biocatalytic processes for the production of fatty acid esters

Post on 19-Feb-2016

78 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

DESCRIPTION

BIOCATALYTIC PROCESSES FOR THE PRODUCTION OF FATTY ACID ESTERS. BREW- Symposium 11 May, 2005, Bioperspectives 2005. M. VICENTE, J. ARACIL AND M. MARTINEZ* CHEMICAL ENGINEERING DEPARTMENT. COMPLUTENSE UNIVERSITY. 28040 MADRID E-MAIL: mmr1@quim.ucm.es. - PowerPoint PPT Presentation

TRANSCRIPT

BIOCATALYTIC PROCESSES FOR THE PRODUCTION OF FATTY ACID ESTERS

BREW-Symposium11 May, 2005, Bioperspectives 2005

M. VICENTE, J. ARACIL AND M. MARTINEZ*CHEMICAL ENGINEERING DEPARTMENT. COMPLUTENSE UNIVERSITY. 28040 MADRID

E-MAIL: mmr1@quim.ucm.es

GREEN TECHNOLOGY AND SUSTAINABLE DEVELOPMENT

• USING OF RENEWABLE RAW MATERIALS

• SETTING UP NEW INTEGRATED PROCESSES. USE OF SELECTIVE CATALYSTS. AVOIDANCE OF POLLUTANTS AND BY-PRODUCTS

• NEW PRODUCT AND PROCESS DESIGN IN ORDER TO MINIMIZE WATER AND ENERGY WASTE.

PROCESSES FOR ESTER PRODUCTIONRAW MATERIALSESTER PRODUCTION PROCESSES

GENERAL SCHEMEESTERIFICATION & TRANSESTERIFICATION: CATALYST1). ESTERS OF MONOALCOHOLS

- Reaction study for different catalyst systems- Proposed schemes for oleyl oleate production

2). MONOGLYCERIDES- Reaction study for different catalyst systems- Proposed schemes for glycerol monooleate and

monoricinolate production

RAW MATERIALSRAW MATERIALS

OILS

HYDROLYSIS230ºC and 32 atm

TRANSESTERIFICATIONwtih Metanol

50ºC and basic catalyst

CRUDEFATTY ACIDS

CRUDEGLYCERINE

METHYL FATTYESTERS

HYDROGENATION225ºC and 50atm

FATTY ALCOHOLS

TRYGLYCERIDES TO OLEOCHEMICALS

SEPARATION DISTILLATIONHYDROGENATIONFRACTIONAL DISTILLATION

REFINING REFINEDGLYCERINE

DISTILLEDFATTY ACIDS

SATURATEDFATTY ACIDS

FRACTIONATEDFATTY ACIDS

UNSATURATEDFATTY ACIDS

OIL SOURCE C14 C16 C18 C18:1 C18:2 C18:3

Olive 0-1 7-15 1-2 70-85 4-12 -

Pits of olives - 4-6 2-4 75-85 4-10 -

Peanut - 12-15 14-16 54-76 12-25 -

Almond - 5-8 - 75-80 2-4 -

Tea 0-1 7-8 0-1 83-85 22-24 -

Hazelnut 0-1 2-4 1-2 90-95 2-3 -

Soya 0-1 7-10 3-6 25-35 52-60 2-6

Corn - 7-8 2-4 45-50 40-45 5-10

Laurel fruit 20-22 1-2 - 60-65 12-15 -

Laurel cherry 1-2 6-9 1-2 70-75 12-14 -

Cashew nut - 6-7 11-12 74-75 7-8 -

High oleic sunflower - 4 3 70-80 15-20 -

High oleic rapeseed 2 - 2 70-80 15-20 2

COMPOSITION OF MAIN OILSFOR OLEIC ACID PRODUCTION

ESTER PRODUCTION ESTER PRODUCTION PROCESSESPROCESSES

BIODEGRADABLE PRODUCTS

NON-FOODAGRICULTURAL

PRODUCTIONOIL SEEDS

OILS

FATTY ACIDS

ALCOHOLS

TRANSESTERIFICATION

ESTERIFICATION

ESTERS OF MONOALCOHOLS

MONOGLYCERIDES

GLYCERINE

ESTERIFICATION

ESTERIFICATION

DIGLYCERINE

POLYGLYCEROLESTERS

TRANSESTERIFICATION BIODIESEL

GENERAL REACTION SCHEMESGENERAL REACTION SCHEMES

A.) ESTERIFICATION PROCESS

R1-COOH + R2-OH R1-COO-R2 + H2OFATTY ACID ALCOHOL ESTER WATER

B.) TRANSESTERIFICATION PROCESS

CO-O-R1 CH2-OH CH2-OH

CO-O-R1’ + 2 CH-OH 3 CH-OH

CO-O-R1’’ CH2-OH CH2-O-OC-R1

OIL GLYCEROL MONOGLYCERIDE

CATALYTIC SYSTEMSCATALYTIC SYSTEMS

CONVENTIONAL PROCESSESHETERO-GENEOUS CATALYST

ENZYMATIC CATALYST

ACID CATALYST BASIC CATALYST

ESTERIFICATIONPROCESSES

Strong mineral acidsOrganic acidsIon exchange resinsMetal chlorides

Acid zeolites Free lipasesImmobilized lipases

TRANSESTERIFICATIONPROCESSES

Sulphuric acidChlorhydric acid Phosphoric acid

Alkaline hydroxidesAlkaline alkoxidesCarbonates

Anionic Exchange Resins: Oxides and Mixed Oxides (CaO-MgO)

Free lipasesImmobilized lipases

ADVANTAGES OF ENZYMATIC PROCESSES

• SIMPLER PROCESS SCHEMES• HIGHER SELECTIVITY• LESS WASTE• LOWER TEMPERATURE• LOWER PRESSURE• LOWER (DIRECT) PROCESS ENERGY REQUIREMENTS

1)1). . ESTERS OF MONOALCOHOLSESTERS OF MONOALCOHOLS

CATALYTIC ESTERIFICATION REACTION

CH3-(CH2)7 - CH = CH -(CH2)7- COOH

OLEIC ACID

+ R-CH2 - OH

ALCOHOL

CH3-(CH2)7 - CH = CH - (CH2)7 -COO-CH2-R

ESTER

H2O

WATER

+

CATALYST

OLEYL OLEATE PRODUCTIONOLEYL OLEATE PRODUCTION

R = CH3-(CH2 )7 - CH = CH -(CH2 )7- OLEYL ALCOHOL

COMPARISON BETWEEN DIFFERENT CATALYTIC SYSTEMS FORESTERIFICATION REACTION OLEIC ACID + OLEYL ALCOHOL

Molar ratio [AC]:[Al] = 1:1Constant temperatureConstant working pressureReaction time: 2h

BatchReactor

OLEIC ACID

OLEYL ACOHOL

VACUUM PUMP

ESTER

WATER

Catalytic system T (ºC) Catalyst

(wt%)P

(mmHg)Ester

yield (%)

SnCl2 164 0.45 579 55

Y-Zeolite 180 0.60 160 47

ImmobizedEnzyme 70 5 60 95

95,5 94,9 95,6

30,5

88,1 90,7 92,01

51,7

0

10

20

30

40

50

60

70

80

90

100

LIP-IM20 LIP-IM50 LIP-IM LIP-10 SP-A SP-B NOVO SnCl2

Different enzymatic system comparison

REACTION CATALYST %wt cat. XAC

LIP-IM20 Lipozyme IM20 5 95,5

LIP-IM50 Lipozyme IM50 5 94,9

LIP-IM Lipozyme IM 5 95,6

LIP-10 Lipozyme 10,000 5 30,5

SP-A SP-435-A 5 88,1

SP-B SP-435-B 5 90,7

NOVO Novozyme435 5 92,01

SnCl2 SnCl2.5H2O 1 51,7

Operation conditions:- Molar ratio [AC]/[AL] 1:1- Temperature 70ºC- Pressure 60 mmHg(except LIP-10, P=710mmHG)- Reaction time: 2 h

COMPARISON BETWEEN DIFFERENT ENZYMATIC SYSTEMS FORESTERIFICATION REACTION: OLEIC ACID + OLEYL ALCOHOL

PROPOSED SCHEMESFOR OLEYL OLEATE PRODUCTION

UCM in collaboration with Dr. Michel Poulina (Uniquema)

OLEYL OLEATE PRODUCTION

OLEIC ACID OLEYL ALCOHOL OLEYL OLEATE

Technical grade (90%) Technical grade (90%) Acid value <1Hydroxyl value < 30

RAW MATERIALS PRODUCT

PROPOSED SCHEMES FOR OLEYL OLEATE PRODUCTION

PRODUCTION REACTOR CATALYST

CONVENTIONAL BATCH STIRRED TANKp-toluenesulfonic acidTin chlorideZeolites

BIOPROCESS BATCHSTIRRED TANKFIXED-BED

Immobized lipaseImmobized lipase

BATCH REACTOR130ºC, Patm

0.6%wt cat; 16 h

OLEIC ACIDtechnical grade

OLEIC ALCOHOLtechnical grade

NEUTRALIZATIONDECANTATION

WASHINGDECANTATATION

BLEACHINGClays

CATALYSTp-toluenesulfonic acid

DESODORIZATIONStripping

80ºC, 10 mbar

CENTRIFUGATIONACIDULATION

H2SO4 /ACID RECOVERY

STEAMPRODUCTION

DRYING

OLEYL OLEATE PRODUCTION BATCH_STIRRED TANKNon-enzymatic esterification: p-toluenesufonic acid

NaOH, solution

Water phase

Water

Soap

OLEIL OLEATE

Water phase

OLEYL OLEATE PRODUCTION BATCH_STIRRED TANKEnzymatic esterification: immobilized lipases

BATCH REACTOR60ºC, 100mbar1.5%wt cat; 15h

ENZYME RECYCLE

FILTRATION60ºC, Patm

Condensation

DEODORIZATIONStripping

80ºC, 10 mbar

DRYING

STEAMPRODUCTION

CleanEnzyme

OLEIC ACIDtechnical grade

OLEIC ALCOHOLtechnical grade

OLEYL OLEATE

WATER

DEODORIZATIONStripping

80ºC, 10 MBAR

DRYING

FIXED-BEDREACTOR60ºC, Patm

FLASH SEPARATOR

80ºC, P?

TANK

UNIT 1

STEAMPRODUCTION

TANK

OLEYL OLEATE PRODUCTION BATCH_FIXED BEDEnzymatic esterification: immobilized lipases

OLEIC ALCOHOLtechnical grade

OLEIC ACIDtechnical grade

OLEYL OLEATE

WATER

CATALYST REACTIONCONDITIONS

DOWNSTREAM PROCESSES

REFINED PROCESSES

ACID CATALYST

130ºCAtmospheric pressure0.6 %wt catalyst

1. NEUTRALIZATION2. WASHING3. CENTRIFUGATION

1. BEACHING2. DEODORIZATION3. DRYING

IMMOBILIZEDLIPASESSTIRRED TANK

60ºC100 mbar1.5 %wt catalyst

1. FILTRATION2. ENZYME RECOVERY

1. DEODORIZATION2. DRYING

IMMOBIZEDLIPASESFIXED-BED

60ºCAtmospheric pressure

1. FLASH DISTILLATION

1. DEODORIZATION2. DRYING

PROCESS COMPARISON – OLEYL OLEATE

Conventional and enzymatic process designs are roughly comparable.

Outcome of energy analysis (including energy to produce the catalysts used):

ENERGY ANALYSIS – OLEYL OLEATE

ECONOMICS – OLEYL OLEATE

0

100

200

300

400

500

600

700

800

10 100Capacity in in kt p.a.

Brea

keve

n en

zym

e co

st*)

Enzymatic, stirred tank Enzymatic, fixed bedLipozyme RM IM Lipozyme TM IM

Lipozyme RM IM

Other commercially available enzyme:- novozymes 435: 1500 EUR/kg

*) Breakeven enzyme cost: Enzyme costs below the broken line are economically viable.

Lipozyme TM IM

O:\WPs\WP3(Envir)\BrewTool\BackgroundTables\Enzymes\Oleyl_oleate_COMPAR_CAT.xls

2)2). . MONOGLYCERIDESMONOGLYCERIDES

CATALYTIC TRANSESTERIFICACION REACTION SCHEME

CATALYST

MONOGLYCERIDE OLEATE PRODUCTIONMONOGLYCERIDE OLEATE PRODUCTION

TRYGLYCERIDE + 2 GLYCEROL 3 MONOGLYCERIDE

2 TRYGLYCERIDE + GLYCEROL 3 DIGLYCERIDES

CATALYST

COMPARISON BETWEEN DIFFERENT ENZYMATIC SYSTEMS FORESTERIFICATION REACTION: OLIVE OIL + GLYCEROL

517

87

2

23

27

48

2

33

31

34

518

86

517

87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Oil NOV 3h NOV 7h LIP 3h LIP 7h

Final product composition for different enzymes

Triglycerides Diglycerides Monoglycerides Fatty acids

CATALYST t (h) FFA MG DG TG

Olive oil 0 5 1 7 87

Novozyme 435 3 2 23 27 48

Novozyme 435 7 2 33 31 34

Lipozyme IM 3 5 1 8 86

Lipozyme IM 7 5 1 7 87

Reference: Martinez, M. Coterón, A. and Aracil, J.Reactions of Olive Oil and Glycerol over Immobilized LipasesJAOCS, vol. 75, no.5 (1998)

PROPOSED SCHEMESFOR MONOGLYCERIDES

PRODUCTION

UCM in collaboration with Dr. Michel Poulina (Uniquema)

MONOGLYCERIDES PRODUCTION

SUNFLOWER OIL GLYCEROL RICINOLEIC ACID

High oleic sunflowerOleic acid > 80%

Glycerine(Refined grade)

Technical grade (80%)

RAW MATERIALS PRODUCT

PROPOSED SCHEMES FOR MONOGLYCERIDES PRODUCTION

REACTION REACTOR CATALYST

CONVENTIONAL TRANSESTERIFICATION STIRRED TANKKOHNaOH

BIOPROCESSTRANSESTERIFICATIONESTERIFICATION

BASKET REACTORSTIRRED TANK

Immobilized lipasesImmobilized lipases

HIGH GRADE PRODUCT

LOW GRADE PRODUCT

90-96 MG1-5 DG< 1 TG< 1 Glycerol< 1 Fatty acids

35-60 MG35-60 DG1-20 TG1-20 Glycerol1-10 Fatty acids

GLYCEROL MONOOLEATE PRODUCTION BATCH_STIRRED TANKNon-enzymatic transesterification: Basic catalyst

HOSO

GLYCEROL

MIXER

REACTOR (2 steps)1. Reaction: 180ºC, Patm

NaOH 0.2wt%2.Flash distillation: 100mbar

DECANTATION50ºC, Patm

CONDENSATION

WASHING50ºC, Patm

SHORT PATH DISTILLATION200ºC, P <1 mbar

KOH

To glycerol feed

From condensation

NaOH

GLYCEROLPURIFICATION

Water

DYGLYCERIDEResidue

MIXER

Waterphase

HQ MONOOLEATE LQ MONOOLEATE

HOSF

GLYCEROL

MIXER50ºC, Patm

BASKETREACTOR60ºC, Patm

1.5%wt cat, 2 h

CRYSTALLIZATION 160ºC-27ºC0.06ºC/min

CRYSTALLIZATION 250ºC-32ºC0.04ºC/min

CRYSTALLIZATION 345ºC-35ºC

0.02 ºC/min

TANK

HQ MONOOLEATE

LQ MONOOLEATE

GLYCEROL MONOOLEATE PRODUCTION BATCH_BASKET REACTOREnzymatic transterification: Immobilized lipases

GLYCEROL MONORICINOLATE PRODUCTION BATCH_STIRRED TANKEnzymatic esterification: Immobilized lipases

RICINOLEICACID

GLYCEROL MIXERBATCH REACTOR

60ºC, 100mbar3wt% cat, 4h

FILTRATION40ºC

CENTRIFUGATION40ºC

ADSORPTION40ºC

ENZYMERECOVERY

GYCEROLRECOVERY

CONDENSATION

Enzymefeed

DRYING

DEODORIZATION40ºC

Resins

GLYCEROLMONORICINOLATE

STEAMPRODUCTION

PROCESSESREACTIONCONDITIONS

DOWNSTREAM PROCESSES

REFINED PROCESSES

TRANSESTERIFICATIONBASIC CATALYSIS(Glycerol monooleate)

180ºCAtmospheric pressure0.2 %wt catalyst

1. DECANTATION2. WASHING

1. SHORT PATH DISTILLATION

TRANSESTERIFICATIONENZYMATIC CATALYSIS(Glycerol monooleate)

60ºCAtmospheric pressure1.5 %wt catalyst

CRYSTALLYZATION(3 STEPS)

1.DEODORIZATION2.DRYING

ESTERIFICATIONENZYMATIC CATALYSIS(Glycerol monoricinolate)

60ºC100 mbar3 %wt catalyst

1.FILTRATION2.CENTRIFUGATION3. ADSOPTION

1.DEODORIZATION2.DRYING

PROCESS COMPARISON - MONOGLYCERIDES

Outcome of energy analysis: analogous to oleyl oleate

ENERGY ANALYSIS - MONOGLYCERIDES

ECONOMICS – GLYCEROL MONOOLEATE

0

20

40

60

80

100

120

10 100Capacity in in kt p.a.

Brea

keve

n en

zym

e co

st*)

Batch esterification Batch transesterificationLipozyme TM IM

Lipozyme TM IM

Other commercially available enzymes:- novozymes 435: 1500 EUR/kg- Lipozymes RM IM: 600 EUR/kg- Lipozymes TM IM: 75 EUR/kg

*) Breakeven enzyme cost: Enzyme costs below the broken line are economically viable.

O:\WPs\WP3(Envir)\BrewTool\BackgroundTables\Enzymes\Monoglycerides_COMPAR_CAT.xls

CONCLUSIONS

• KEY PROCESS ADVANTAGES: HIGHER SELECTIVITY, LESS WASTE; LOWER TEMPERATURE AND LOWER PRESSURE

• SMALL IMPROVEMENT POTENTIALS FOR ENERGY AND GHG EMISSIONS• BREAK-EVEN ENZYME COST CAN BE REDUCED BY UP TO FACTOR 3 BY

ECONOMIES OF SCALE• ALLOWABLE ENZYME COST UP TO FACTOR 5 BY PROCESS

IMPROVEMENT• ENZYME COSTS FOR SMALL SCALE NEED TO DROP TO AROUND 100

EUR/KG,FOR LARGE SCALE A FEW TENS OF EUROS/KG

• SYNERGY OF WHITE BIOTECHNOLOGY AND PROCESS IMPROVEMENTS

SUBSTANTIAL IMPROVEMENTS ESP. IN IN ECONOMICS

top related