approximate correspondences in high dimensions

Post on 06-Jan-2016

40 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Approximate Correspondences in High Dimensions. Kristen Grauman* Trevor Darrell MIT CSAIL (*) UT Austin…. Intra-class appearance. Key challenges: robustness. Illumination. Object pose. Clutter. Occlusions. Viewpoint. Key challenges: efficiency. - PowerPoint PPT Presentation

TRANSCRIPT

MIT CSAILVision interfaces

Approximate Correspondences in High Dimensions

Kristen Grauman*

Trevor Darrell

MIT CSAIL

(*) UT Austin…

MIT CSAILVision interfaces

Key challenges: robustness

Illumination Object pose Clutter

ViewpointIntra-class appearance

Occlusions

MIT CSAILVision interfaces

Key challenges: efficiency

• Thousands to millions of pixels in an image

• 3,000-30,000 human recognizable object categories

• Billions of images indexed by Google Image Search

• 18 billion+ prints produced from digital camera images in 2004

• 295.5 million camera phones sold in 2005

MIT CSAILVision interfaces

Local representations

Superpixels [Ren et al.]

Shape context [Belongie et al.]

Maximally Stable Extremal Regions [Matas et al.]

Geometric Blur [Berg et al.]

SIFT [Lowe]

Salient regions [Kadir et al.]

Harris-Affine [Schmid et al.]

Spin images [Johnson and Hebert]

Describe component regions or patches separately

MIT CSAILVision interfaces

How to handle sets of features?

• Each instance is unordered set of vectors• Varying number of vectors per instance

MIT CSAILVision interfaces

Partial matching

Compare sets by computing a partial matching between their features.

MIT CSAILVision interfaces

Pyramid match overview

optimal partial matching

MIT CSAILVision interfaces

Computing the partial matching

• Optimal matching

• Greedy matching

• Pyramid match

for sets with features of dimension

MIT CSAILVision interfaces

Pyramid match overview

• Place multi-dimensional, multi-resolution grid over point sets

• Consider points matched at finest resolution where they fall into same grid cell

• Approximate optimal similarity with worst case similarity within pyramid cell

No explicit search for matches!

Pyramid match measures similarity of a partial matching between two sets:

MIT CSAILVision interfaces

Pyramid match

Number of newly matched pairs at level i

Measure of difficulty of a match at level i

Approximate partial match

similarity

[Grauman and Darrell, ICCV 2005]

MIT CSAILVision interfaces

Pyramid extraction

,

Histogram pyramid: level i has bins of size

MIT CSAILVision interfaces

Counting matches

Histogram intersection

MIT CSAILVision interfaces

Example pyramid match

MIT CSAILVision interfaces

Example pyramid match

MIT CSAILVision interfaces

Example pyramid match

MIT CSAILVision interfaces

Example pyramid matchpyramid match

optimal match

MIT CSAILVision interfaces

x

Randomly generated uniformly distributed point sets with m= 5 to 100, d=2

Approximating the optimal partial matching

MIT CSAILVision interfaces

PM preserves rank…

MIT CSAILVision interfaces

and is robust to clutter…

MIT CSAILVision interfaces

Learning with the pyramid match

• Kernel-based methods – Embed data into a Euclidean space via a

similarity function (kernel), then seek linear relationships among embedded data

– Efficient and good generalization– Include classification, regression,

clustering, dimensionality reduction,…

• Pyramid match forms a Mercer kernel

MIT CSAILVision interfaces

ComplexityKernel

Pyramid match

Match [Wallraven et al.]

Tim

e (s

)

Acc

ura

cyCategory recognition results

ETH-80 data set

Mean number of features Mean number of features

MIT CSAILVision interfaces

0.002 s / match

5 s / match

Category recognition results

Pyramid match kernel over spatial

features with quantized

appearance

2004

Time of publication

6/05 12/05 3/06 6/06

MIT CSAILVision interfaces

But rectangular histogram may scale poorly with input dimension…

Build data-dependent histogram structure…

New Vocabulary-guided PM [NIPS 06]:

• Hierarchical k-means over training set

• Irregular cells; record diameter of each bin

• VG pyramid structure stored O(kL); stored once

• Individual Histograms still stored sparsely

Vocabulary-guided pyramid match

MIT CSAILVision interfaces

Vocabulary-guided pyramid match

Uniform bins • Tune pyramid partitions to the feature distribution

• Accurate for d > 100

• Requires initial corpus of features to determine pyramid structure

• Small cost increase over uniform bins: kL distances against bin centers to insert points

Vocabulary-guided bins

MIT CSAILVision interfaces

Vocabulary-guided pyramid match

nij(X) : hist. X level i cell j

wij : weight for hist. X level i cell j(1) ~= diameter of cell

(2) ~= dij(X) + dij(Y) (dij(H)=max dist of H’s pts in cell i,j to center)

ch(n) : child h of node n

c2(n11)Mercer kernel

Upper bound

wij * (# matches in cell j level i - # matches in children)

W * # new matches @ level i

MIT CSAILVision interfaces

Results: Evaluation criteria

• Quality of match scores How similar are the rankings produced by the approximate measure to those produced by the optimal measure?

• Quality of correspondences How similar is the approximate correspondence field to the optimal one?

• Object recognition accuracy Used as a match kernel over feature sets, what is the recognition output?

MIT CSAILVision interfaces

Match score quality

Uniform bin pyramid match

Vocabulary-guided pyramid match

ETH-80 images, sets of SIFT features

d=8 d=128

d=128d=8

Dense SIFT (d=128) k=10, L=5 for VG PM; PCA for low-dim feats

MIT CSAILVision interfaces

ETH-80 images, sets of SIFT features

Match score quality

MIT CSAILVision interfaces

Bin structure and match countsData-dependent bins allow more gradual distance ranges

d=8 d=13

d=68

d=3

d=113 d=128

MIT CSAILVision interfaces

Approximate correspondences

Use pyramid intersections to compute smaller explicit matchings.

MIT CSAILVision interfaces

Approximate correspondences

Use pyramid intersections to compute smaller explicit matchings.

MIT CSAILVision interfaces

Correspondence examples

MIT CSAILVision interfaces

ETH-80 images, sets of SIFT descriptorsApproximate correspondences

MIT CSAILVision interfaces

ETH-80 images, sets of SIFT descriptorsApproximate correspondences

MIT CSAILVision interfaces

Impact on recognition accuracy

• VG-PMK as kernel for SVM• Caltech-4 data set• SIFT descriptors extracted

at Harris and MSER interest points

MIT CSAILVision interfaces

Sets of features elsewhere

diseases as sets of gene expressions

documents as bags of words

methods as sets of

instructions

top related