biomechatronics - lecture 9. clinical gait analysis

Post on 01-Jun-2015

2.530 Views

Category:

Education

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

VU University Medical CenterAmsterdam The Netherlands

Clinical Gait Analysis

dr. ir. Jaap Harlaar

j.harlaar@vumc.nlwww.vumc.nl/revalidatie

Human Movement Laboratory

Department of Rehabilitation Medicine

VU UniversityMedical Center

Amsterdam

3

casus

4

Goal setting vs. tools

• problems with specific activities• >> goal setting at this level• specific interventions might work• movement analysis: biomechanics

External Factors

Personal factors

Function / Anatomy

(Impairments)

Activities(Disabilities)

Participation(Handicaps)

Disease

International Classification of Functions(ICF)

6

DecisionDisability assessment

General aim of treatment (disability level)no treatment

DecisionMovement analysis

Specific treatment

nestedComplete decision scheme

7

casus

8

GAIT

Gait and movement analysis in clinical practice of rehabilitation medicine

9

Goal of walking

• To go from one place to another

• Walking speed, Energy & Safety

HOW ? By repeatedly placing one foot in front of the other

10

Footsteps

Stridelength = StepRight + StepLeft

Left steplengthRight steplength

11

Footsteps (asymmetric)

Stridelength = Right step + Left step

Left steplengthRight steplength

12

www.gaitrite.com

Measure footsteps

13

www.gaitrite.com

Measure footsteps

14

Goal of walking

Walking speed [m/s]

3.6 km/h = 1 m/s

Cadence [ steps/min]

Stridelength [m]

x / 120 =

15

Walking speed=stride length*cadence

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 20 40 60 80 100 120 140 160

Step rate (steps/min)

Strid

e le

ngth

(m)

0.25 m/s0.50 m/s0.75 m/s1.00 m/s1.25 m/s1.50 m/s1.75 m/s2.00 m/s

1.50 x 60 / 120 = .75

1.00 x 90 / 120 = .75

16

Body length and stride length

17

What is the optimal stridelength ?

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 20 40 60 80 100 120 140 160

Step rate (steps/min)

Stri

de le

ngth

/ Bo

dy L

engt

h 0.25 m/s0.50 m/s0.75 m/s1.00 m/s1.25 m/s1.50 m/s1.75 m/s2.00 m/s

StrideLengthBodyHeight =0.008 * StepRate

18

Energy

Walking speed

Cadence

Stridelength

x Energy Cost

Statute

19

Energy measurements during gait

• (ambulatory) oxygenrecording

• one ml O2 / min• = 5 cal / min • = 20 J/min

20

Human gait is very efficient...

optimal:~3.4 J/kg.m

21

How far can you walk on a pastry ?

250 kcalEnergy cost at optimal speed= 0.8 cal/kg.meter

250.000/(0.8*70)=4,5 km

22

Metabolic Energy Measurement

23

casus

24

One stride lasts from initial foot contact until the next ipsilateral initial foot contact

the gaitcycle

25

normalized time: 0 % - 100 %

the gaitcycle (2)

26

Heelstrike & Toe-off

27

the gaitcycle (3)

0 % -- stance -- 60 % -swing-100%

28

the gaitcycle (4)

-- 50 % --

LEFT SWING LEFT STANCE

RIGHT SWINGRIGHT STANCE

29

the gaitcycle (5)

LEFT SWING LEFT STANCE

RIGHT SWINGRIGHT STANCE

RIGHT SINGLE SUPPORT

LEFT SINGLE SUPPORT

DOUBLE SUPPO

RT

DOUBLE SUPPO

RT

DOUBLE SUPPO

RT

30

Functional division of gait phases(after J. Perry)

Stride (gait cycle)

Stance Swingperiods

WeightAcceptance

Single LimbSupporttasks

LimbAdvancement

InitialContact

LoadingRespons

e

MidStance

Terminal Stance

PreSwing

InitialSwing

MidSwing

Terminal Swing

phases

31

Initial Contact 0 %

32

Loading Response 0-10 %

33

Functional division of gait phases(after J. Perry)

Stride (gait cycle)

Stance Swingperiods

WeightAcceptance

Single LimbSupporttasks

LimbAdvancement

InitialContact

LoadingRespons

e

MidStance

Terminal Stance

PreSwing

InitialSwing

MidSwing

Terminal Swing

phases

34

Midstance 10 - 30 %

35

Terminal Stance 30 - 50 %

36

Functional division of gait phases(after J. Perry)

Stride (gait cycle)

Stance Swingperiods

WeightAcceptance

Single LimbSupporttasks

LimbAdvancement

InitialContact

LoadingRespons

e

MidStance

Terminal Stance

PreSwing

InitialSwing

MidSwing

Terminal Swing

phases

37

Pre-Swing 50 - 60 %

38

Initial-Swing 60 - 73 %

39

Functional division of gait phases(after J. Perry)

Stride (gait cycle)

Stance Swingperiods

WeightAcceptance

Single LimbSupporttasks

LimbAdvancement

InitialContact

LoadingRespons

e

MidStance

Terminal Stance

PreSwing

InitialSwing

MidSwing

Terminal Swing

phases

40

Mid-Swing 73 - 87 %

41

Terminal-Swing 87 - 100 %

42

Functional division of gait phases(after J. Perry)

Stride (gait cycle)

Stance Swingperiods

WeightAcceptance

Single LimbSupporttasks

LimbAdvancement

InitialContact

LoadingRespons

e

MidStance

Terminal Stance

PreSwing

InitialSwing

MidSwing

Terminal Swing

phases

43

The gait cycle

M.Whittle

8. terminal swing7. midswing6. initial swing5. preswing

4. terminal stance3. midstance2. load response1. initial contact

filenaam STUDY:

videorapport loopanalysedatum opname:

rechts links

/ /

xxxSYxxx.sty

BewegingsLaboratorium

45

Observational GaitAnalysis formRancho Los Amigos Medical Centre

46

Edinburgh GAIT Scoring Table

47

Error sources in observational kinematic analysis

• Subjective

• estimation error

• out of plane (2D vs. 3D)

48

Estimation of joint angles

How well do we perform ?

148 º 24 º

49

Estimation of joint angles

How well do we perform ?

148 º 24 º

50

Projection error

51

Projection error

52

Projectionerror (2)

0 10 20 30 40 50 600

20

40

60

80

100

120

140

160

180

angle of observation

obs

erve

d an

gle

53

Earliest 3D movement analysisBraun & Fischer 1895

54

Multiple 2D projections

55

Calibrate the projectioncalibration frame

15 points are known in the real (3D) world

DirectLinear Transformation

Videobased systems: SYBAR, SIMI, PEAK, . . . .

56

Automated marker tracking and 3D reconstruction of marker position

Multiple (2+) stroboscopic InfraRedcamera's using reflective markers on the body

Vicon, MotionAnalysis, Elite, Qualysis,. . .

57

Automated marker tracking and 3D reconstruction of marker position (2)

Active InfraRed markers 3D camera ('s)

CODAmotion, OptoTrak, . . .

58

markerrecording

segmentidentification

Body model anatomicalreference

clinicalconvention

kinematicsmarker-cluster n

kinematicsmarker-cluster 1

kinematics

kinematicsanatomical segm. #1

joint-kinematics

anatomical segm. #2

59

3D Kinematics software

Matlabwww.bodymech.nl

60

61

Clinical Feasibility

62

Clinical Feasibility

63

Clinical Feasibility

64

INFORMATION

?

=

KNOWLEDGE

Observational analysis of pathological movement

66

Muscle function during movement

Reprinted from: Inman et al. (1981)

67

Electro Myo Gram (EMG)

Electrode mounted amplifier

differential lead-off

EMG is the summation of many asynchronous Motor Unit Action Potentials

68

Relation EMG and Muscle Force

Raw EMG

Smoothed Rectified EMG @ 2 Hz

Isometric muscle force

69

the SYBAR system

70

the SYBAR system

display

71

casus

72

Groundreaction force

73

74

Net joint moment

Moment =

F x r

75

Estimated net joint momentversus inverse dynamics

Moment =

F x r

Boccardi et al. (1981)

76

What therapeutic intervention is needed ?

77

DecisionDisability assessment

General aim of treatment (disability level)no treatment

Decisionfunction analysis

Specific treatment

Evaluation of treatment at two (nested) levels

increased walking speed, decreased PCI

decreased ankle moment at heelstrike

78

What therapeutic intervention is needed ?

79

Complex Clinical Cases

80

Dynamicsexternalmoments andforces

Kinematics- positions- angles- derivatives

Antropometrics:•mass•inertal moments•jointlocations•muscle attachments

Joint andmuscle function

- net moments- estimated

muscle forces

Inverse dynamics model

81

Problem statement

Physical examination yields angles

The measure should address muscle length

The reference values are based on normal gait

82

Method

• Application of a geometrical musculo-skeletalmodel SIMM (Delp et.al 1995)

• input 1: joint angles during physical examination

• input 2: joint angles during normal gait

• output: muscle length (origo-insertion)

• all lengths are normalized to anatomical position(=100 % )

83

Results: m. Rectus Femoris (1)

•Figure 6.2

Figure 6.1

84

Results: m. Rectus Femoris (2)

100,0%102,0%104,0%106,0%108,0%110,0%112,0%114,0%116,0%118,0%120,0%

0 12 24 36 48 60 72 84 96 108 120

85

Length m. Rectus Femoris during gait

86

Results: m. Rectus Femoris (3)

95%97%99%

101%103%105%107%109%111%113%

0 8 16 24 32 40 48 56 64 72 80 88 96 %gait

stance swing

87

Discussion

• “Passive” muscle length is not the sole cause to contractures during gait

• Muscle length during movement and EMG should be considered

• Warning: validity of the model• Documentation of examination protocols

(standardisation) using modeling software animations creates awareness of muscle length testing

88

Imaging•Clinical question

•Functional analysis

•Muscle-bone model•(invers)

•visualization

•function•structure

•load•(intended) therapeutical intervention

•musle-bone model•(forward)

•movement

89

casus

90

Models (1)

91

Models (1)

92

functional load and loading capability of the upper extremity

93

Upper extremity

94

Upper extremity (2)

95

j.harlaar@vumc.nl

top related