biological engineering education and computational methods...biological engineering education and...

Post on 28-Jun-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Biological Engineering Education and Computational Methods

Effect of the Geometrical Structure of Mitochondria on the Synthesis and Diffusion of Oxidative Metabolites

Rajan Gangadharan1 and Dr.Guigen Zhang1,2,3

1Micro/Nano Bioengineering Laboratory, 2Nanoscale Science and Engineering Center,  3Faculty of Engineering, The University of Georgia, Athens, GA 30602

Introduction

• Abundant new information on the structure and dynamics of living cells are currently available

– Aided by advances in Microscopy & Molecular biology.

• Computational approaches are needed to link all these new data

• Issues in computational approach: Cell systems are complex

– Interdependent chemical reactions and structural components regulates cell processes

Introduction

• Spatiotemporal computational approaches ‐one way to answer the complexity

• Partial differential equations ‐ defines concentration changes in space and time.

– ODEs can define reactions, membrane transport and electrical potential

– Diffusion of molecules within complex geometry defined by using PDEs

Research background – Mitochondria cristae structure

Research Questions

Previous Work 

Model Development

Model Development

Model Geometry

Model Development

Model Development

Example: For complex I the reaction rate is defined as

Results – Effect of the tubular junction on ADP concentration

Results – Effect on membrane potential

Effect of diameter of tubular connection on potential

Time (s)

10-1210-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104M

embr

ane

Pot

entia

l (m

V)

150

160

170

180

190

200

No tubular connectionTubular connection - 40nm diaTubular connection - 20 nm dia

Potential change at various points on the inner membrane and cristae

Time (s)

10-1210-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

Mem

bran

e P

oten

tial (

mV

)

155

160

165

170

175

180

185

190

195Point APoint BPoint CPoint D

Conclusion and Further Work

I thank Dr. Guigen Zhang, My group members and Faculty of Engineering , 

University of Georgia for their support

Thank You

top related