categorical quantum mechanics: the “monoidal” approach · interlude: the miracle of scalars...

Post on 28-Jul-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 1 / 54

Categorical Quantum Mechanics: The

“Monoidal” Approach

Samson Abramsky

Introduction

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach

Categorical Approaches to Physics

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 3 / 54

Categorical Approaches to Physics

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 3 / 54

• Crane, Baez, Dolan et al. Higher-dimensional categories, TQFT’s,

categorification, etc.

Categorical Approaches to Physics

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 3 / 54

• Crane, Baez, Dolan et al. Higher-dimensional categories, TQFT’s,

categorification, etc.

• Abramsky, Coecke et al. Dagger compact monoidal categories etc.

Categorical Approaches to Physics

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 3 / 54

• Crane, Baez, Dolan et al. Higher-dimensional categories, TQFT’s,

categorification, etc.

• Abramsky, Coecke et al. Dagger compact monoidal categories etc.

• Isham, Doring, Butterfield et al. The topos-theoretic approach.

Categorical Approaches to Physics

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 3 / 54

• Crane, Baez, Dolan et al. Higher-dimensional categories, TQFT’s,

categorification, etc.

• Abramsky, Coecke et al. Dagger compact monoidal categories etc.

• Isham, Doring, Butterfield et al. The topos-theoretic approach.

We aim to give an introduction to the “monoidal” approach, which could

as well be called “linear”.

Some distinctive features

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 4 / 54

Some distinctive features

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 4 / 54

Comparison with topos approach:

monoidal vs. cartesian

linear vs. intuitionisticprocesses vs. propositions

geometry of proofs vs. geometric logic

Some distinctive features

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 4 / 54

Comparison with topos approach:

monoidal vs. cartesian

linear vs. intuitionisticprocesses vs. propositions

geometry of proofs vs. geometric logic

Comparison with n-categories approach. We emphasize:

• operational aspects

• interplay of quantum and classical

• compositionality• open vs. closed systems.

Some distinctive features

Introduction• CategoricalApproaches to Physics

• Some distinctivefeatures

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 4 / 54

Comparison with topos approach:

monoidal vs. cartesian

linear vs. intuitionisticprocesses vs. propositions

geometry of proofs vs. geometric logic

Comparison with n-categories approach. We emphasize:

• operational aspects

• interplay of quantum and classical

• compositionality• open vs. closed systems.

These are important for applications to quantum informatics, but also of

foundational significance.

Quantum Operations/QuantumProcesses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits :

• have two values 0, 1

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits :

• have two values 0, 1• are freely readable and duplicable

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits :

• have two values 0, 1• are freely readable and duplicable

• admit arbitrary data transformations

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits :

• have two values 0, 1• are freely readable and duplicable

• admit arbitrary data transformations

Qubits :

• have a ‘sphere’ of values spanned by |0〉, |1〉

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits :

• have two values 0, 1• are freely readable and duplicable

• admit arbitrary data transformations

Qubits :

• have a ‘sphere’ of values spanned by |0〉, |1〉

|+〉

|−〉

|+〉

|−〉

|Ψ〉

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits :

• have two values 0, 1• are freely readable and duplicable

• admit arbitrary data transformations

Qubits :

• have a ‘sphere’ of values spanned by |0〉, |1〉

|+〉

|−〉

|+〉

|−〉

|Ψ〉

• measurements of qubits

• have two outcomes |−〉, |+〉• change the value |ψ〉

Bits and Qubits: Classical vs. Quantum Operations

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 6 / 54

Bits :

• have two values 0, 1• are freely readable and duplicable

• admit arbitrary data transformations

Qubits :

• have a ‘sphere’ of values spanned by |0〉, |1〉

|+〉

|−〉

|+〉

|−〉

|Ψ〉

• measurements of qubits

• have two outcomes |−〉, |+〉• change the value |ψ〉

• admit unitary transformations , i.e. antipodes and angles are preserved.

‘Truth makes an angle with reality’

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 7 / 54

|+〉

|−〉

|Ψ〉

θ+

θ− We have partial constant maps Q → Q on thesphere Q

P+ : |ψ〉 7→ |+〉 P− : |ψ〉 7→ |−〉

which have chance prob(θ♯) for ♯ ∈ {+,−}.We know the value after the measurement, but not

what the qubit was before the measurement!

So measurements change the state, and apparently lose information. This seems

like bad news! However . . .

Quantum Entanglement

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 8 / 54

Bell state:|00〉+ |11〉

EPR state:|01〉+ |10〉

Quantum Entanglement

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 8 / 54

Bell state:|00〉+ |11〉

EPR state:|01〉+ |10〉

Compound systems are represented by tensor product : H1 ⊗H2.

Typical element:∑

i

λi · φi ⊗ ψi

Superposition encodes correlation . Einstein’s ‘spooky action at a

distance’. Even if the particles are spatially separated, measuring one

has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local .

Towards a general formalism for describing physical proces ses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 9 / 54

Towards a general formalism for describing physical proces ses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 9 / 54

Desiderata:

Towards a general formalism for describing physical proces ses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 9 / 54

Desiderata:

• Following operational/process philosophy, the structure should be in

the operations/actions, not in the “elements”.

Towards a general formalism for describing physical proces ses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 9 / 54

Desiderata:

• Following operational/process philosophy, the structure should be in

the operations/actions, not in the “elements”.

• Operations should be typed .

Towards a general formalism for describing physical proces ses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 9 / 54

Desiderata:

• Following operational/process philosophy, the structure should be in

the operations/actions, not in the “elements”.

• Operations should be typed .

• Basic reflection of time: must have sequential composition of

operations.

Towards a general formalism for describing physical proces ses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 9 / 54

Desiderata:

• Following operational/process philosophy, the structure should be in

the operations/actions, not in the “elements”.

• Operations should be typed .

• Basic reflection of time: must have sequential composition of

operations.

• Basic reflection of space: must be able to describe compoundsystems , operations localized to part of a compound system, and

operations performed independently on different parts of a compoundsystem — parallel composition .

Towards a general formalism for describing physical proces ses

Introduction

QuantumOperations/QuantumProcesses• Bits and Qubits:Classical vs. QuantumOperations• ‘Truth makes anangle with reality’

• QuantumEntanglement

• Towards a generalformalism fordescribing physicalprocesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 9 / 54

Desiderata:

• Following operational/process philosophy, the structure should be in

the operations/actions, not in the “elements”.

• Operations should be typed .

• Basic reflection of time: must have sequential composition of

operations.

• Basic reflection of space: must be able to describe compoundsystems , operations localized to part of a compound system, and

operations performed independently on different parts of a compoundsystem — parallel composition .

So we want a general setting in which we can describe processes (of

whatever kind) closed under sequential and parallel composition.

Basic Setting: SymmetricMonoidal Categories

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

• Categories

• Symmetric MonoidalCategories

• The Logic of TensorProduct• TowardsDiagrammatics

• Boxes and Wires:Typed Operations

• Series and ParallelComposition

• Geometry absorbsFunctoriality, Naturality

• Bras, Kets andScalars

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammatic

A Survey of Categorical QM: the Monoidal Approach

Categories

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

• Categories

• Symmetric MonoidalCategories

• The Logic of TensorProduct• TowardsDiagrammatics

• Boxes and Wires:Typed Operations

• Series and ParallelComposition

• Geometry absorbsFunctoriality, Naturality

• Bras, Kets andScalars

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammatic

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 11 / 54

A category C has objects (types) A, B, C, . . . , and for each pair of

objects A, B a set of morphisms C(A,B). (Notation: f : A→ B). It

also has identities idA : A→ A, and composition g ◦ f when types

match:

Af−→ B

g−→ C

Categories allow us to deal explictly with typed processes , e.g.

Logic Programming ComputationPropositions Data Types States

Proofs Programs Transitions

For QM:

Types of system (e.g. qubits Q) objects

Processes/Operations (e.g. measurements) morphisms

Symmetric Monoidal Categories

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 12 / 54

A symmetric monoidal category comes equipped with an associative operationwhich acts on both objects and morphisms — a bifunctor :

A⊗B f1 ⊗ f2 : A1 ⊗A2 −→ B1 ⊗B2

There is also a symmetry operation

σA,B : A⊗B −→ B ⊗A

which satisfies some ‘obvious’ rules, e.g. naturality:

A1 ⊗A2f1⊗f2- B1 ⊗B2

A2 ⊗A1

σA1,A2

?f1⊗f2- B2 ⊗B1

σB1,B2

?

The Logic of Tensor Product

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 13 / 54

Tensor can express independent or concurrent actions (mathematically:

bifunctoriality):

A1 ⊗A2f1⊗id- B1 ⊗A2

A1 ⊗B2

id⊗f2

?

f1⊗id

- B1 ⊗B2

id⊗f2

?

But tensor is not a cartesian product, in the sense that we cannot reconstruct an‘element’ of the tensor from its components .This turns out to comprise the absence of

A∆−→ A⊗A A1 ⊗A2

πi−→ AiCf. A ⊢ A ∧A A1 ∧A2 ⊢ Ai

Hence monoidal categories provide a setting for resource-sensitive logics such as

Linear Logic.

The Logic of Tensor Product

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 13 / 54

Tensor can express independent or concurrent actions (mathematically:

bifunctoriality):

A1 ⊗A2f1⊗id- B1 ⊗A2

A1 ⊗B2

id⊗f2

?

f1⊗id

- B1 ⊗B2

id⊗f2

?

But tensor is not a cartesian product, in the sense that we cannot reconstruct an‘element’ of the tensor from its components .This turns out to comprise the absence of

A∆−→ A⊗A A1 ⊗A2

πi−→ AiCf. A ⊢ A ∧A A1 ∧A2 ⊢ Ai

Hence monoidal categories provide a setting for resource-sensitive logics such as

Linear Logic.

No-Cloning and No-Deleting are built in!

Towards Diagrammatics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 14 / 54

Towards Diagrammatics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 14 / 54

We have seen that any symmetric monoidal category can be viewed as a settingfor describing processes in a resource sensitive way, close d under sequentialand parallel composition

Towards Diagrammatics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 14 / 54

We have seen that any symmetric monoidal category can be viewed as a settingfor describing processes in a resource sensitive way, close d under sequentialand parallel composition

There is a natural objection to this, that this is too abstract, and we lose all grip of

what is going on.

Towards Diagrammatics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 14 / 54

We have seen that any symmetric monoidal category can be viewed as a settingfor describing processes in a resource sensitive way, close d under sequentialand parallel composition

There is a natural objection to this, that this is too abstract, and we lose all grip of

what is going on.

But this objection does not really hold water! Monoidal categories, quite generally,

admit a beautiful graphical or diagrammatic calculus (Joyal, Street et al.) whichmakes equational proofs perspicuous, and is sound and complete for equational

reasoning in monoidal categories. It also supports links with Logic (e.g. Proof Nets)

and with Geometry (Knots, Braids, Temperley-Lieb algebra etc.)

Boxes and Wires: Typed Operations

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

• Categories

• Symmetric MonoidalCategories

• The Logic of TensorProduct• TowardsDiagrammatics

• Boxes and Wires:Typed Operations

• Series and ParallelComposition

• Geometry absorbsFunctoriality, Naturality

• Bras, Kets andScalars

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammatic

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 15 / 54

f

B

A

g

· · ·B1 Bm

· · ·A1 An

f : A −→ B g : A1 ⊗ · · · ⊗An −→ B1 ⊗ · · · ⊗Bm.

Series and Parallel Composition

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

• Categories

• Symmetric MonoidalCategories

• The Logic of TensorProduct• TowardsDiagrammatics

• Boxes and Wires:Typed Operations

• Series and ParallelComposition

• Geometry absorbsFunctoriality, Naturality

• Bras, Kets andScalars

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammatic

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 16 / 54

g

· · ·C1 Cr

f

· · ·A1 An

B1 Bm· · · f

· · ·B1 Bm

· · ·A1 An

h

· · ·D1 Ds

· · ·C1 Cr

g ◦ f

f ⊗ h

Geometry absorbs Functoriality, Naturality

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

• Categories

• Symmetric MonoidalCategories

• The Logic of TensorProduct• TowardsDiagrammatics

• Boxes and Wires:Typed Operations

• Series and ParallelComposition

• Geometry absorbsFunctoriality, Naturality

• Bras, Kets andScalars

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammatic

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 17 / 54

f

g

=

f

g

(f ⊗ 1) ◦ (1⊗ g) = f ⊗ g = (1⊗ g) ◦ (f ⊗ 1)

Bras, Kets and Scalars

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 18 / 54

φ

· · ·A1 An

ψ

· · ·A1 An

s

φ : A1 ⊗ · · · ⊗An −→ I ψ : I −→ A1 ⊗ · · · ⊗An s : I −→ I.

Bras: no outputs

Kets: no inputs

Scalars: no inputs or outputs.

Bras, Kets and Scalars

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 18 / 54

φ

· · ·A1 An

ψ

· · ·A1 An

s

φ : A1 ⊗ · · · ⊗An −→ I ψ : I −→ A1 ⊗ · · · ⊗An s : I −→ I.

Bras: no outputs

Kets: no inputs

Scalars: no inputs or outputs.

Two-dimensional generalization of Dirac notation !

〈φ | | ψ〉 〈φ | ψ〉

Interlude: The Miracle of Scalars

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars• Scalars in monoidalcategories

• Scalar Product

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach

Scalars in monoidal categories

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars• Scalars in monoidalcategories

• Scalar Product

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 20 / 54

A scalar in a monoidal category is a morphism s : I → I .

Examples : (FdVecK,⊗), (Rel,×).

Scalars in monoidal categories

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars• Scalars in monoidalcategories

• Scalar Product

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 20 / 54

A scalar in a monoidal category is a morphism s : I → I .

Examples : (FdVecK,⊗), (Rel,×).

(1) C(I, I) is a commutative monoid

Iρ−1

I - I ⊗ I ==== I ⊗ IλI - I

I

s

6

ρ−1

I - I ⊗ I

s⊗1

6

s⊗t- I ⊗ I

1⊗t

?λI - I

t

?

I

t

?

λ−1

I

- I ⊗ I

1⊗t

?==== I ⊗ I

s⊗1

6

ρI

- I

s

6

using the coherence equation λI = ρI .

Scalar Product

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars• Scalars in monoidalcategories

• Scalar Product

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 21 / 54

(2) Each scalar s : I → I induces a natural transformation

sA : A≃- I ⊗A

s⊗1A- I ⊗A≃- A .

AsA - A

B

f

?

sB

- B

f

?

We write s • f for f ◦ sA = sB ◦ f . Note that

s • (t • f) = (s ◦ t) • f(s • g) ◦ (r • f) = (s ◦ r) • (g ◦ f)(s • f)⊗ (t • g) = (s ◦ t) • (f ⊗ g)

Dagger Monoidal Categories

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

• Adjoint Arrows —reflection in the x-axis

• Unitaries

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach

Adjoint Arrows — reflection in the x-axis

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 23 / 54

f

· · ·A1 An

· · ·B1 Bm

f †

· · ·B1 Bm

· · ·A1 An

f : A→ B

f † : B → Af †† = f (g ◦ f)† = f † ◦ g†

Adjoint Arrows — reflection in the x-axis

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 23 / 54

f

· · ·A1 An

· · ·B1 Bm

f †

· · ·B1 Bm

· · ·A1 An

f : A→ B

f † : B → Af †† = f (g ◦ f)† = f † ◦ g†

We can turn kets into bras and vice versa — full scale Dirac notation! Givenφ, ψ : I −→ A,

〈φ | ψ〉 = φ† ◦ ψ : I −→ I

which is indeed a scalar!

Unitaries

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

• Adjoint Arrows —reflection in the x-axis

• Unitaries

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 24 / 54

We can also define unitaries . An isomorphism U : A∼=−→ B is unitary if

U−1 = U †.

Unitaries

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

• Adjoint Arrows —reflection in the x-axis

• Unitaries

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 24 / 54

We can also define unitaries . An isomorphism U : A∼=−→ B is unitary if

U−1 = U †.

A dagger monoidal category is one in which the canonical isomorphisms

for the monoidal structure are unitary.

Unitaries

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

• Adjoint Arrows —reflection in the x-axis

• Unitaries

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 24 / 54

We can also define unitaries . An isomorphism U : A∼=−→ B is unitary if

U−1 = U †.

A dagger monoidal category is one in which the canonical isomorphisms

for the monoidal structure are unitary.

Examples: Hilb , Rel.

Entanglement, Bell States andCompact Categories

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

• From ‘paradox’ to‘feature’: Teleportation• Entangled states aslinear maps

• Some notation forprojectors

• On the trail ofstructure• Teleportation: basiccase• Teleportation:general case

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow in

A Survey of Categorical QM: the Monoidal Approach

From ‘paradox’ to ‘feature’: Teleportation

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

• From ‘paradox’ to‘feature’: Teleportation• Entangled states aslinear maps

• Some notation forprojectors

• On the trail ofstructure• Teleportation: basiccase• Teleportation:general case

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow in

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 26 / 54

MBell

Ux

|00〉+ |11〉

x ∈ B2

|φ〉

|φ〉

Entangled states as linear maps

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 27 / 54

Indeed,H1 ⊗H2 is spanned by

|11〉 · · · |1m〉...

. . ....

|n1〉 · · · |nm〉

hence

i,j

αij |ij〉 ←→

α11 · · · α1m...

. . ....

αn1 · · · αnm

←→ |i〉 7→

j

αij |j〉

Pairs |ψ1, ψ2〉 are a special case — |ij〉 in a well-chosen basis.

This is Map-State Duality .

Some notation for projectors

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

• From ‘paradox’ to‘feature’: Teleportation• Entangled states aslinear maps

• Some notation forprojectors

• On the trail ofstructure• Teleportation: basiccase• Teleportation:general case

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow in

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 28 / 54

A projector onto the 1-dimensional subspace spanned by a vector |ψ〉 will

be written Pψ. It is essentially (up to scalar multiples) a “partial constant

map”

Pψ : |φ〉 7→ |ψ〉.

This will correspond e.g. to a branch of a (projective, non-degenerate)measurement, or to a preparation.

Some notation for projectors

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

• From ‘paradox’ to‘feature’: Teleportation• Entangled states aslinear maps

• Some notation forprojectors

• On the trail ofstructure• Teleportation: basiccase• Teleportation:general case

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow in

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 28 / 54

A projector onto the 1-dimensional subspace spanned by a vector |ψ〉 will

be written Pψ. It is essentially (up to scalar multiples) a “partial constant

map”

Pψ : |φ〉 7→ |ψ〉.

This will correspond e.g. to a branch of a (projective, non-degenerate)measurement, or to a preparation.

We combine this notation with Map-State Duality: we write a projector Pψon a tensor product spaceH1 ⊗H2 as Pf , where f is the linear map

H1 →H2 associated to ψ under Map-State Duality.

On the trail of structure

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 29 / 54

The identity map

|id : Q→ Q〉 ∈ Q⊗Q |11〉+ · · ·+ |nn〉 ←→ |i〉 7→ |i〉

is the Bell state .

A measurement of Q⊗Q has four outcomes

|f1〉, |f2〉, |f3〉, |f4〉 (cf. |00〉, |01〉, |10〉, |11〉)

and corresponding projectors

Pf : Q⊗Q→ Q⊗Q :: |g〉 7→ |f〉

E.g. the Bell state is produced by

Pid : Q⊗Q→ Q⊗Q :: |g〉 7→ |id〉

Key Question: Do entangled states qua functions compose (somehow)?

Teleportation: basic case

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

• From ‘paradox’ to‘feature’: Teleportation• Entangled states aslinear maps

• Some notation forprojectors

• On the trail ofstructure• Teleportation: basiccase• Teleportation:general case

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow in

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 30 / 54

id

id

id ◦ id = id

Teleportation: general case

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

• From ‘paradox’ to‘feature’: Teleportation• Entangled states aslinear maps

• Some notation forprojectors

• On the trail ofstructure• Teleportation: basiccase• Teleportation:general case

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow in

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 31 / 54

βi

id

β−1i

β−1i ◦ id ◦ βi = id, 1 ≤ i ≤ 4

Categorical Axiomatics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

• Axiomatizing BellStates

• Cups and Caps

• Graphical Calculusfor Information Flow• Names andConames in theGraphical Calculus

• Definition of Duality

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements and

A Survey of Categorical QM: the Monoidal Approach

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

We can axiomatize Bell states and costates in a very direct and simple form in the

setting of dagger monoidal categories, yielding all the structure needed todescribe and reason about (bipartite) entanglement .

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

We can axiomatize Bell states and costates in a very direct and simple form in the

setting of dagger monoidal categories, yielding all the structure needed todescribe and reason about (bipartite) entanglement .

Moreover, this structure is very canonical mathematically:

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

We can axiomatize Bell states and costates in a very direct and simple form in the

setting of dagger monoidal categories, yielding all the structure needed todescribe and reason about (bipartite) entanglement .

Moreover, this structure is very canonical mathematically:

• Algebraically, it gives exactly the structure of compact categories ; the

fundamental laws are the triangular identities for adjunctions.

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

We can axiomatize Bell states and costates in a very direct and simple form in the

setting of dagger monoidal categories, yielding all the structure needed todescribe and reason about (bipartite) entanglement .

Moreover, this structure is very canonical mathematically:

• Algebraically, it gives exactly the structure of compact categories ; the

fundamental laws are the triangular identities for adjunctions.

• Logically, Bell states correspnd to axiom links and costates to cut links , and we

can track entangled quantum information flows essentially by Cut-elimination .

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

We can axiomatize Bell states and costates in a very direct and simple form in the

setting of dagger monoidal categories, yielding all the structure needed todescribe and reason about (bipartite) entanglement .

Moreover, this structure is very canonical mathematically:

• Algebraically, it gives exactly the structure of compact categories ; the

fundamental laws are the triangular identities for adjunctions.

• Logically, Bell states correspnd to axiom links and costates to cut links , and we

can track entangled quantum information flows essentially by Cut-elimination .

• Diagrammatically, these are basic geometric simplifications: planar versions

yield the Temperley-Lieb algebra .

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

We can axiomatize Bell states and costates in a very direct and simple form in the

setting of dagger monoidal categories, yielding all the structure needed todescribe and reason about (bipartite) entanglement .

Moreover, this structure is very canonical mathematically:

• Algebraically, it gives exactly the structure of compact categories ; the

fundamental laws are the triangular identities for adjunctions.

• Logically, Bell states correspnd to axiom links and costates to cut links , and we

can track entangled quantum information flows essentially by Cut-elimination .

• Diagrammatically, these are basic geometric simplifications: planar versions

yield the Temperley-Lieb algebra .

• From this structure we can define the trace and partial trace with all the key

algebraic properties.

Axiomatizing Bell States

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 33 / 54

We can axiomatize Bell states and costates in a very direct and simple form in the

setting of dagger monoidal categories, yielding all the structure needed todescribe and reason about (bipartite) entanglement .

Moreover, this structure is very canonical mathematically:

• Algebraically, it gives exactly the structure of compact categories ; the

fundamental laws are the triangular identities for adjunctions.

• Logically, Bell states correspnd to axiom links and costates to cut links , and we

can track entangled quantum information flows essentially by Cut-elimination .

• Diagrammatically, these are basic geometric simplifications: planar versions

yield the Temperley-Lieb algebra .

• From this structure we can define the trace and partial trace with all the key

algebraic properties.

• Diagrammatically, the (partial) trace closes (part of) the system; when we closethe whole system we get loops — i.e. scalars!

Cups and Caps

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

• Axiomatizing BellStates

• Cups and Caps

• Graphical Calculusfor Information Flow• Names andConames in theGraphical Calculus

• Definition of Duality

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements and

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 34 / 54

A∗A

A∗ A

ǫA : A⊗A∗ −→ I ηA : I −→ A∗ ⊗A.

Caps = Bell States; Cups = Bell Tests.

Graphical Calculus for Information Flow

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 35 / 54

Compact Closure : The basic algebraic laws for units and counits.

= =

(ǫA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ ǫA) ◦ (ηA ⊗ 1A∗) = 1A∗

For coherence with the dagger structure, we require that ǫA = η†A.

Names and Conames in the Graphical Calculus

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

• Axiomatizing BellStates

• Cups and Caps

• Graphical Calculusfor Information Flow• Names andConames in theGraphical Calculus

• Definition of Duality

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements and

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 36 / 54

f

g

xfy : A⊗B∗ → I pfq : I → A∗ ⊗B

C(A⊗B∗, I) ≃ C(A,B) ≃ C(I, A∗ ⊗B).

This is the general form of Map-State duality.

Definition of Duality

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

• Axiomatizing BellStates

• Cups and Caps

• Graphical Calculusfor Information Flow• Names andConames in theGraphical Calculus

• Definition of Duality

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements and

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 37 / 54

f

A∗

A

B

B∗

f∗ = (1⊗ ǫB) ◦ (1⊗ f ⊗ 1) ◦ (ηA ⊗ 1).

A Little Taste of DiagrammaticReasoning

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

• Duality is Involutive• Moving Boxes roundCups and Caps

• FeedbackDinaturality

• Application:Invariance of TraceUnder CyclicPermutations• Graphical Proof ofFeedback Dinaturality

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach

Duality is Involutive

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

• Duality is Involutive• Moving Boxes roundCups and Caps

• FeedbackDinaturality

• Application:Invariance of TraceUnder CyclicPermutations• Graphical Proof ofFeedback Dinaturality

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 39 / 54

f

A

B

A

B

A∗

B∗

= f

A

B

f∗∗ = f.

Moving Boxes round Cups and Caps

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 40 / 54

f

B

A A∗

= f∗

A

B∗B

f

A

B B∗

= f∗B∗

A A∗

Diagrammatic Proof

f∗B∗

A A∗

∆=

f

AA∗A

B B∗

= f

A

B B∗

Feedback Dinaturality

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

• Duality is Involutive• Moving Boxes roundCups and Caps

• FeedbackDinaturality

• Application:Invariance of TraceUnder CyclicPermutations• Graphical Proof ofFeedback Dinaturality

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 41 / 54

f

g

=

f

g

Application: Invariance of Trace Under Cyclic Permutation s

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

• Duality is Involutive• Moving Boxes roundCups and Caps

• FeedbackDinaturality

• Application:Invariance of TraceUnder CyclicPermutations• Graphical Proof ofFeedback Dinaturality

Illuminating QuantumInformation Flow inEntangled Systems

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 42 / 54

f

g

=

g

f

Graphical Proof of Feedback Dinaturality

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 43 / 54

f

g

=f

g∗

=f

g∗

=f

g∗∗

We use g∗∗ = g to conclude.

Illuminating Quantum InformationFlow in Entangled Systems

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

• Bipartite Projectors

• ProjectorsDecomposed

• Compositionality

• Compositionality ctd

• Compositionality ctd

• Teleportationdiagrammatically

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach

Bipartite Projectors

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

• Bipartite Projectors

• ProjectorsDecomposed

• Compositionality

• Compositionality ctd

• Compositionality ctd

• Teleportationdiagrammatically

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 45 / 54

Information flow in entangled states can be captured mathematically by

the isomorphism

Hom(A,B) ∼= A∗ ⊗B.

This leads to a decomposition of bipartite projectors into “names”(preparations) and “conames” (measurements).

In graphical notation:

f

ff †

f †

Projectors Decomposed

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

• Bipartite Projectors

• ProjectorsDecomposed

• Compositionality

• Compositionality ctd

• Compositionality ctd

• Teleportationdiagrammatically

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 46 / 54

f †

f

BA∗

A∗ B

Compositionality

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

• Bipartite Projectors

• ProjectorsDecomposed

• Compositionality

• Compositionality ctd

• Compositionality ctd

• Teleportationdiagrammatically

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 47 / 54

The key algebraic fact from which teleportation (and many other

protocols) can be derived.

f

g

=

f

g

Compositionality ctd

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

• Bipartite Projectors

• ProjectorsDecomposed

• Compositionality

• Compositionality ctd

• Compositionality ctd

• Teleportationdiagrammatically

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 48 / 54

f

g

=

Compositionality ctd

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

• Bipartite Projectors

• ProjectorsDecomposed

• Compositionality

• Compositionality ctd

• Compositionality ctd

• Teleportationdiagrammatically

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 49 / 54

f

g

=

g

f

Teleportation diagrammatically

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

• Bipartite Projectors

• ProjectorsDecomposed

• Compositionality

• Compositionality ctd

• Compositionality ctd

• Teleportationdiagrammatically

Measurements andClassical Information

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 50 / 54

βi

β−1i

=

βi

β−1i

=

Measurements and ClassicalInformation

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach

First Approach: Biproducts

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 52 / 54

Suppose we assume biproducts (need only assume products: Robin

Houston) in a dagger compact category.

These can be used to represent branching on measurementoutcomes :

AM - ⊕n

i=1Ai

Lni=1

Ui - ⊕ni=1Bi

Propagation of the outcome of a measurement performed on one part ofa compound system to other parts — “classical communication” — can

be expressed using distributivity :

(A1 ⊕A2)⊗B ∼= (A1 ⊗B)⊕ (A2 ⊗B).

Teleportation categorically

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 53 / 54

Q(1⊗η)

(1)- Q⊗Q⊗Q

〈xUiy〉4

i=1⊗1

(2)- ⊕4

i=1 I ⊗Qdist(3)- ⊕4

i=1Q

L

4

i=1U−1

i

(4)- ⊕4

i=1Q

Q

w

w

w

w

w

w

w

w

〈1〉i=4

i=1

- ⊕4i=1Q

w

w

w

w

w

w

w

(1) Produce EPR pair(2) Perform measurement in Bell-basis(3) Propagate classical information(4) Perform unitary correction .

Teleportation categorically

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 53 / 54

Q(1⊗η)

(1)- Q⊗Q⊗Q

〈xUiy〉4

i=1⊗1

(2)- ⊕4

i=1 I ⊗Qdist(3)- ⊕4

i=1Q

L

4

i=1U−1

i

(4)- ⊕4

i=1Q

Q

w

w

w

w

w

w

w

w

〈1〉i=4

i=1

- ⊕4i=1Q

w

w

w

w

w

w

w

(1) Produce EPR pair(2) Perform measurement in Bell-basis(3) Propagate classical information(4) Perform unitary correction .

N.B. Alternative approach (which brings important new structure to light): classicalstructures (Coecke and Pavlovic), i.e. Frobenius dagger-algebras.

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

• Categorical Quantum Logic (A and Duncan)

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

• Categorical Quantum Logic (A and Duncan)

• Fock space (Vicary)

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

• Categorical Quantum Logic (A and Duncan)

• Fock space (Vicary)

• Representation Theorems

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

• Categorical Quantum Logic (A and Duncan)

• Fock space (Vicary)

• Representation Theorems

• Planarity, braiding, toplogical quantum computing

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

• Categorical Quantum Logic (A and Duncan)

• Fock space (Vicary)

• Representation Theorems

• Planarity, braiding, toplogical quantum computing

• Differential Categories?

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

• Categorical Quantum Logic (A and Duncan)

• Fock space (Vicary)

• Representation Theorems

• Planarity, braiding, toplogical quantum computing

• Differential Categories?

• Types, polarities, LL?

Further Topics

Introduction

QuantumOperations/QuantumProcesses

Basic Setting:Symmetric MonoidalCategories

Interlude: The Miracleof Scalars

Dagger MonoidalCategories

Entanglement, BellStates and CompactCategories

Categorical Axiomatics

A Little Taste ofDiagrammaticReasoning

Illuminating QuantumInformation Flow inEntangled Systems

Measurements andClassical Information• First Approach:Biproducts• Teleportationcategorically

• Further Topics

A Survey of Categorical QM: the Monoidal Approach CLFP Workshop Jan 9 2008 – 54 / 54

• Classical Structures

• Axiomatics of No-Cloning and No-Deleting

• CPM construction (Selinger): density operators and completely

positive maps in the abstract setting

• Connections to Temperley-Lieb algebra etc.

• Categorical Quantum Logic (A and Duncan)

• Fock space (Vicary)

• Representation Theorems

• Planarity, braiding, toplogical quantum computing

• Differential Categories?

• Types, polarities, LL?

• Distributed QM, “discrete QFT”??

top related