforms indicate how the

mathematical operations performed on either f (t)

or F(s) are converted into the opposite domain.

Useful in calculating the Laplace transform of a

function g(t) derived by performing some math

operation on f (t) with known F(s).

24

First-order time derivative

).0()()()0(0

))(()(

)()(

0

00

0

fssFdtetfsf

dtsetfetf

dtetftfL

st

stst

st

E.g.

.1)0(1

)(

,1

)( ),()(

us

stL

stuLtut

d

d

initial condition

integration by

parts

if f ()e-s() = 0

25

Higher-order time derivatives

).0()0()()0()0()(

)0()()()(

).0()()( ),()(Let

2

fsfsFsffssFs

gssGtgLtfL

fssFsGtftg

nth-order derivative:

2nd-order derivative:

.)0()0()0(

)()(

)1(21

)(

nnn

nn

ffsfs

sFstfL

initial conditions

initial conditions

26

Time integral

.)( ,)( );()( ,)()(

where,)()()()(

0

00

0

0

s

etvetvtftudxxftu

dttvtudtedxxfdxxfL

stst

t

sttt

.)(

)(1

)()(

)()(

)()()()()(

)0(0

0

)(

0

0

0

0

00

0

s

sFsF

ss

edxxf

s

edxxf

dts

etf

s

edxxf

dttvtutvtudxxfL

ss

ststt

t

1 0 finite

The formula is valid only if the function is integrable.

27

Scaling

Intuitively, a larger value of a corresponds to a

narrower function in the time domain but a

broader function in the frequency domain. The

width of f (at) times the width of F(s/a) is a

constant independent of a.

.0 if ,)(

)()(

,let ;)()(

0

0

aa

asF

a

tdetfatfL

tatdteatfatfL

ats

st

28

Translation in the t and s domains

.0for ),()()( asFeatuatfL as

Translation in the time domain:

).()( asFetfL at

Translation in the frequency domain:

Both relations can be proven by change of

variable of integration.

29

Section 12.7

Inverse Transforms of

Rational Functions

1. Distinct real roots

2. Distinct complex roots

3. Repeated real roots

4. Repeated complex roots

5. Improper rational functions

30

Why only rational functions?

For linear, lumped-parameter circuits with

constant component parameters, the s-domain

expression for v(t), i(t) are always rational

functions, i.e. ratio of two polynomials:

General inverse Laplace transform:

...

..

)(

)()(

0

1

1

0

1

1

bsbsb

asasa

sD

sNsF

m

m

m

m

n

n

n

n

,)(2

1)()(

1

ir

ir

stdsesFi

sFLtf

involves with complex integral.

31

How to calculate?

If F(s) is a proper (m > n) rational function, the

inverse transform is calculated by (1) partial

fraction expansion, (2) individual inverse

transforms (4 types).

If F(s) is an improper (m n) rational function,

decompose F(s) as the summation of a

polynomial function and a proper rational

function, which are inverse transformed

individually.

32

Type I: D(s) has distinct real roots (1)

.68)6)(8(

)12)(5(96)( 321

s

K

s

K

s

K

sss

sssF

.120)6)(8(

)12)(5(96

)6)(8(

)12)(5(96

;68

)(

1

0

0

3210

Kss

ss

s

sK

s

sKKssF

s

s

s

.48)6)((

,72)8)((

63

82

s

s

ssFK

ssFK

33

Type I: D(s) has distinct real roots (2)

).( 4872120

148

172

1120

6

148

8

172

1120)(

,6

48

8

72120)(

68

61811

111

tuee

es

Les

Ls

L

sL

sL

sLtf

ssssF

tt

tt

The circuit is over-damped.

34

Type II: D(s) has distinct complex roots (1)

.86)43)((

,86)43)(6(

)3(100)43)((

,12)6)((

,43436

)(

2433

43

432

61

321

KjjssFK

jjss

sjssFK

ssFK

js

K

js

K

s

KsF

js

js

js

s

.43 ,6 :)( of roots ,)256)(6(

)3(100)(

2jssD

sss

ssF

Conjugate roots must have conjugate coefficients.

35

Type II: D(s) has distinct complex roots (2)

).()534cos(2012

)()86(Re212

)()86()86(12

)()86()86(12

43

86

43

86

6

12)(

,43

86

43

86

6

12)(

36

436

4436

)43()43(6

111

tutee

tuejee

tuejejee

tuejeje

js

jL

js

jL

sLtf

js

j

js

j

ssF

tt

tjtt

tjtjtt

tjtjt

5310

The circuit shows over-damped (or 1st-order)

and under-damped characteristics.

36

highest order

Type III: D(s) has repeated real roots (1)

.5)5()5()5(

)25(100)( 4

2

3

3

21

3

s

K

s

K

s

K

s

K

ss

ssF

.400)5(

)20(100)5(

;)5()5()5(

)25(100)5)(()(

2

2

432

3

1

3

KG

sKsKKs

sK

s

sssFsG

37

Type III: D(s) has repeated real roots (2)

.5)5()5()5(

)25(100)( 4

2

3

3

21

3

s

K

s

K

s

K

s

K

ss

ssF

.10025

2500)5(

);5(2)5()5(3

2500)25(100)(

;)5()5()5()25(100

)(

3

432

32

1

22

2

432

3

1

KG

sKKs

sssK

ss

sssG

sKsKKs

sK

s

ssG

38

Type III: D(s) has repeated real roots (3)

.5)5()5()5(

)25(100)( 4

2

3

3

21

3

s

K

s

K

s

K

s

K

ss

ssF

.20 ,240125

5000)5(

;2)255)(5(25000

)(

);5(2)52()5(2500

)(

44

43

2

13

432

2

12

KKG

Ks

sssK

ssG

sKKs

ssK

ssG

39

Type III: D(s) has repeated real roots (4)

.5

20

)5(

100

)5(

40020)(

23

sssssF

).(20!1

100!2

40020

5

20

)5(

100

)5(

40020)(

5552

1

2

1

3

11

tueet

et

sL

sL

sL

sLtf

ttt

The circuit shows critically-damped behavior.

40

Type IV: D(s) has repeated complex roots (1)

.43)43(43)43(

)43()43(

768

)256(

768)(

*

2

2

*

12

2

1

2222

js

K

js

K

js

K

js

K

jsjssssF

.3)43(.12)8(

768)43(

;43

)43(

)43(

)43()43(

)43(

768)43)(()(

212

2*

22

2*

121

2

2

jjGKKj

jG

js

jsK

js

jsKjsKK

jsjssFsG

highest order

41

Type IV: D(s) has repeated complex roots (2)

43

3

)43(

12

43

3

)43(

12)(

22 js

j

jsjs

j

jssF

).( 4sin64cos24

)( )904cos(64cos24

)( ..3.12

..43

903..

)43(

12)(

33

33

)904(343

1

2

1

tutette

tutette

tucceeccete

ccjs

Lccjs

Ltf

tt

tt

tjttjt

The circuit shows critically- and under-damped

characteristics.

42

Useful transformation pairs

)()cos(2)()(

)()cos(2

)()(

1

)(1

)()(

2

*

2

*

2

tutteKjs

K

js

K

tuteKjs

K

js

K

tuteas

tueas

tfsF

K

t

K

t

at

at

43

Inverse transform of improper rational functions

( ) .5

50

4

20104

204

3002006613)(

2

2

234

ssss

ss

sssssF

).(5020

)(10)(4)()(

54 tuee

ttttf

tt

ddd

44

Section 12.8

Poles and Zeros of F(s)

45

Definition

F(s) can be expressed as the ratio of two

factored polynomials N(s)/D(s).

The roots of the denominator D(s) are called

poles and are plotted as Xs on the complex s-

plane.

The roots of the numerator N(s) are called zeros

and are plotted as os on the complex s-plane.

46

Example

.)]86()][86()[10(

)]43()][43()[5(

)(

)()(

jsjsss

jsjss

sD

sNsF

47

Key points

What is the definition of the Laplace transform?

What are the Laplace transforms of unit step,

impulse, exponential, and sinusoidal functions?

What are the Laplace transforms of the

derivative, integral, shift, and scaling of a

function?

How to perform partial fraction expansion for a

rational function F(s) and perform the inverse

Laplace transform?

top related