carlo f. barenghi - thphys.uni-heidelberg.desmp/retune2012/talk-slides/talk_barenghi.pdf · gpe,...

Post on 13-May-2020

12 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Quantum turbulence and vortex reconnections

Carlo F. Barenghi

Anthony Youd, Andrew Baggaley,Sultan Alamri, Richard Tebbs, Simone Zuccher

(http://research.ncl.ac.uk/quantum-fluids/)

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Summary

Context: quantum fluids (superfluid helium, atomic condensates)

• Gross-Pitaevskii model• Vortex filament model• Classical vortex reconnections• Quantum vortex reconnections

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Gross Pitaevskii Equation

• Macroscopic wavefunction Ψ = |Ψ |e iφ

i~∂Ψ

∂t= − ~2

2m∇2Ψ + gΨ |Ψ |2 − µΨ (GPE)

• Density ρ = |Ψ |2, Velocity v = (~/m)∇φ

∂ρ

∂t+∇ · (ρv) = 0 (Continuity)

ρ

(∂vj∂t

+ vk∂vj∂xk

)= − ∂p

∂xj+∂Σjk

∂xk(∼ Euler)

• Pressure p =g

2m2ρ2, Quantum stress Σjk =

(~

2m

)2

ρ∂2 ln ρ

∂xj∂xk

• At length scales � ξ = (~2/mµ)1/2 neglect Σjk

and recover compressible Euler

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Vortex solution of the GPE

Vortex: hole of radius ≈ ξ, around it the phase changes by 2π

Phase

∮C

vs · dr =h

m= κ

Quantum of circulation

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Vortex filament model

• At length scales � ξ ⇒ GPE becomes compressible Euler• Away from vortices at speed � c ⇒ recover incompressible Euler• Vorticity in thin filaments ⇒ Biot-Savart law• Reconnections performed algorithmically

ds

dt=

κ

∮(z− s)× dz

|z− s|3

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Observations of individual quantum vortices

(Maryland) (MIT)

(Berkeley)

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Vortex reconnections

Feynman 1955Consider a large distorted ring vortex (a). If, in a place, twooppositely directed sections of line approach closely, the situation isunstable, and the lines twist about each other in a complicatedfashion, eventually coming very close, in places within an atomicspacing. Consider two such lines (b). With a small rearrangement,the lines (which are under tension) may snap together and joinconnections in a new way to form two loops (c). Energy releasedthis way goes into further twisting and winding of the new loops.This continue until the single loop has become chopped into a verylarge number of small loops (d)

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum turbulence

ξ = vortex core, ` = average vortex spacing, D = system size

Superfluid 4He and 3He-B:• uniform density,• ξ � `� D

huge range of length scales• parameters fixed by nature

Atomic condensates:• non-uniform density,• ξ < ` < D

restricted length scales• control geometry, dimensions,

strength/type of interaction

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Vortex reconnections

Reconnection of a vortex ring with a vortex line

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum turbulence

Tsubota, Arachi & Barenghi, PRL 2003

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Vortex reconnections in ordinary fluids

Classical reconnection of trailing vortices following the Crowinstability

Magneticreconnection

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Vortex reconnections in ordinary fluids

Hussain & Duraisamy 2011

Note the bridges

δ(t) ∼ (t0 − t)3/4 beforeδ(t) ∼ (t − t0)2 after

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum vortex reconnections

Koplik & Levine 1993: first GPE reconnection

Aarts & De Waele 1994:cusp is universal

Tebbs, Youd & Barenghi 2011:cusp is not universal

Nazarenko & West 2003:analytic

Alamri, Youd & Barenghi:bridges, PRL 2008

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum vortex reconnections

”Cascade of loops” scenario

Kursa, Bajer, & Lipniacki 2011only if angle θ ≈ π

Kerr 2011

Distribution of θ in turbulenceSherwin, Baggaley, Barenghi, &

Sergeev 2012

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum vortex reconnections

Direct observation of quantum vortex reconnections:lines visualised by micron-size trapped solid hydrogen particlesBewley, Paoletti, Sreenivasan, & Lathrop 2008

δ(t) ∼ (t0 − t)1/2 beforeδ(t) ∼ (t − t0)1/2 after

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum vortex reconnections

Zuccher, Baggaley, & Barenghi 2012Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum vortex reconnections

GPE reconnections:δ(t) ∼ (t0 − t)0.39 beforeδ(t) ∼ (t − t0)0.68 after

Biot-Savart reconnections:δ(t) ∼ |t0 − t|1/2 before and after

Why the difference between GPE and Biot-Savart reconnections ?Why the difference between GPE and experiments ?

Zuccher, Baggaley, & Barenghi 2012Carlo F. Barenghi Quantum turbulence and vortex reconnections

Quantum vortex reconnections

Sound wave emitted at reconnection event

Leabeater, Adams, Samuels, &Barenghi 2001 Zuccher, Baggaley, & Barenghi

2012

Carlo F. Barenghi Quantum turbulence and vortex reconnections

Conclusions

• Vortex reconnections are essential for turbulence• Analogies between classical and quantum vortex reconnections:

bridges, time asymmetry• Visualization of individual vortex reconnections• Cascade of vortex loops scenario ?• Time asymmetry probably related to acoustic emission• GPE, Biot-Savart and experiments probe different length scales:

vortex core ξ ≈ 10−8 cmtracer particle R ≈ 10−4 cmintervortex distance ` ≈ 10−2 cm

Carlo F. Barenghi Quantum turbulence and vortex reconnections

top related