broken time-reversal symmetry and topological order in triplet superconductors

Post on 08-Jul-2015

558 Views

Category:

Science

8 Downloads

Preview:

Click to see full reader

DESCRIPTION

Jorge Quintanilla, "Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors" - Research seminar, Max Planck Institute for the Physics of Complex Systems (Dresden), 27 November 2014 Abstract: The concept of broken symmetry is one of the cornerstones of modern physics, for which superconductors stand out as a major paradigm. In conventional superconductors electrons form isotropic singlet pairs that then condense into a coherent state, similar to that of photons in a laser. We understand this in terms of the breaking of global gauge symmetry, which is the invariance of a system under changes to the overall phase of its wave function. In unconventional superconductors, however, more complex forms of pairing are possible, leading to additional broken symmetries and even to topological forms of order that fall outside the broken-symmetry paradigm. In this talk I will discuss such phenomena, making emphasis on triplet pairing and the spontaneous breaking of time-reversal symmetry in some superconductors. I will pay particular attention to large-facility experiments using muons to detect tiny magnetic fields inside superconducting samples and group-theoretical arguments that enable us to constrain the type of pairing present in the light of such experiments. I will also address the possibility of mixed singlet-triplet pairing without broken time-reversal symmetry in superconductors whose crystal lattices lack a centre of inversion, and predict bulk experimental signatures of topological transitions expected to occur in such systems.

TRANSCRIPT

Broken Time-Reversal Symmetry and Topological Orderin Triplet Superconductors

Jorge Quintanilla1,2

1SEPnet and Hubbard Theory Consortium, University of Kent2ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory

Dresden, 27 November 2014

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 1 / 119

People and Money

People: James F. Annett (Bristol) , Adrian D. Hillier (RAL)

Bayan Mazidian (RAL/Bristol) , Bob Cywinski (Huddersfield) .

Ravi P. Singh , Gheeta Balakrishnan , Don Paul ,

Martin Lees (Birmingham). Amitava Bhattacharyya ,

Devashibai Adroja (RAL). A. M. Strydom (Johannesburg) .

Naoki Kase, Jun Akimitsu (Aoyama Gakuin).

Money: STFC (UK) + HEFCE/SEPnet (UK) + UJ and NRF (South Africa) +Bristol + Kent.

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 2 / 119

The Hubbard Theory Consortium

Director: Piers Coleman (RHUL/Rutgers)SEPnet fellows: Matthias Eschrig (RHUL/RAL)

Claudio Castelnovo (RHUL/RAL)Jorge Quintanilla (Kent/RAL)

Associate: Jörg Schmalian (Karlsruhe)

+ several SEPnet PhD students.

Strong correlations theory in close collaboration with experiments at

• RAL (ISIS/Diamond)• London Centre for Nanotech.• RHUL

Director: Piers Coleman (RHUL/Rutgers)SEPnet fellows: Matthias Eschrig (RHUL/RAL)

Claudio Castelnovo (RHUL/RAL)Jorge Quintanilla (Kent/RAL)

Associate: Jörg Schmalian (Karlsruhe)

+ several SEPnet PhD students.

Strong correlations theory in close collaboration with experiments at

• RAL (ISIS/Diamond)• London Centre for Nanotech.• RHUL

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 3 / 119

Overview

Two Paradigms in Condensed Matter ...

Broken SymmetryTopological Transitions

... interlock via triplet pairing in superconductors:

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

SimpleTheories + Standard Measurements:Group Theory / Bogolibov QuasiparticlesNeutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119

Overview

Two Paradigms in Condensed Matter ...Broken Symmetry

Topological Transitions

... interlock via triplet pairing in superconductors:

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

SimpleTheories + Standard Measurements:Group Theory / Bogolibov QuasiparticlesNeutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119

Overview

Two Paradigms in Condensed Matter ...Broken SymmetryTopological Transitions

... interlock via triplet pairing in superconductors:

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

SimpleTheories + Standard Measurements:Group Theory / Bogolibov QuasiparticlesNeutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119

Overview

Two Paradigms in Condensed Matter ...Broken SymmetryTopological Transitions

... interlock via triplet pairing in superconductors:

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

SimpleTheories + Standard Measurements:Group Theory / Bogolibov QuasiparticlesNeutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119

Overview

Two Paradigms in Condensed Matter ...Broken SymmetryTopological Transitions

... interlock via triplet pairing in superconductors:

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

SimpleTheories + Standard Measurements:

Group Theory / Bogolibov QuasiparticlesNeutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119

Overview

Two Paradigms in Condensed Matter ...Broken SymmetryTopological Transitions

... interlock via triplet pairing in superconductors:

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

SimpleTheories + Standard Measurements:Group Theory / Bogolibov Quasiparticles

Neutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119

Overview

Two Paradigms in Condensed Matter ...Broken SymmetryTopological Transitions

... interlock via triplet pairing in superconductors:

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

SimpleTheories + Standard Measurements:Group Theory / Bogolibov QuasiparticlesNeutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119

Outline

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 5 / 119

Quantum Materials Theory

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

Broken symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119

Broken symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119

Broken symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119

Broken symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119

Broken symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119

Unconventional SuperconductorsVirginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 8 / 119

Unconventional SuperconductorsVirginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

‘Unconventional’ superconductors:

Cuprates, Sr2RuO4, PrOs4Sb12, UPt3, (UTh)Be13 , ...

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 9 / 119

Time-reversal Symmetry

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 10 / 119

Time-reversal Symmetry

p

r

x

y

z

Classical time-reversal symmetry:t → −t equivalent to

r→ r and p→ −p

Also inverts angular momenta.True in the absence of friction/magnetic fields.

Quantum time-reversal symmetry:t → −t equivalent toψ→ ψ∗ and S→ −S.

True if H = H∗ and spin-invariant.

For quasi-particles in a superconductor:H = H0 + ∆c†

k c†−k + H.c. ⇒ TRS: ∆ = ∆∗

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119

Time-reversal Symmetry

-pr

x

y

z

Classical time-reversal symmetry:t → −t equivalent to

r→ r and p→ −p

Also inverts angular momenta.True in the absence of friction/magnetic fields.

Quantum time-reversal symmetry:t → −t equivalent toψ→ ψ∗ and S→ −S.

True if H = H∗ and spin-invariant.

For quasi-particles in a superconductor:H = H0 + ∆c†

k c†−k + H.c. ⇒ TRS: ∆ = ∆∗

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119

Time-reversal Symmetry

-pr

x

y

z

Classical time-reversal symmetry:t → −t equivalent to

r→ r and p→ −p

Also inverts angular momenta.True in the absence of friction/magnetic fields.

Quantum time-reversal symmetry:t → −t equivalent toψ→ ψ∗ and S→ −S.

True if H = H∗ and spin-invariant.

For quasi-particles in a superconductor:H = H0 + ∆c†

k c†−k + H.c. ⇒ TRS: ∆ = ∆∗

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119

Time-reversal Symmetry

-pr

x

y

z

Classical time-reversal symmetry:t → −t equivalent to

r→ r and p→ −p

Also inverts angular momenta.True in the absence of friction/magnetic fields.

Quantum time-reversal symmetry:t → −t equivalent toψ→ ψ∗ and S→ −S.

True if H = H∗ and spin-invariant.

For quasi-particles in a superconductor:H = H0 + ∆c†

k c†−k + H.c. ⇒ TRS: ∆ = ∆∗

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119

Time-reversal Symmetry

-pr

x

y

z

Classical time-reversal symmetry:t → −t equivalent to

r→ r and p→ −p

Also inverts angular momenta.True in the absence of friction/magnetic fields.

Quantum time-reversal symmetry:t → −t equivalent toψ→ ψ∗ and S→ −S.

True if H = H∗ and spin-invariant.

For quasi-particles in a superconductor:H = H0 + ∆c†

k c†−k + H.c. ⇒ TRS: ∆ = ∆∗

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119

Quantum Materials Theory

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

Muon Spin Rotation

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 13 / 119

Muon Spin Rotation

Adrian Hillier (Muons group leader, ISIS)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 14 / 119

Muon Spin Rotation

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Zero field muon spin relaxation

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 15 / 119

Kubo-Toyabe x exponential

Asymmetry:

NF −NBNF + NB

= G (t)

σ : randomly-oriented fields (e.g. nuclear moments)Λ :smoothly-modulated fields (e.g. electronic moments)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 16 / 119

The “classic” examples: UPt3 and Sr2RuO4

UPt3

Luke et al. PRL (1993)

Sr2RuO4

Luke et al. Nature (1998)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 17 / 119

Confirmed by Kerr effect

UPt3

Schemm et al. Science (2014)

Sr2RuO4

Jing Xia et al. PRL (2006)Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 18 / 119

More recent finds: LaNiC2

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 19 / 119

More recent finds: LaNiC2

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4

s ~

e

_

e

backward detector

forward detector

sample

+

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 20 / 119

More recent finds: LaNiGa2

A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett,Physical Review Letters 109, 097001 (2012).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 21 / 119

More recent finds: Re6Zr

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 22 / 119

More recent finds: Lu5Rh6Sn18

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 23 / 119

Quantum Materials Theory

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

Singlet, triplet, or both?

It’s all in the gap function:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Symmetry of the gap function

kk

kkkˆ

See J.F. Annett Adv. Phys. 1990.

Pauli ⇒∆ (k) = −∆T (−k)Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119

Singlet, triplet, or both?

It’s all in the gap function:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Symmetry of the gap function

kk

kkkˆ

See J.F. Annett Adv. Phys. 1990.

Pauli ⇒∆ (k) = −∆T (−k)Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119

Singlet, triplet, or both?

It’s all in the gap function:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Symmetry of the gap function

kk

kkkˆ

See J.F. Annett Adv. Phys. 1990.

Pauli ⇒∆ (k) = −∆T (−k)

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119

Singlet, triplet, or both?

It’s all in the gap function:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Symmetry of the gap function

kk

kkkˆ

See J.F. Annett Adv. Phys. 1990.

Pauli ⇒∆ (k) = −∆T (−k)Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 26 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 27 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 28 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 29 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle:

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 30 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 31 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 32 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yiˆ

0', kk

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 33 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yiˆ

0', kk

or triplet

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 34 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yiˆ

0', kk

or triplet yiˆˆ.', σkdk

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 35 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

yxz

zyx

iddd

didd

0

0

0k

The role of spin-orbit coupling (SOC)

Gap function may have both singlet and triplet components

kkorbitspin

',',

• However, if we have a centre of inversion

basis functions either even or odd under inversion

still have either singlet or triplet pairing (at Tc)

• No centre of inversion: may have singlet and triplet (even at Tc) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 36 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 37 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 38 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 39 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 40 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 41 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 42 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 43 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 44 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

x y

z

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 45 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

x y

z

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 46 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

x y

z

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 47 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

x y

z

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 48 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

This affects d(k) (a vector under spin rotations).

x y

z

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 49 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

This affects d(k) (a vector under spin rotations).

It does not affect 0(k) (a scalar). x y

z

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 50 / 119

When can we have singlet-triplet mixing?

We must now use basis functions of the double group:

∆ (k) =dΓ

∑n=1

ηnΓn (k)

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

yxz

zyx

iddd

didd

0

0

0k

The role of spin-orbit coupling (SOC)

Gap function may have both singlet and triplet components

kkorbitspin

',',

• However, if we have a centre of inversion

basis functions either even or odd under inversion

still have either singlet or triplet pairing (at Tc)

• No centre of inversion: may have singlet and triplet (even at Tc)

Crystal symmetryCentrosymmetric Non-centrosymmetric

Spin-orbit coupling Weak N NStrong N Y

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 51 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.

Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.

The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)

The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.

Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

When can we have broken time-reversal symmetry?

For ∆ (k) to be non-trivially complex, it must have more than onecomponent:

∆ (k) = η1Γ1 (k) + η2Γ2 (k) , arg η1 6= arg η2

The instability must therefore take place in an irrep with d > 1.Weak spin-orbit coupling: SO(3) × Gc

The singlet irrep of SO(3) has d = 1 ⇒ for singlet pairing, the point group Gcmust have a d > 1 irrep.The triplet irrep of SO(3) had d = 3 ⇒ for triplet pairing, broken TRS ispossible even for d = 1 irreps of Gc .

Strong spin-orbit coupling: Gc,J (double group)The dimensionality of the irreps is the same as for Gc therefore if all irreps ared = 1 then there can be no broken TRS.Broken TRS involves always a d > 1 irrep and it requires both the singlet andtriplet components

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119

Quantum Materials Theory

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 54 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 55 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 56 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

180o

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 57 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v

Symmetries and

their characters

Sample basis

functions

Irreducible

representation

E C2

v ’

v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

All irreps d = 1

⇒ weak SOC

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 58 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 59 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 60 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 61 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Non-unitary d x d* ≠ 0

Possible order parameters

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 62 / 119

LaNiC2

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1 (k)=1 -

1A

2 (k)=k

xk

Y -

1B

1 (k)=k

Xk

Z -

1B

2 (k)=k

Yk

Z -

3A

1 d(k)=(0,0,1)k

Z d(k)=(1,i,0)k

Z

3A

2 d(k)=(0,0,1)k

Xk

Yk

Z d(k)=(1,i,0)k

Xk

Yk

Z

3B

1 d(k)=(0,0,1)k

X d(k)=(1,i,0)k

X

3B

2 d(k)=(0,0,1)k

Y d(k)=(1,i,0)k

Y

Non-unitary d x d* ≠ 0

breaks only SO(3) x U(1) x T

Possible order parameters

* C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06

*

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 63 / 119

LaNiC2Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

The A1 phase of liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

Also FM SC - but this is a paramagnet!

A. D. Hillier, J. Quintanilla and R. Cywinski, Physical Review Letters (2009).

J. Quintanilla, J. F. Annett, A. D. Hillier, R. Cywinski, Physical Review B (2010).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 64 / 119

LaNiGa2

Centrosymmetric, but again all irreps d = 1 ⇒ again weak SOC and non-unitarytriplet

A.D. Hillier, J. Quintanilla, B. Mazidian, J.F. Annett, and R. Cywinski, PRL 109, 097001(2012).

⇒ A new family of superconductors?Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 65 / 119

Why non-unitary?Generic Landau theory for a triplet superconductor (1D irrep):

F = a |η|2 + b2∣∣η4∣∣

+ b′ |η× η∗|2 +m2

2χ+ b′′m · (iη× η∗) .

Magnetisation as a sub-dominant order parameter:

Temperature

magnetisation

Superconductivity

Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012).

Experiment (right): Akihiko Sumiyama et al., JPSJ (2014).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119

Why non-unitary?Generic Landau theory for a triplet superconductor (1D irrep):

F = a |η|2 + b2∣∣η4∣∣ + b′ |η× η∗|2

+m2

2χ+ b′′m · (iη× η∗) .

Magnetisation as a sub-dominant order parameter:

Temperature

magnetisation

Superconductivity

Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012).

Experiment (right): Akihiko Sumiyama et al., JPSJ (2014).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119

Why non-unitary?Generic Landau theory for a triplet superconductor (1D irrep):

F = a |η|2 + b2∣∣η4∣∣ + b′ |η× η∗|2 +

m2

+ b′′m · (iη× η∗) .

Magnetisation as a sub-dominant order parameter:

Temperature

magnetisation

Superconductivity

Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012).

Experiment (right): Akihiko Sumiyama et al., JPSJ (2014).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119

Why non-unitary?Generic Landau theory for a triplet superconductor (1D irrep):

F = a |η|2 + b2∣∣η4∣∣ + b′ |η× η∗|2 +

m2

2χ+ b′′m · (iη× η∗) .

Magnetisation as a sub-dominant order parameter:

Temperature

magnetisation

Superconductivity

Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012).

Experiment (right): Akihiko Sumiyama et al., JPSJ (2014).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119

Why non-unitary?Generic Landau theory for a triplet superconductor (1D irrep):

F = a |η|2 + b2∣∣η4∣∣ + b′ |η× η∗|2 +

m2

2χ+ b′′m · (iη× η∗) .

Magnetisation as a sub-dominant order parameter:

Temperature

magnetisation

Superconductivity

Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012).

Experiment (right): Akihiko Sumiyama et al., JPSJ (2014).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119

Why non-unitary?Generic Landau theory for a triplet superconductor (1D irrep):

F = a |η|2 + b2∣∣η4∣∣ + b′ |η× η∗|2 +

m2

2χ+ b′′m · (iη× η∗) .

Magnetisation as a sub-dominant order parameter:

Temperature

magnetisation

Superconductivity

Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012).

Experiment (right): Akihiko Sumiyama et al., JPSJ (2014).

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119

Why non-unitary?Generic Landau theory for a triplet superconductor (1D irrep):

F = a |η|2 + b2∣∣η4∣∣ + b′ |η× η∗|2 +

m2

2χ+ b′′m · (iη× η∗) .

Magnetisation as a sub-dominant order parameter:

Temperature

magnetisation

Superconductivity

Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012).

Experiment (right): Akihiko Sumiyama et al., JPSJ (2014).Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119

Re6Zr

Td group:noncentrosymmetric;d = 1, 2, 3

⇒ can have broken TRS with strong SOC⇒ broken TRS with singlet-triplet mixing

E irrep (d = 2) ⇒

F1,F2 irreps (d = 3) ⇒ several more mixed singlet-triplet states.

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119

Re6Zr

Td group:noncentrosymmetric;d = 1, 2, 3⇒ can have broken TRS with strong SOC

⇒ broken TRS with singlet-triplet mixing

E irrep (d = 2) ⇒

F1,F2 irreps (d = 3) ⇒ several more mixed singlet-triplet states.

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119

Re6Zr

Td group:noncentrosymmetric;d = 1, 2, 3⇒ can have broken TRS with strong SOC⇒ broken TRS with singlet-triplet mixing

E irrep (d = 2) ⇒

F1,F2 irreps (d = 3) ⇒ several more mixed singlet-triplet states.

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119

Re6Zr

Td group:noncentrosymmetric;d = 1, 2, 3⇒ can have broken TRS with strong SOC⇒ broken TRS with singlet-triplet mixing

E irrep (d = 2) ⇒

F1,F2 irreps (d = 3) ⇒ several more mixed singlet-triplet states.

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119

Re6Zr

Td group:noncentrosymmetric;d = 1, 2, 3⇒ can have broken TRS with strong SOC⇒ broken TRS with singlet-triplet mixing

E irrep (d = 2) ⇒

F1,F2 irreps (d = 3) ⇒ several more mixed singlet-triplet states.

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119

Lu5Rh6Sn18

Group D4h:centrosymmetric ⇒ no singlet-triplet mixing;1d = 1, 2, 3⇒ can have broken TRS with strong SOC.

Only two states allowed: 1Eg (c) (singlet) and Eu(c) (triplet).

1c.f. recent ARPES-based claim for Sr2RuO4: C.N. Veenstra et al., PRL 112,127002 (2014). +

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 68 / 119

Lu5Rh6Sn18Singlet state:

kyk

x

kz

Triplet:

ky

kx

kz

kz

ky

kx

ky

kz

kx

ky

kx

kz

kz

ky

kx

ky

kz

kx

ky

kx

kz

kz

ky

kx

ky

kz

kx

N.B. “shallow” point nodes.These results should apply just as well to Sr2RuO4, in the regime of strongspin-orbit coupling [see Veenstra et al. results + ].

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 69 / 119

Quantum Materials Theory

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

A bowl is not a mug

?

Is there a thermodynamic signature?

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119

A bowl is not a mug

?

Is there a thermodynamic signature?

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119

A bowl is not a mug

?

Is there a thermodynamic signature?

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119

A bowl is not a mug

?

Is there a thermodynamic signature?

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119

A bowl is not a mug

?

Is there a thermodynamic signature?

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119

A bowl is not a mug

?

Is there a thermodynamic signature?

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119

A bowl is not a mug

?

Is there a thermodynamic signature?

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119

Power laws in nodal superconductors

Low-temperature specific heat of a superconductor gives information on thespectrum of low-lying excitations:

Fully gapped Point nodes Line nodesCv ∼ e−∆/T Cv ∼ T 3 Cv ∼ T 2

This simple idea has been around for a while.2

Widely used to fit experimental data on unconventional superconductors.3

2Anderson & Morel (1961), Leggett (1975)3Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 72 / 119

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and ourown result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al.(unpublished)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and ourown result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al.(unpublished)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and ourown result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al.(unpublished)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and ourown result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al.(unpublished)].

A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and ourown result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al.(unpublished)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119

Line crossingsA different power law is expected at line crossings(e.g. d-wave pairing on a spherical Fermi surface):

crossingof linear line nodes

∆2k = I1

(kx||

2 − ky||

2)2

or I1kx||

2ky||

2

g(E ) =

E (1+2ln| L+√

E/I141

√E/I

141

|)

(2π)3√I1I2∼ E0.8

n = 1.8 (< 2 !!)

+

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 75 / 119

Crossing of shallow line nodesWhen shallow lines cross we get an even lower exponent:

crossingof shallow line nodes

∆2k = I1

(kx||

2 − ky||

2)4

or I1kx||

4ky||

4

g (E ) =

√E (1+2ln| L+E

14 /I

181

E14 /I

181

|)

(2π)3I14

1√

I2∼ E0.4

n = 1.4 *

* c.f. gapless excitations of a Fermi liquid: g (E ) = constant⇒ n = 1+

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 76 / 119

Numerics

n = d lnCv /d lnT

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n

T / Tc

linear point nodeshallow point node

linear line nodecrossing of linear line nodes

shallow line nodecrossing of shallow line nodes

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 77 / 119

A generic mechanismWe propose that shallow nodes will exist generically at topological phasetransitions in superocnductors with multi-component order parameters:

∆ 0

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 78 / 119

A generic mechanismWe propose that shallow nodes will exist generically at quantum phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 79 / 119

A generic mechanismWe propose that shallow nodes will exist generically at quantum phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 80 / 119

A generic mechanismWe propose that shallow nodes will exist generically at quantum phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Line

ar

node

s

Line

ar

node

sJorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 81 / 119

A generic mechanismWe propose that shallow nodes will exist generically at quantum phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 82 / 119

A generic mechanismWe propose that shallow nodes will exist generically at quantum phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 83 / 119

A generic mechanismWe propose that shallow nodes will exist generically at quantum phasetransitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Sha

llow

no

de

Sha

llow

no

de

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 84 / 119

Quantum Materials Theory

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi34, Re3W5,...Others seem to be correlated, purely triplet superconductors: +

LaNiC26 (c.f. centrosymmetric LaNiGa27) + , CePtr3Si (?) 8

4Batkova et al. JPCM (2010)5Zuev et al. PRB (2007)6Adrian D. Hillier, JQ and R. Cywinski PRL (2009)7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)8Bauer et al. PRL (2004)Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:

Some are conventional (singlet) superconductors:BaPtSi34, Re3W5,...Others seem to be correlated, purely triplet superconductors: +

LaNiC26 (c.f. centrosymmetric LaNiGa27) + , CePtr3Si (?) 8

4Batkova et al. JPCM (2010)5Zuev et al. PRB (2007)6Adrian D. Hillier, JQ and R. Cywinski PRL (2009)7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)8Bauer et al. PRL (2004)Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi34, Re3W5,...Others seem to be correlated, purely triplet superconductors: +

LaNiC26 (c.f. centrosymmetric LaNiGa27) + , CePtr3Si (?) 84Batkova et al. JPCM (2010)5Zuev et al. PRB (2007)6Adrian D. Hillier, JQ and R. Cywinski PRL (2009)7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)8Bauer et al. PRL (2004)Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119

Li2PdxPt3−xB: tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

The series goes from fully-gapped(x = 3) to nodal (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests nodal state a triplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119

Li2PdxPt3−xB: tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

The series goes from fully-gapped(x = 3) to nodal (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests nodal state a triplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119

Li2PdxPt3−xB: tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

The series goes from fully-gapped(x = 3) to nodal (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests nodal state a triplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119

Li2PdxPt3−xB: tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

The series goes from fully-gapped(x = 3) to nodal (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests nodal state a triplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119

Li2PdxPt3−xB: Phase diagramBogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εkI+ γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√(εk − µ− |γk|)2 + (∆0 (k)− |d (k)|)2

.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119

Li2PdxPt3−xB: Phase diagramTreat A and B as independent tuning parameters and study quasiparticlespectrum. We find a very rich phase diagram with topollogically-distinct phases:9

9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 89 / 119

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 90 / 119

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 91 / 119

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 92 / 119

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 93 / 119

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 94 / 119

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 95 / 119

Li2PdxPt3−xB: predicted specific heat power-laws

334

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 96 / 119

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 97 / 119

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 98 / 119

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 99 / 119

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 100 / 119

Anomalous power laws throughout the phase diagramDoes the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25

T/T

c

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transitionThe anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagramc.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119

Anomalous power laws throughout the phase diagramDoes the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25

T/T

c

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transitionThe anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagramc.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119

Anomalous power laws throughout the phase diagramDoes the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transitionThe anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagramc.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119

Anomalous power laws throughout the phase diagramDoes the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transition

The anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagramc.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119

Anomalous power laws throughout the phase diagramDoes the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transitionThe anomalous exponent (here n = 1.8) is seen everywhere else

⇒the influence of the topo transition extends throughout the phase diagramc.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119

Anomalous power laws throughout the phase diagramDoes the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transitionThe anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagram

c.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119

Anomalous power laws throughout the phase diagramDoes the observation of these effects require fine-tuning?Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transitionThe anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagramc.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119

Quantum Materials Theory

1 Broken time-reversal symmetry in superconductors

2 Experimental evidence for broken TRS

3 Singlet, triplet, or both?

4 A symmetry zoo

5 Topological transitions in Superconductors

6 Topological transition state: Li2PdxPt3−xB

7 Take-home message

What to take home

Superconductors

Broken time-reversal

symmetry

Topological transitionsTriplet

pairing

The relationship between triplet pairing and broken timre-reversal symmetryis complicatedNon-unitary triplet pairing breaks time-reversal symmetry and couples tomagnetism in a special waySinglet-triplet mixing may induce broken time-reversal symmetry ortopological transitionsThere are bulk signatures of topological transitionsThe thermodynamic transition is a distinct state

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 103 / 119

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 104 / 119

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 105 / 119

Spin-orbit coupling in Sr2RuO4

Recent spin-polarised ARPES find strong spin-orbit coupling in Sr2RuO4[C.N. Veenstra et al., PRL 112, 127002 (2014)]:

Veenstra et al.’s claim is that this will lead to singlet-triplet mixing.This seems at odds with our approach.

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 105 / 119

Power laws in nodal superconductors

Let’s remember where this came from:

Cv = T(

dSdT

)=

12kBT 2 ∑

k

Ek − T dEkdT︸︷︷︸≈0

Ek sech2 Ek2kBT︸ ︷︷ ︸

≈4e−Ek /KBT

∼ T−2∫

dEg (E )E2e−E/kBT at low T

g (E ) ∼ En−1 ⇒ Cv ∼ T n∫

dεε2+n−1e−ε︸ ︷︷ ︸a number

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 106 / 119

Power laws in nodal superconductors

Ek =√

ε2k + ∆2

k

≈√

I2k2⊥ + ∆

(kx|| , k

y||

)2

on the Fermi surface k||

x

k||

y

k|_ ∆(k

||

x,k||

y)

Compute density of states:

g(E ) =∫ ∫ ∫

δ(Ek − E )dkx dky dkz

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 107 / 119

Shallow line nodes in pnictides

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 108 / 119

Logarithm ⇒ power law (n− 1 = 0.8)

The power-law expression is asymptotically very good at E → 0:

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 109 / 119

Logarithm ⇒ power law (n− 1 = 0.4)

The power-law expression is asymptotically very good at E → 0:

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 110 / 119

LaNiC2 – a weakly-correlated, paramagnetic superconductor?

Tc=2.7 K

W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)

ΔC/TC=1.26 (BCS: 1.43)

specific heat susceptibility

0 = 6.5 mJ/mol K2

c 0 = 22.2 10-6 emu/mol

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 111 / 119

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4

s ~

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 112 / 119

Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry

[ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]

(longitudinal)

Timescale:

> 10-4

s ~

e

_

e

backward detector

forward detector

sample

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 113 / 119

LaNiC2 is a non-ceontrsymmetric superconductor

Neutron diffraction

30 40 50 60 70 800

5000

10000

15000

20000

25000

30000

35000

Inte

nsity (

arb

un

its)

2 o

Orthorhombic Amm2 C2v

a=3.96 Å

b=4.58 Å

c=6.20 Å

Data from

D1B @ ILL

Note no inversion centre.

C.f. CePt3Si

(1), Li

2Pt

3B & Li

2Pd

3B

(2), ...

(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 114 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Y d(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Z d(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Z d(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 115 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Y d(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Z d(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Z d(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

None of these break time-reversal symmetry!

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 116 / 119

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic instabilities: a complex relationship

singlet

Pairing

instabilities

non-unitary

triplet

pairing

instabilities

unitary

triplet

pairing

instabilities

A1 B1

3B1(b) 3B2(b)

1A1 1A2

3A1(a) 3A2(a)

A2 B2

1B1 1B2

3B1(a) 3B2(a)

3A1(b) 3A2(b)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 117 / 119

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εk I+ γk · σ

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E =

±√(εk − µ + |γk |)2 + (∆0 + |d(k)|)2; and

±√(εk − µ− |γk |)2 + (∆0 − |d(k)|)2

.

Take the most symmetric (A1) irreducible representation

d(k)/∆0 = A (X ,Y ,Z )− B(X(Y 2 + Z2) ,Y (Z2 + X2) ,Z (X2 + Y 2))

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 118 / 119

Li2PdxPt3−xB:order parameter

back

Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 119 / 119

top related