ars.els-cdn.com · web viewcad of 3d flat support: (a) top view, (b) enlarged cross section, the...

Post on 05-Sep-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Supplementary information

Fig. S 1. CAD of 3D flat support: (a) top view, (b) enlarged cross section, the pore diameter = 0.2 mm, the

distance between pores = 0.2 mm and (c) side view, all dimensions are in mm.

Fig. S2. Schematic of the cross-flow filtration rig.

1

(b)

(c)

(a)

10

7

6

5

8

4

9

3

12

11132

1

1. Magnetic stirrer 2. Feed tank3. Gear pump4. Pressure gauge5. Feed input6. Membrane

module7. Retentate 8. Valve 9. Rotameter 10. Permeate 11. Volumetric flask12. Balance 13. Computer

Fig. S3. Calibration curve of oil in water emulsions measured using Turbidity meter (EUTECH TN-100, Thermo-Scientific).

Fig. S4. Flow streamlines, Re = 1000, (a) flat, (b) peak height = 0.125 µm, (c) peak height = 0.25 µm, (d) peak height = 0.5 µm. Eddies region was expanded with the increase of the peak height at constant velocity.

2

a b

c d

Fig. S5. Oil in water emulsion (a) the permeate, (b) the feed before ultrafiltration process

3

Table S1. Differences between literature review and this study Modification process Casting conditions Compaction Operating

conditionsOil in water

emulsionMembrane performance Ref.

rel. humidity

(%)

temp.

(ͦ C)

pressure

(bar)

time (min)

pressure (bar)

flowrate

(L/min)

oil con. (mg/L)

Type of oil

permeance

(LMH bar-1) FRR (%)

Oil rejection

(%)

pure water o/w emulsion

NMP Mixing with Hydrous manganese dioxide

(nanoparticles)

--- --- 1 30 1 --- 1000 Crude 573.2 ⁓ 100 75.4/ washing with pure

water

100 [44]

NMP Mixing with Cellulose acetate / polyethylene glycol

--- --- 4 --- 4 0.2 500 Kerosene 20.25 6.75 ----- 88 [45]

DMF Mixing with PEGMA and TFOA

--- --- 1.5 30 1 Dead end cell

900 Vacuum --- --- 99.8 / washing with pure

water

99.5 [38]

DMAc Mixing with SiO2-g-(PDMAEMA-co-PDMAPS)

nanoparticles

--- --- 1.6 60 1 Dead end cell

900 Engine 172.30 79.83 84.26/ washing with pure

water

100 [46]

DMAc zwitterionic polymers from a reactive amphiphilic copolymer additive

--- --- 2.5 30 2 Dead end cell

1500 --- 74.5 --- 99/ washing with pure

water

⁓ 100 [47]

DMAc Surface modification / corona air plasma

--- --- --- --- 1.5 --- 3000 Gas 108.46 37.86 --- 98.2 [34]

DMF Surface modification / corona plasma – assisted coating

TiO2 nanoparticles

--- --- --- --- 1.5 --- 3000 Gas 12.97 10.96 --- 99 [48]

Blending and surface coating by NaX zeolite and TiO2

nanoparticles

--- --- --- --- 1.5 3000 Gas --- 6.3 82.6/ washing with pure

water

99.1 [49]

DMF Mixing with Pluronic F127 --- --- 1.5 30 1 Dead end cell

900 Soybean --- 82.98 93.33 / after chemical washing

100 [11]

DMAc Wavy surface 30 19 – 21 1.5 90 - 120

1 1.4 2490 Sunflower 16 ± 0.46 3 ± 0.8 89 ± 2.7/ washing with

pure water

96 ± 3 this study

where: NMP: N-Methyl-2-pyrrolidone and DMF: Dimethylformamide

4

[1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, in: Nature, 2016, pp. 435-437.[2] Y. Wei, H. Qi, X. Gong, S. Zhao, Specially Wettable Membranes for Oil–Water Separation, Advanced Materials Interfaces, 0 1800576.[3] H.J. Tanudjaja, V.V. Tarabara, A.G. Fane, J.W. Chew, Effect of cross-flow velocity, oil concentration and salinity on the critical flux of an oil-in-water emulsion in microfiltration, Journal of Membrane Science, 530 (2017) 11-19.[4] R. Moosai, R.A. Dawe, Gas attachment of oil droplets for gas flotation for oily wastewater cleanup, Separation and purification technology, 33 (2003) 303-314.[5] R. Mohammed, A. Bailey, P. Luckham, S. Taylor, Dewatering of crude oil emulsions 3. Emulsion resolution by chemical means, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 83 (1994) 261-271.[6] S. Maiti, I. Mishra, S. Bhattacharya, J. Joshi, Removal of oil from oil-in-water emulsion using a packed bed of commercial resin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389 (2011) 291-298.[7] M.-J. Um, S.-H. Yoon, C.-H. Lee, K.-Y. Chung, J.-J. Kim, Flux enhancement with gas injection in crossflow ultrafiltration of oily wastewater, Water research, 35 (2001) 4095-4101.[8] M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Membrane technology enhancement in oil–water separation. A review, Desalination, 357 (2015) 197-207.[9] S. Kasemset, A. Lee, D.J. Miller, B.D. Freeman, M.M. Sharma, Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation, Journal of Membrane Science, 425-426 (2013) 208-216.[10] I.W. Cumming, R.G. Holdich, I.D. Smith, The rejection of oil by microfiltration of a stabilised kerosene/water emulsion, Journal of Membrane Science, 169 (2000) 147-155.[11] W. Chen, J. Peng, Y. Su, L. Zheng, L. Wang, Z. Jiang, Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes, Separation and Purification Technology, 66 (2009) 591-597.[12] S. Lee, Y. Aurelle, H. Roques, Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil, Journal of Membrane Science, 19 (1984) 23-38.[13] M. Hlavacek, Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane, Journal of membrane science, 102 (1995) 1-7.[14] R. Zolfaghari, A. Fakhru’l-Razi, L.C. Abdullah, S.S. Elnashaie, A. Pendashteh, Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry, Separation and Purification Technology, 170 (2016) 377-407.[15] Y. Ding, S. Maruf, M. Aghajani, A.R. Greenberg, Surface patterning of polymeric membranes and its effect on antifouling characteristics, Separation Science and Technology, 52 (2017) 240-257.[16] S.H. Maruf, L. Wang, A.R. Greenberg, J. Pellegrino, Y. Ding, Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes, Journal of membrane science, 428 (2013) 598-607.[17] W. Choi, E.P. Chan, J.-H. Park, W.-G. Ahn, H.W. Jung, S. Hong, J.S. Lee, J.-Y. Han, S. Park, D.-H. Ko, Nanoscale pillar-enhanced tribological surfaces as antifouling membranes, ACS applied materials & interfaces, 8 (2016) 31433-31441.[18] J.W. Bae, Y.-H. Cho, Y.-E. Sung, K. Shin, J.Y. Jho, Performance enhancement of polymer electrolyte membrane fuel cell by employing line-patterned Nafion membrane, Journal of Industrial and Engineering Chemistry, 18 (2012) 876-879.

5

[19] D.-C. Choi, S.-Y. Jung, Y.-J. Won, J.H. Jang, J.-W. Lee, H.-R. Chae, J. Lim, K.H. Ahn, S. Lee, J.-H. Kim, Effect of Pattern Shape on the Initial Deposition of Particles in the Aqueous Phase on Patterned Membranes during Crossflow Filtration, Environmental Science & Technology Letters, 4 (2017) 66-70.[20] L. Vogelaar, J.N. Barsema, C.J. van Rijn, W. Nijdam, M. Wessling, Phase separation micromolding—PSμM, Advanced materials, 15 (2003) 1385-1389.[21] R.J. Gohari, W. Lau, T. Matsuura, A. Ismail, Effect of surface pattern formation on membrane fouling and its control in phase inversion process, Journal of membrane science, 446 (2013) 326-331.[22] Y.-J. Won, S.-Y. Jung, J.-H. Jang, J.-W. Lee, H.-R. Chae, D.-C. Choi, K.H. Ahn, C.-H. Lee, P.-K. Park, Correlation of membrane fouling with topography of patterned membranes for water treatment, Journal of Membrane Science, 498 (2016) 14-19.[23] Y.K. Lee, Y.-J. Won, J.H. Yoo, K.H. Ahn, C.-H. Lee, Flow analysis and fouling on the patterned membrane surface, Journal of membrane science, 427 (2013) 320-325.[24] M. Xie, W. Luo, S.R. Gray, Surface pattern by nanoimprint for membrane fouling mitigation: Design, performance and mechanisms, Water research, 124 (2017) 238-243.[25] O. Heinz, M. Aghajani, A.R. Greenberg, Y. Ding, Surface-patterning of polymeric membranes: fabrication and performance, Current Opinion in Chemical Engineering, 20 (2018) 1-12.[26] Z.-X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe, D.A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, Journal of Membrane Science, 523 (2017) 596-613.[27] T. Femmer, A.J. Kuehne, J. Torres-Rendon, A. Walther, M. Wessling, Print your membrane: Rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist, Journal of Membrane Science, 478 (2015) 12-18.[28] S. Yuan, D. Strobbe, J.-P. Kruth, P. Van Puyvelde, B. Van der Bruggen, Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation, Journal of Materials Chemistry A, 5 (2017) 25401-25409.[29] S. Badalov, Y. Oren, C.J. Arnusch, Ink-jet printing assisted fabrication of patterned thin film composite membranes, Journal of Membrane Science, 493 (2015) 508-514.[30] N.C. Wardrip, M. Dsouza, M. Urgun-Demirtas, S.W. Snyder, J.A. Gilbert, C.J. Arnusch, Printing-Assisted Surface Modifications of Patterned Ultrafiltration Membranes, ACS Applied Materials & Interfaces, 8 (2016) 30271-30280.[31] Y.M.J. Chew, W.R. Paterson, D.I. Wilson, Fluid dynamic gauging: A new tool to study deposition on porous surfaces, Journal of Membrane Science, 296 (2007) 29-41.[32] B. Saini, M.K. Sinha, S.K. Dash, Mitigation of HA, BSA and oil/water emulsion fouling of PVDF Ultrafiltration Membranes by SiO2-g-PEGMA nanoparticles, Journal of Water Process Engineering, (2018).[33] R. Pal, Techniques for measuring the composition (oil and water content) of emulsions—a state of the art review, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 84 (1994) 141-193.[34] I. Sadeghi, A. Aroujalian, A. Raisi, B. Dabir, M. Fathizadeh, Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions, Journal of Membrane Science, 430 (2013) 24-36.[35] R. Jamshidi Gohari, E. Halakoo, W.J. Lau, M.A. Kassim, T. Matsuura, A.F. Ismail, Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process, RSC Advances, 4 (2014) 17587-17596.[36] G. Arthanareeswaran, V.M. Starov, Effect of solvents on performance of polyethersulfone ultrafiltration membranes: Investigation of metal ion separations, Desalination, 267 (2011) 57-63.[37] X. Zhao, Y. Su, J. Cao, Y. Li, R. Zhang, Y. Liu, Z. Jiang, Fabrication of antifouling polymer–inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation, Journal of Materials Chemistry A, 3 (2015) 7287-7295.

6

[38] G. Zhang, J. Jiang, Q. Zhang, X. Zhan, F. Chen, Amphiphilic poly (ether sulfone) membranes for oil/water separation: Effect of sequence structure of the modifier, AIChE Journal, 63 (2017) 739-750.[39] V. Moghimifar, A.E. Livari, A. Raisi, A. Aroujalian, Enhancing the antifouling property of polyethersulfone ultrafiltration membranes using NaX zeolite and titanium oxide nanoparticles, Rsc Advances, 5 (2015) 55964-55976.[40] H. Yamamura, K. Kimura, Y. Watanabe, Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment, Environmental science & technology, 41 (2007) 6789-6794.[41] J. Dickhout, J. Moreno, P. Biesheuvel, L. Boels, R. Lammertink, W. de Vos, Produced water treatment by membranes: A review from a colloidal perspective, Journal of colloid and interface science, 487 (2017) 523-534.[42] Z. Wang, J. Ma, C.Y. Tang, K. Kimura, Q. Wang, X. Han, Membrane cleaning in membrane bioreactors: a review, Journal of membrane science, 468 (2014) 276-307.[43] S.S. Madaeni, T. Mohamamdi, M.K. Moghadam, Chemical cleaning of reverse osmosis membranes, Desalination, 134 (2001) 77-82.[44] R.J. Gohari, E. Halakoo, W.J. Lau, M.A. Kassim, T. Matsuura, A.F. Ismail, Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process, RSC Advances, 4 (2014) 17587-17596.[45] A. Mansourizadeh, A.J. Azad, Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil–water separation, Journal of Polymer Research, 21 (2014) 375.[46] J. Yin, J. Zhou, Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application, Desalination, 365 (2015) 46-56.[47] Y.-F. Zhao, P.-B. Zhang, J. Sun, C.-J. Liu, Z. Yi, L.-P. Zhu, Y.-Y. Xu, Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive, Journal of colloid and interface science, 448 (2015) 380-388.[48] V. Moghimifar, A. Raisi, A. Aroujalian, Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles, Journal of Membrane Science, 461 (2014) 69-80.[49] X. Ma, Y. Su, Q. Sun, Y. Wang, Z. Jiang, Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly (vinyl alcohol), Journal of Membrane Science, 300 (2007) 71-78.

7

top related