anion binding in catalysis - princeton university · chiral anion mediated asymmetric chemistry!...

Post on 01-Sep-2018

225 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Anion binding in Catalysis

Asymmetric and Non-Asymmetric Examples

Andy McNally

MacMillan Group Meeting

2/04/09

Chiral Anion Mediated Chemistry

! The use of 'cationic' counter-ion chemsitry far outweighs anion-binding

Introduction

SubstrateCounter-ion

!+ !–

SubstrateCounter-ion

!– !+

vs

! Ion-pair catalysis has been known for a very long time - phase transfer catalysis

! Ion-pairing involving a catalytic anionic component has only recently emerged

! New strategy for catalysis:

! Unexplored reactivity

! Enhanced reactivity vs ligand based approaches

! New asymmetric variants and entirely new transformations

Chiral Anion Mediated Asymmetric Chemistry

! The chiral pool provides a convenient source of enantiomerically pure anions

From Humble Beginings to New Strategies for Catalysis

–O2CCO2

OH

OH

Ph CO2–

OH

–O2CCO2

OCOPh

OCOPh

Me Me

OSO3

O

O

O

O

O

O

Sb

SbO

O

O

O

O

O

2–

Me Me

O

O

F3C

Eu

4

Review: Lacour, J. Chem. Soc. Rev. 2003, 32, 373-382.

Cl O

O

B

ClO

O

O

O

B

O

O

Me Me

MeMe

O

O

B

O

O

Me Me

O

OB

O

O

R

R

O

OB

O

OBB

O

O

P

O

O

O

O

P

O

O

O

O

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

O

P

O

O

O

O

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

O

Cl

Cl

Cl

Cl

Chiral Anion Mediated Asymmetric Chemistry

! Uses of chira anions: determination of enantiomeric purity

From Humble Beginings to New Strategies for Catalysis

N

N

Me

Me

Me

Me

Me

Me

NMe3

Me P

MeO

CD3

CH3

Mn(CO3

OMe

Me

S

Pht-Bu

Me

O

O

P

OO

OO

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

Review: Lacour, J. Chem. Soc. Rev. 2003, 32, 373-382.

Chiral Anion Mediated Asymmetric Chemistry

! Uses of chira anions: purification and enantiomeric separation of cations

From Humble Beginings to New Strategies for Catalysis

O

P

OO

OO

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

O

Cl

Cl

Cl

Cl

N N

Me

Me

Me

Me

X

(X = H or NMe2)

MeO OMe

O

Me

O

Me

MeO OMe N N

X

(X = H or Br)

Review: Lacour, J. Chem. Soc. Rev. 2003, 32, 373-382.

Chiral Anion Mediated Asymmetric Chemistry

! First transition metal-catalysed enantioselective transformation using chiral anions

From Humble Beginings to New Strategies for Catalysis

PhPhINTs

TsN

Ph

O

OB

O

OCu(MeCN)4

Benzene

Arndstsen, B. A. Org. Lett. 2000, 2, 4165-4168.

Chiral Anion Mediated Asymmetric Chemistry

! Aziridination under 'classical' conditions displays a pronounced counteranion effect

From Humble Beginings to New Strategies for Catalysis

PhPhINTs

TsN

Ph

10 mol% CuX, 0 ºC N

O

N

O

Me Me

t-Bu t-Bu

(11 mol%)

X % ee (benzene) % ee (MeCN)

OTf 66 2

ClO4 57 2

Cl 26 2

PF6 33 2

Arndstsen, B. A. Org. Lett. 2000, 2, 4165-4168.

Chiral Anion Mediated Asymmetric Chemistry

! Synthesis of copper-boronate catalyst

From Humble Beginings to New Strategies for Catalysis

O

OB

O

O

Cu(MeCN)4

OH

OH

1) H2BBrSMe2

2) Ag2CO3

Ag

O

OB

O

O

CuCl

MeCN

Arndstsen, B. A. Org. Lett. 2000, 2, 4165-4168.

Chiral Anion Mediated Asymmetric Chemistry

! Ion-pair crystal structure

From Humble Beginings to New Strategies for Catalysis

Cu-O, 2.16 A

Chiral Anion Mediated Asymmetric Chemistry

! Enantiocontrol from chiral boronate is low

From Humble Beginings to New Strategies for Catalysis

PhPhINTs

TsN

Ph

O

OB

O

OCu(MeCN)4

(1-3 mol% Cu-B(OR*)4)

1-3 mol% L

N

O

N

O

Me Me

t-Bu t-Bu

(S)-Cu-B(OR*)4

13% ee (R)

N

O

N

O

Me Me

t-Bu t-Bu

(R)-Cu-B(OR*)4

12% ee (R)

no ligand

(S)-Cu-B(OR*)4

7% ee (S)

no ligand

(R)-Cu-B(OR*)4

7% ee (R)

(R)-Cu-B(OR*)4

NN

10% ee (R)

Arndstsen, B. A. Org. Lett. 2000, 2, 4165-4168.

Chiral Anion Mediated Asymmetric Chemistry

! Enantiocontrol from chiral boronate is low

From Humble Beginings to New Strategies for Catalysis

PhPhINTs

TsN

Ph

O

OB

O

OCu(MeCN)4

(1-3 mol% Cu-B(OR*)4)

1-3 mol% L

N

O

N

O

Me Me

t-Bu t-Bu

(S)-Cu-B(OR*)4

13% ee (R)

N

O

N

O

Me Me

t-Bu t-Bu

(R)-Cu-B(OR*)4

12% ee (R)

no ligand

(S)-Cu-B(OR*)4

7% ee (S)

no ligand

(R)-Cu-B(OR*)4

7% ee (R)

(R)-Cu-B(OR*)4

NN

10% ee (R)

Arndstsen, B. A. Org. Lett. 2000, 2, 4165-4168.

Cu-O, 2.55A

Chiral Anion Mediated Asymmetric Chemistry

! Crystal structure of (bipy)Cu(H2C=CHPh)+(R)-B(OR*)4–

From Humble Beginings to New Strategies for Catalysis

Chiral Anion Mediated Asymmetric Chemistry

! Peptide derived chiral boranate cannot provide useful levels of enantioselectivity

From Humble Beginings to New Strategies for Catalysis

Ph Ph

Cu(MeCN)

1 mol%, CH2Cl2N2

O

OEt

O

B

O

O

O

NH

O

CO2Me

Me

Me

NH

O

CO2Me

Me

Me

HN

O

HN

O

CO2Me

CO2Me

Me

Me

Me

Me

CO2Et

Ph

CO2Et

max ee's 19% 34%

1:1 dr 3% yield

Arndstsen, B. A. Tetrahedron: Asymmetry 2005, 16, 1789-1799.

Braun, M. Angew. Chem. Intl. Ed 2004, 43, 514-517.

Titanium (IV) Catalysed Allylation

! Braun allylation of ethers is an overlooked reaction within this class

Anion Binding With Useful Levels of Selectivity

Me OTMS TMS Ti-cat. 10 mol%

–TMSOTMS

Me

96% 98.9% ee

Me OTMS(±)

Me

Me3SiOTiL*F2

Me

Me3SiOTiL*F2

ON

OPh

Ph

Ph

TiF2

t-Bu

t-Bu

Me

(S)

Me

(R)

Substrate

Gold Mediated Counteranion Catalysis

! Gold Catalysed enantioselective transformations were predicted to be difficult

The Toste Story

Au+Ligand

Large Distance

Short Reviews: Krause. Angew. Chem. Intl. Ed. 2008, 47, 2178-2181; Widenhoefer. Chem. Eur. J. 2008, 14, 5382-5391.

Gold Mediated Counteranion Catalysis

! Solution one: Development of bis(gold)-phosphine complexes

The Toste Story

O

O

O

O P

P

Au

Cl

Au

Cl

t-Bu

OMe

t-Bu

t-Bu

OMe

t-Bu

2

2

P

P

Au

Cl

Au

Cl

t-Bu

OMe

t-Bu

t-Bu

OMe

t-Bu

2

2

MeO

MeO

(R)-DTBM-SEGPHOS-(AuCl)2

(S)-DTBM-MeOBIPHEP-(AuCl)2

OPiv

Me Me

Ar Ar

Me

Me

PivO

2.5 mol% cat.

5 mol % AgSbF6

2.5 mol% cat.

5 mol % AgSbF6

2.5 mol% cat.

5 mol % AgSbF6

OH

PhPh n

O

PhPh

*

n = 0, 67%, 93% een = 1, 96%, 88% ee

TsN

Me

Me

NHTs Me

Me

99%, 99% ee

60-85%

76-94% ee

Substrate

Gold Mediated Counteranion Catalysis

! Chiral anion strategy may also overcome inherent proximity problem

The Toste Story

Au+Ligand

Large Distance

Counter-ion ShortDistance

Toste, D. F. J. Am. Chem. Soc. 2007, 129, 2452-2453.

Gold Mediated Counteranion Catalysis

! Counter-ion effects had already been identified in ligand controlled reactions

The Toste Story

P

P

Au

Cl

Au

Cl

2

2

(R)-xylyl-BINAP-(AuCl)2

TsNNHTs

Me

Me

Me

Me

P Au Cl

P Au Cl

*

P Au Cl

P Au

*

+ BF4–

P Au

P Au

*

2+ 2BF4–

3 mol% cat, 3 mol% AgBF4

81% 51% ee

3 mol% cat, 6 mol% AgBF4

82% 1% ee

Toste, D. F. Science 2007, 317, 496-499

Gold Mediated Counteranion Catalysis

! Initial investigations: ligand vs anion control

The Toste Story

PR2

PR2

OOH H3 mol% L(AuCl)2, 3 mol% AgX

PR2

PR2

O

O

O

O

AgBF4

Ag-CO2-4-(NO2)-C6H3

0-8% ee

CH2Cl2

Toste, D. F. Science 2007, 317, 496-499

Gold Mediated Counteranion Catalysis

! Initial investigations: ligand vs anion control

The Toste Story

OOH HLAuCl or L(AuCl)2, AgCat

L = PPh3 (5 mol%), 5 mol% (R)-Agcat

L = dppm (2.5 mol%), 5 mol% (R)-Agcat

CH2Cl2

O

OP

OAg

O

i-Pr i-Pr

i-Pr

i-Pr

i-Pri-Pr

L = dppm (2.5 mol%), 5 mol% (R)-Agcat

89% 48% ee

76% 65% ee

90% 98% ee

(benzene)

dppm = Ph2P PPh2

Toste, D. F. Science 2007, 317, 496-499

Gold Mediated Counteranion Catalysis

! Initial investigations: ligand vs anion control

The Toste Story

O

R1

R1

R1

R1

OH H2.5 mol% dppm(AuCl)2

benzene, 23 ˚C

n

R2 R2

R3 R3

R3

R3

R2R2

n

79-96% 90-99% ee

5 mol% Agcat.

SO2MesN

R1

R1

R1

R1

NHSO2Mes H5 mol% Ph(CH3)2PAuCl

benzene, 23 ˚C

R2 R2

R2R2

73-97% 96-99% ee

5 mol% Agcat.

Toste, D. F. Science 2007, 317, 496-499

Substrate

Gold Mediated Counteranion Catalysis

! Chiral amplification via ligand-counter ion relay

The Toste Story

Au+Ligand

Large Distance

Counter-ion ShortDistance

Toste, D. F. Science 2007, 317, 496-499

Substrate

Gold Mediated Counteranion Catalysis

! Chiral amplification via ligand-counter ion relay

The Toste Story

Au+Ligand

Large Distance

Counter-ionInteraction

ChiralAmplification?

Toste, D. F. Science 2007, 317, 496-499

Gold Mediated Counteranion Catalysis

! Chiral amplification vis ligand-counterion relay

The Toste Story

benzene, 23 ˚C

5 mol% Agcat.OH OH

O

OP

OAg

O

i-Pr i-Pr

i-Pr

i-Pr

i-Pri-Pr

Ph2P PPh2

dppm

2.5 mol% dppm(AuCl)2

96% 80% ee

Gold Mediated Counteranion Catalysis

! Chiral amplification vis ligand-counterion relay

The Toste Story

benzene, 23 ˚C

5 mol% Agcat.OH OH

O

OP

OAg

O

i-Pr i-Pr

i-Pr

i-Pr

i-Pri-Pr

P

(S,S)-DIPAMP

2.5 mol% [(S,S)-DIPAMP](AuCl)2

96% 92% ee

P

Ph

PhMeO

OMe

Toste, D. F. Science 2007, 317, 496-499

Toste, D. F. Science 2007, 317, 496-499

Gold Mediated Counteranion Catalysis

! Chiral amplification vis ligand-counterion relay

The Toste Story

OH

benzene, 23 ˚C

5 mol% Agcat.

O

OP

OAg

O

i-Pr i-Pr

i-Pr

i-Pr

i-Pri-Pr BINAP

dppm (R)-AgCat.

Me

MeO

O OMe

Me

H5 mol% L(AuCl)2

(R)-BINAP (R)-AgCat.

(S)-BINAP (R)-AgCat.

PPh2

PPh2

89% 12% ee (S)

91% 3% ee (R)

88% 82% ee (S)

Norton, J. R. J. Am. Chem. Soc. 2005, 127, 7805-7814

Chiral Couneranion-Aided Asymmetric Hydrogenation

! Imine hydrogenation via an ionic mechanism

Asymmetric Imine Reduction

N

R'R

M–H N

R'RH

M

M+

N

R'R

M–H

N

R'RH

H2

MH

H

N

R'RH

N

R'RH

H

Norton, J. R. J. Am. Chem. Soc. 2005, 127, 7805-7814

Chiral Couneranion-Aided Asymmetric Hydrogenation

! Imine hydrogenation via an ionic mechanism

Asymmetric Imine Reduction

N

R'R

M–H N

R'RH

M

M+

N

R'R

M–H

N

R'RH

H2

MH

H

N

R'RH

N

R'RH

H

N

Me

BF4–

N

MeH

2 mol %

CpRu(P-P)HPPh2

PPh2

(R,R)-Norphos50 psi H2

74% 54% ee

Xiao, J. J. Am. Chem. Soc. 2008, 130, 14450-14451

Chiral Couneranion-Aided Asymmetric Hydrogenation

! Ir(III)-Phosphoric acid system leads to high enantioselectivities via ligand-anion control

Asymmetric Imine Reduction

NR1

R3R2L

M

L

X*–

H2*

L

M

L* H

NR1

R3R2

HX*–

HNR1

R3R2

Chiral Couneranion-Aided Asymmetric Hydrogenation

! Ir(III)-Phosphoric acid system leads to high enantioselectivities via ligand-anion control

Asymmetric Imine Reduction

NR1

R3R2L

M

L

X*–

H2*

L

M

L* H

NR1

R3R2

HX*–

HNR1

R3R2

N

Me

OMe

[Ir] (1mol%)

H2 (20 bar), toluene, 20 ºC

HN

Me

OMe

Ph

Ph

N

NH

Ir

ArO2S

0% 0% ee

Ph

Ph

N

NH

Ir

ArO2S

30% 81% ee

Ph

Ph

N

NH

Ir

ArO2S

27% –3% ee

O

OP

O

OH

R

R

(R = 2,4,6-(2-C3H7)3C6H2)

Pacid (6mol%)

(Ar = 4-CH3C6H4)

Xiao, J. J. Am. Chem. Soc. 2008, 130, 14450-14451

Xiao, J. J. Am. Chem. Soc. 2008, 130, 14450-14451

Chiral Couneranion-Aided Asymmetric Hydrogenation

! Ir(III)-Phosphoric acid system leads to high enantioselectivities via ligand-anion control

Asymmetric Imine Reduction

NR1

R3R2L

M

L

X*–

H2*

L

M

L* H

NR1

R3R2

HX*–

HNR1

R3R2

N

Me

OMe

[Ir] (1mol%)

H2 (20 bar), toluene, 20 ºC

HN

Me

OMe

Ph

Ph

N

NH2

Ir

ArO2S

76% 97% ee 92% 97% ee

O

OP

O

OH

R

R

(R = 2,4,6-(2-C3H7)3C6H2)

Pacid (x mol%)

(Ar = 2,3,4,5,6-(CH3)5C6)

O

PO

OR*

OR*

Ph

Ph

N

NH2

Ir

ArO2S

O

PO

OR*

OR*

+ 1 mol%Pacid

Xiao, J. J. Am. Chem. Soc. 2008, 130, 14450-14451

Chiral Couneranion-Aided Asymmetric Hydrogenation

! Ir(III)-Phosphoric acid system leads to high enantioselectivities via ligand-anion control

Asymmetric Imine Reduction

N

Me

R1

H2 (20 bar), toluene, 20 ºC

HN

Me

R1

92-95% 84-97% ee

O

OP

O

OH

R

R

(R = 2,4,6-(2-C3H7)3C6H2)

(Ar = 2,3,4,5,6-(CH3)5C6)

Ph

Ph

N

NH2

Ir

ArO2S

O

PO

OR*

OR*

+ 1 mol%Pacid

R2 R2

NHPMB

MeNHPMB

Me

NHPMB

MeMe

Me NHPMB

MeMe

93% 91% ee 88% 95% ee

90% 92% ee 91% 94% ee

List, B. J. Am. Chem. Soc. 2007, 129, 11336-11337.

Chiral Counteranions in Transition Metal Catalysis

! Pd/Brønsted acid-catalysed direct allylation of aldehydes

Chiral Co-Catalysts - List

O

OP

O

OH

i-Pr

i-Pr i-Pr

i-Pr

i-Pr i-Pr(1.5 mol%)

5A MS, MTBE, 40 ºC, 8-24 hr

O

R1 = Ar: 40-89% 83-97% ee

Me

R1

O

MeR1

R2

Ph

NH

Ph R2

(1.0 equiv)

Pd(PPh3)4 3 mol%

˚

R1 = Alkyl: 45-65% 80-90%ee

Iminium Catalysis - An Alternative Approach

! Proposed mechanism

Chiral Co-Catalysts - List

O

MeH2O

NH

R

(R)-TRIP

R1

N

HR

R1Me

O

P

OR*O OR*

N

Me

R1

H R

P

O

OR**RO

O

Pd

Pd(0)

N

R1

Me

R

H

O

P

OR*O*RO

O

Me R1

(R)-TRIP

List, B. J. Am. Chem. Soc. 2007, 129, 11336-11337.

Chiral Anion Phase Transfer Catalysis

! Reverse of roles commonly associated in phase transfer systems

Chiral Borate Anions

R

R N

Cl

(±)

R

R

N

X–

R

R N

NucAnion cat. Nuc

O

O

B

O

O

Et3NH+

i-Pr i-Pr

i-Pr i-Pr

O

OP

O

OAg

i-Pr

i-Pr

2008 - Toste >90% ee2003 - Nelson <15% ee

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

Chiral Anion Phase Transfer Catalysis

! Reverse of roles commonly associated in phase transfer systems

Chiral Borate Anions

R

R N

Cl

(±)

R

R

N

X–

R

R N

NucAnion cat. Nuc

O

O

B

O

O

Et3NH+

i-Pr i-Pr

i-Pr i-Pr

O

OP

O

OAg

i-Pr

i-Pr

2008 - Toste >90% ee2003 - Nelson <15% ee

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

Chiral Anion Phase Transfer Catalysis

! Reverse of roles commonly associated in phase transfer systems

Chiral Borate Anions

Ph

Ph N

Cl

(±)

Ph

Ph

N

*B(OR)4–

Ph

Ph N

HN

50 mol% cat.

O

O

B

O

O

A+

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

THF-Toluene100 ˚C

H2N PhPh

A+ Yield % ee %

Et3NH+

Et2NH2+

Ph NH3+

Me

(R)

Na+

25%

18%

12%

30%

15%

–6%

–7%

3% (R, R)

8% (S, S)

Nelson, A. Tetrahedron: Asymmetry 2003, 14, 1995-204.

Chiral Anion Phase Transfer Catalysis

! Ion-pairing NMR studies

Chiral Borate Anions

O

O

B

O

O

Nelson, A. Tetrahedron: Asymmetry 2003, 14, 1995-204.

N

Ph NH3+

Me

OTf

! Borate salt was found to be soluabalised but the aziridinium triflate in CDCl3

! Proton and carbon shifts vary linearly with amount of borate salt present

! Lack of spliting of enatiotopic protons in the aziridium salt indicates poor discrimination from the chiral anion

HA

HA

HB

HB

HC

HC

Chiral Anion Phase Transfer Catalysis

! Reverse of roles commonly associated in phase transfer systems

Chiral Phosphonate Anions

R

R N

Cl

(±)

R

R

N

X–

R

R N

NucAnion cat. Nuc

O

O

B

O

O

Et3NH+

i-Pr i-Pr

i-Pr i-Pr

O

OP

O

OAg

i-Pr

i-Pr

2008 - Toste >90% ee2003 - Nelson <15% ee

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

Chiral Anion Phase Transfer Catalysis

! Halide abstraction method requires regeneration of chiral silver salt

Chiral Phosphonate Anions

Ph

Ph N

Cl

(±)

Ph

Ph

N

Cat.–

Ph

Ph N

NucCat.Ag Nuc

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

–AgCl –Cat.H

! Addition of an achiral Ag(I) source must not introduce an interfereing counteranion

R-Hal

AgHalAgB

BH

NucHR-Nuc

AgCat.

R+ Cat.–HCat.

Halide

Abstraction

Chiral Anion Phase Transfer Catalysis

! Halide abstraction method requires regeneration of chiral silver salt

Chiral Phosphonate Anions

Ph

Ph N

Cl

(±)

Ph

Ph

N

Cat.–

Ph

Ph N

NucCat.Ag Nuc

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

–AgCl –Cat.H

! Addition of an achiral Ag(I) source must not introduce an interfereing counteranion

R-Hal

AgHalAgB

BH

NucHR-Nuc

AgCat.

R+ Cat.–HCat.

Nucleophilic Addition

Chiral Anion Phase Transfer Catalysis

! Halide abstraction method requires regeneration of chiral silver salt

Chiral Phosphonate Anions

Ph

Ph N

Cl

(±)

Ph

Ph

N

Cat.–

Ph

Ph N

NucCat.Ag Nuc

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

–AgCl –Cat.H

! Addition of an achiral Ag(I) source must not introduce an interfereing counteranion

R-Hal

AgHalAgB

BH

NucHR-Nuc

AgCat.

R+ Cat.–HCat.

PhaseTransfer

Use solid phase Ag(I)

solid-liquid PTC

Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984-14986.

Chiral Anion Phase Transfer Catalysis

! Suitability of silver(I) sources is crucial for the catalyst control

Chiral Phosphonate Anions

Ph

Ph N

Cl

(±)

Ph

Ph

N

Cat.–

Ph

Ph N

O15 mol% cat.

i-Pr i-Pr

i-Pr i-Pr

O

OP

O

OAg

i-Pr

i-Pr

ASYMMETRIC RING OPENING OF MESO-AZIRIDINIUM IONS

HO

Me

MeMe

Toluene, 50˚C

AgB

AgOTs

Ag2CO3

Ag2CO3

88% 56% ee

77% 94% ee

84% 94% ee(4A MS)

Me

MeMe

Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984-14986.

Chiral Anion Phase Transfer Catalysis

! Utility - alcohol and amine fucntionality

Chiral Phosphonate Anions

81% 92% ee

Ph

Ph N

O Me

Me OMe

Ph

Ph N

O

Me Me

OTBS

Ph

Ph N

O

OO

Ph

Ph N

O

MeMeMe

Ph

Ph N

O Me

Me OMe

Me

Me

Ph

Ph N

O Me

Me OMe

N

O

4-NO2-Ph

Ph

Ph N

OPh

Ph N

O Me

Me OMe

Me

67% 94% ee 85% 97% ee 50% 92% ee

86% 92% ee 70% 99% ee 76% 94% ee 80% 94% ee, 94% de

Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984-14986.

Chiral Anion Phase Transfer Catalysis

! Utility - alcohol and amine fucntionality

Chiral Phosphonate Anions

81% 92% ee

Ph

Ph N

O Me

Me OMe

Ph

Ph N

O

Me Me

OTBS

Ph

Ph N

O

OO

Ph

Ph N

O

MeMeMe

Ph

Ph N

O Me

Me OMe

Me

Me

Ph

Ph N

O Me

Me OMe

N

O

4-NO2-Ph

Ph

Ph N

OPh

Ph N

O Me

Me OMe

Me

67% 94% ee 85% 97% ee 50% 92% ee

86% 92% ee 70% 99% ee 76% 94% ee 80% 94% ee, 94% de

Chiral Anion Phase Transfer Catalysis

! Extention to meso-episulfonium ions uses a modified system

Chiral Phosphonate Anions

Ph

Ph SMe

O

(±)

Ph

Ph

SMe

Cat.–

Ph

Ph SMe

OR15 mol% cat.

i-Pr i-Pr

i-Pr i-Pr

O

OP

O

OH

i-Pr

i-Pr

ASYMMETRIC RING OPENING OF MESO-EPISULFONIUM IONS

ROH

Toluene, 23˚C

90-98% yield

CCl3HN

87-92%ee

! Mechanistically distinct from other phosphoric acid catalysed reactions enantioselectivity results from H-bonding to the electrohile

! Ring opening of the meso-episulfonium is the enantiodetermining step. Ion-pairing is responsible for the stereoselectivity

Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984-14986.

Hydrogen Bonding Mediated Counterion Catalysis

! Ureas and thioureas are proven motifs towards anion-binding using hydrogen bonding

Anion Recognition

Review: Schmidtchen, F. P. Chem. Rev. 1997, 97, 1609-1646.

Hydrogen Bonding Mediated Counterion Catalysis

! The stereoselectivity achieved by thiourea catalysts appears unusual

The Jacobsen Story

NH

NH2

RO

R'H

1) R'CHO, 3A MS˚

2) AcCl, 2,6-lutidine

Cat. (5-10 mol%)

Et2O, –30 to –60 ºC

NH

RNAc

R'

65-81%, 85-95%ee

Hydrogen Bonding Mediated Counterion Catalysis

! The stereoselectivity achieved by thiourea catalysts appears unusual

The Jacobsen Story

NH

NH2

RO

R'H

NH

RN

R'

1) R'CHO, 3A MS˚

2) AcCl, 2,6-lutidine

Cat. (5-10 mol%)

Et2O, –30 to –60 ºC

Me

O

Cl

N

N

S

t-Bu

N(i-Bu)2

O

N

Ph

Ph

H

H

NH

RNAc

R'

65-81%, 85-95%ee

! "The ability to activate a weakly Lewis basic N-acyliminium ion towards enantioselective transformations presents new opportunities for catalysis and raises intriguing questions as to the nature of this interaction."

Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558-10559.

Hydrogen Bonding Mediated Counterion Catalysis

! H-Bond donor - anion binding catalysis is proposed in 2007

The Jacobsen Story

Cat. (10 mol%)

–55 ºC or –78 ºC

52-94%, 81-99%ee

! Alkylated derivatives react significantly faster than reduced compounds. SN1 mechanism.

NH

N

O

R4

HO

R1

R2

R3 n=1, 2NH

R1

R2

R3

N O

R4n=1, 2

TMSCl, TBME

! SN2 Mechanism

NH

N

O

RCl N

H

N O

R

Jacobsen, E. N. J. Am. Chem. Soc. 2008, 127, 13404-13405..

Hydrogen Bonding Mediated Counterion Catalysis

! Two SN1-type mechanisms are likely

The Jacobsen Story

NH

N

O

RCl N

H

N O

RNH

N

O

R

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

N

N

O

Cl–N

H

S NH

R1

R2

R

spiro pathway

direct pathway

Hydrogen Bonding Mediated Counterion Catalysis

! Two SN1-type mechanisms are likely

The Jacobsen Story

NH

N

O

RCl N

H

N O

RNH

N

O

R

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

N

N

O

Cl–N

H

S NH

R1

R2

R

spiro pathway

direct pathway

! DFT calculations of fully ionised N-acyliminium ions interacting with thiourea derivatives failed to converge on any ground state structure.

Hydrogen Bonding Mediated Counterion Catalysis

! Two SN1-type mechanisms are likely

The Jacobsen Story

NH

N

O

RCl N

H

N O

RNH

N

O

R

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

N

N

O

Cl–N

H

S NH

R1

R2

R

spiro pathway

direct pathway

! Pronounced counter ion effect:

X– ee

Cl– 97%

Br– 68%

I– <5%

Hydrogen Bonding Mediated Counterion Catalysis

! Two SN1-type mechanisms are likely

The Jacobsen Story

NH

N

O

RCl N

H

N O

RNH

N

O

R

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

N

N

O

Cl–N

H

S NH

R1

R2

R

spiro pathway

direct pathway

! Pronounced solvent effect

solv ee

TBDME 97%

THF 34%

DCM <5%

see also: Jacobsen, E. N. Org. Lett,2008, 10,1577-1578.

Hydrogen Bonding Mediated Counterion Catalysis

! A versatile method for other highly reactive cationic species?

The Jacobsen Story

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

R3N

O

R4

R1 R2

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

O

Nuc

Nuc

ACYL-IMINIUM ION STABILISATION OXOCARBENIUM ION STABILISATION?

Hydrogen Bonding Mediated Counterion Catalysis

! A versatile method for other highly reactive cationic species?

The Jacobsen Story

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

R3N

O

R4

R1 R2

Cl–

N

N

H

S

N

H

t-Bu

R

PhMe

O

Nuc

Nuc

ACYL-IMINIUM ION STABILISATION OXOCARBENIUM ION STABILISATION?

! Cyclic oxo-carbenium ions are extremely unstable species (lifetime ~ 10-12 s)

! Enantioselective addtions to oxo-carbenium ions are extememly rare with only two examples reported (Braun: Angew. Intl. Ed. 2004, 43, 514-517 and Evans: JACS, 2005, 127, 10506-10507).

Hydrogen Bonding Mediated Counterion Catalysis

! Importance of catalyst structure

The Jacobsen Story

10 mol% cat.

ENANTIOSELECTIVE ADDITIONS TO OXOCARBENIUM IONS

TBDME, –78 ˚CO

Cl

R

OSIR3

OR1

R2

R2

OR

R2 CO2R1R2

70-96% 74-97%ee

NH

NH

St-Bu

N

O

F

CF3

CF3

Reactivity at low temp

3º amide important forreactivity and selectivity

Aryl group crucial forselectivity - engagesoxocarbenium ion in TS?

Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130 ,7198-7199.

Hydrogen Bonding Mediated Counterion Catalysis

! Importance of catalyst structure

The Jacobsen Story

10 mol% cat.

ENANTIOSELECTIVE ADDITIONS TO OXOCARBENIUM IONS

TBDME, –78 ˚CO

Cl

R

OSIR3

OR1

R2

R2

OR

R2 CO2R1R2

70-96% 74-97%ee

O

CO2Me

O

CO2Me

O

CO2Me

O

CO2Me

Me

F MeO

87% 87% ee 71% 90% ee 70% 90% ee 96% 74% ee

Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130 ,7198-7199.

Hydrogen Bonding Mediated Counterion Catalysis

! Importance of catalyst structure

The Jacobsen Story

10 mol% cat.

ENANTIOSELECTIVE ADDITIONS TO OXOCARBENIUM IONS

TBDME, –78 ˚CO

Cl

R

OSIR3

OR1

R2

R2

OR

R2 CO2R1R2

70-96% 74-97%ee

O

CO2Me

O

CO2Me

O

CO2Me

O

CO2Me

92% 92% ee 84% 94% ee 85% 92% ee 87% 93% ee

MeMe O

Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130 ,7198-7199.

Iminium Catalysis - An Alternative Approach

! Explotation of ion-pair intermediate in iminium catalysis

Chiral Co-Catalysts - List

O

R2R1

NH

R

HX

N

R2R1

X

R

N

R2R1

NH HX*

X*

NH

R

HX*N

R2R1

X*

R

Amine ControlledStereoselectivity

Anion ControlledStereoselectivity

'Matched' Ion-PairControl

Iminium Catalysis - An Alternative Approach

! Reaction works across a range of aromatic aldehydes

Chiral Co-Catalysts - List

O

MeAr

O

OP

O

O–

i-Pr

i-Pr i-Pr

i-Pr

i-Pr i-Pr

NH2

O

(20 mol%)

NH

CO2MeMeO2C

H H

(1.1 equiv) O

MeArDioxane, 50 ˚C, 24 hr

63-90% 96-99% ee

List, B. Angew. Chem. Intl. Ed. 2006, 45, 4193-4195.

Iminium Catalysis - An Alternative Approach

! Achieving previously unatainable results - sterically unhindered aliphatic aldehydes

Chiral Co-Catalysts - List

O

Me

O

OP

O

O–

i-Pr

i-Pr i-Pr

i-Pr

i-Pr i-Pr

NH2

O

(20 mol%)

NH

CO2MeMeO2C

H H

(1.1 equiv)

O

Me

THF, r.t., 24 hr

71% 90% ee

Me Me Me Me

(E)-Citral (R)-Citronellal

N

NH

O Me

PhMe

Me

Me

TFA

N

NH

O Me

Me

Me

Me

TFA

58% 40% ee 82% 40% ee

List, B. Angew. Chem. Intl. Ed. 2006, 45, 4193-4195.

Iminium Catalysis - An Alternative Approach

! Extention to enone hydrogenation - matched-mismatched effects

Chiral Co-Catalysts - List

O

OP

O

O–

i-Pr

i-Pr i-Pr

i-Pr

i-Pr i-Pr

(20 mol%)

NH

CO2MeMeO2C

H H

(1.1 equiv)

Bu2O, 60 ºC, 24 hr

66% 54% ee 81% 94% ee

O

Me

O

Me

R

NH3+

CO2t-Bu

i-Pr

NH3+

CO2t-Bu

CF3COO–

NH3+

CO2t-Bu

(R)-TRIP

NH3+

CO2t-Bu

(R)-TRIP

i-Pr

NH3+

CO2t-Bu

(S)-TRIP

i-Pr

66% 48% ee 45% 16% ee

List, B. J. Am. Chem. Soc. 2006, 128, 13368-13369.

Iminium Catalysis - An Alternative Approach

! Extention to enone hydrogenation - substrate tolerance

Chiral Co-Catalysts - List

O

OP

O

O–

i-Pr

i-Pr i-Pr

i-Pr

i-Pr i-Pr

(5 mol%)

NH

CO2EtEtO2C

H H

(1.2 equiv)

Bu2O, 60 ºC, 48 hr

68-78% 96-98% ee 99% 96% ee

i-Pr

NH3+

CO2t-Bu

89-99% 90-98% ee R = CO2Et: 99% 90% ee

O

Rn

O

Rn

O

R

O

R

O

Me

Me

Me

O

R

R = Ph: 81% 70% ee

List, B. J. Am. Chem. Soc. 2006, 128, 13368-13369.

Iminium Catalysis - An Alternative Approach

! Extention to enal epoxidation

Chiral Co-Catalysts - List

O

OP

O

O–

i-Pr

i-Pr i-Pr

i-Pr

i-Pr i-Pr(10 mol%)

(1.1 equiv)

Dioxane, 35 ºC, 72 hr

R = Ar: 60-84%, 98:2->99:1 dr90-96% ee

O

R

O

R

t-BuOOH

NH2

F3C

CF3

CF3

F3C

O

R = n-hex: 67%, 94:6 dr70% ee (maj), 92% ee (min)

List, B. Angew. Chem. Intl. Ed. 2008, 47, 1119-1122.

Iminium Catalysis - An Alternative Approach

! Tri-substituted enals have proven to be elusive substrates

Chiral Co-Catalysts - List

O

OP

O

O–

i-Pr

i-Pr i-Pr

i-Pr

i-Pr i-Pr(10 mol%)

(1.1 equiv)

TBDME, 0 ºC, 24 hr

O

R2

O

R2

t-BuOOH

NH2

F3C

CF3

CF3

F3C

O

R1 R1

O

Me

O

Me

O

Et

O

Et

O

O

O

O

Me Me

Me

83% 94%ee 85% 94%ee 75% 90% ee85% 72:28 dr

76% ee (trans), 92% ee (cis)

List, B. Angew. Chem. Intl. Ed. 2008, 47, 1119-1122.

Iminium Catalysis - An Alternative Approach

! Proposed mechanism - unusual enantiodetermining step

Chiral Co-Catalysts - List

O

Me

t-BuOOH

Me

N

MeMe

Ar Ar

TRIP

N

Me

Ar Ar

TRIPMe

O Ot-Bu

H

N

MeMe

Ar Ar

TRIP

O

t-BuOH

H2O

Ar NH2

Ar

TRIP

Ar NH2

Ar

TRIP

List, B. Angew. Chem. Intl. Ed. 2008, 47, 1119-1122.

Weakly Coordinating Anions in Chemistry

! Non-coordinating anions – Fact or fiction?

Background to Carboranes

ClO4 BF4 PF6B(C6H5)4

> > >

decreasing coordinating ability

! Weakly coordinating anions or 'superweak anions': considerations

PF6

F– abstraction

S

O O

O CF3

Accessible

O– coordination

Prone to hydrolysis,and oxidation

B(C6H5)4

Krossing, I. Angew. Chem. Intl. Ed. 2004, 43, 2066-2090.

Weakly Coordinating Anions in Chemistry

! What should we look for in a weakly coordinating anion?

Background to Carboranes

(Or, how to make a very strong Brønsted acid)

! Low nucleophilicity

! Chemical inertness (especially to protonation!)

! Low redox activity

! Charge delocalisation

! Large size

! Peripheral atoms non-basic

! Solubility in nonpolar solvents

Krossing, I. Angew. Chem. Intl. Ed. 2004, 43, 2066-2090.

Weakly Coordinating Anions in Chemistry

! What should we look for in a weakly coordinating anion? Candidates:

Background to Carboranes

B

CF3

F3C

F3C

CF3 CF3

CF3

CF3

F3C

[B(C6F5)4]

[CB11H12]

Reviews: Strauss, S. H. Chem. Rev. 1993, 93, 927-942; Seppelt, K. Angew. Chem. Intl. Ed. 1993, 33, 1025-1027.

Weakly Coordinating Anions in Chemistry

! A brief introduction to carborane chemistry

Background to Carboranes

! Constructed of 2c-2e- and 3c2e- bonds

! Delocalised !-bonding (!-aromaticity)

! 3D-analogue of benzene

! Aromatic properties: delocalised bonding unusual stablilty propensity for substitution reactions

! Other idications: resonance energies geometries (bond order indices etc.) magnetic properties

! Very strong B-H bonds (103 kcal/mol)

Michl, J. Chem. Rev. 2006, 106, 5208-5249.

Weakly Coordinating Anions in Chemistry

! Carborane charge distribution

Background to Carboranes

Michl, J. Chem. Rev. 2006, 106, 5208-5249.

Weakly Coordinating Anions in Chemistry

! Carborane synthesis: B-H Insertion route

Background to Carboranes

B10H14 - commerciallyavailable but expensive

Michl, J. Chem. Rev. 2006, 106, 5208-5249.

NaB11H14 - 50% yield

Weakly Coordinating Anions in Chemistry

! Carborane synthesis: B-H Insertion route

Background to Carboranes

NaBH4 BF3 (OEt)+

! Carbon insertion route

NaH CHCl3

NaOEt

Michl, J. Chem. Rev. 2006, 106, 5208-5249.

Weakly Coordinating Anions in Chemistry

! Typical reactivity of carboranes

Background to Carboranes

! Electrophilic substitution

n-BuLi MeI

ICl, DME

65 ºC

I2, AcOH

25 ºC

ICl, 200ºC

Michl, J. Chem. Rev. 2006, 106, 5208-5249.

Weakly Coordinating Anions in Chemistry

! H(CHB11Cl11) - The strongest known Brønsted acid

Background to Carboranes

! "Strong yet gentle": Can protonate C60 and benzene to form isolable salts.

! Acidity only measurable by indirect (NMR) methods. Outranks HFSO3,

! HFSO3/SbF6 decomposes such molecules

! Exceptional anion stability (c.f. HSbF6 & [B(C6F5)4]–

! Stability due to weakly basic anion - large size, s-delocalisation, Cl-shielding

Reed, C. A. Angew. Chem. Intl. Ed. 2004, 43, 5352-5355 J. Am. Chem. Soc. 2006, 128, 3160-3161.

Reed, C. A. Chem. Commun. 2006, 7, 767-769 Chem. Commun. 2005, 13, 1669-1677..

Weakly Coordinating Anions in Chemistry

! Solution to an old problem: existence of a trialkylsilylium ion (R3Si+)

Background to Carboranes

! Three coordinate silicon prone to coordination by anions, solvent and even argon!

! Si-Cl bond length 2.334 Å

! Ave. C-Si-C = 116.5º

! Exceptional anion stability (c.f. HSbF6 & [B(C6F5)4]–

! 29Si NMR (115 ppm) therefore 'ion like'.

! Highly Lewis acidic silicon group

Reed, C. A. Chem. Commun. 2006, 7, 767-769 Chem. Commun. 2005, 13, 1669-1677..

Weakly Coordinating Anions in Chemistry

! Solution to an old problem: i-Pr3Si!+(CB11H6Cl6)!–

Background to Carboranes

! Three coordinate silicon prone to coordination by anions, solvent and even argon!

! Si-Cl bond length 2.334 Å

! Ave. C-Si-C = 117.6º

! Exceptional anion stability (c.f. HSbF6 & [B(C6F5)4]–

! 29Si NMR (115 ppm) therefore 'ion like'.

! Highly Lewis acidic silicon group

Weakly Coordinating Anions in Chemistry

! Uses of a R3Si+ cation: Hydrodefluorination reactions

Background to Carboranes

R F H H R H H F

catalyst

R F SiR3 H R H SiR3 F

catalyst

! Challenges:

C-F bonds are amongst the most passive functonalities in chemistry (C-F is the strongest single bond to carbon)

C-F bond strengths increase as the degree of flourination increases

C-F bonds are poor ligands and poor substrates for nuc substitution and oxidative addition

Short Review: Braun, T. Angew. Chem. Intl. Ed. 2009, 48, 2-6.

Short Review: Braun, T. Angew. Chem. Intl. Ed. 2009, 48, 2-6.

Weakly Coordinating Anions in Chemistry

! Uses of a R3Si+ cation: Hydrodefluorination reactions

Background to Carboranes

R F H H R H H F

catalyst

R F SiR3 H R H SiR3 F

catalyst

! Why do we need a hydrodefluorination reaction?

Despite the utility of fluorinated compounds (refridgerants, anesthetics, polymers, solvents, ligands, catalysts),

the high persistence of fluorocarbons is responsible for their contribution to global warming

Weakly Coordinating Anions in Chemistry

! Uses of a R3Si+ cation: Hydrodefluorination reactions

Background to Carboranes

Si-H

C-F

Si-F

C-H

favourable by~ 190 kJ / mol

Weakly Coordinating Anions in Chemistry

! Uses of a R3Si+ cation: Hydrodefluorination reactions

Background to Carboranes

Si-H

C-F

Si-F

C-H

favourable by~ 190 kJ / mol

Oserov, O. V. J. Am. Chem. Soc. 2005, 127, 2852-2853.

Max TON ~ 100

perfluorinated alkanes 0% conv

Weakly Coordinating Anions in Chemistry

! Uses of a R3Si+ cation: Hydrodefluorination reactions

Background to Carboranes

Si-H

C-F

Si-F

C-H

favourable by~ 190 kJ / mol

Oserov, O. V. J. Am. Chem. Soc. 2005, 127, 2852-2853.

Max TON ~ 100

perfluorinated alkanes 0% conv

Max TON ~ 30

perfluorinated alkanes 0% conv

alkane solvents only

Krossing, I. Tetrahedron Lett. 2007, 48, 8900-8903.

[i-Bu2-Al]+ [Al(C6F5)4]

[i-Bu2-Al]+ [Al{OC(CF3)3}4]

ori-Bu2AlH + Ph3C+M–

Weakly Coordinating Anions in Chemistry

! Uses of a R3Si+ cation: Hydrodefluorination reactions

Background to Carboranes

Ph3C[HCB11H5Cl6] Et3SiH Et3Si[HCB11H5Cl6] Ph3CH

CF3

F

F

F

F

F

CH3

F

F

F

F

F

CF3

F3C

F2C

CF2

F2C

CH2

CH3

CH3

Et3SiH

–Et3SiF

86%, 0.08 mol%TON = 1250

0%, 5% indaneremainder higher MW

28% 13%

10% <3%

>97% convTON = 200

>97% convTON = 780

Oserov, O. V. Science 2008, 321, 1188-1190.

Weakly Coordinating Anions in Chemistry

! Uses of a R3Si+ cation: Hydrodefluorination reactions

Background to Carboranes

Ph3C[HCB11H5Cl6] Et3SiH Et3Si[HCB11H5Cl6] Ph3CH

CF3

F

F

F

F

F

CF3

F3C

F2C

CF2

F2C

CH2

CH3

Et3SiH

–Et3SiF

28% 13%

10% <3%

>97% conv

TON = 200

F

F

F

F

F

53%

Cl

Cl

+ 26%

in o-C6H4Cl2 (>97% conv. TON = 1250)

76%

in benzene (>97% conv. TON = 780)

Anion Binding in Chemistry

! Area has promise for a general catalytic manifold

Conclusions

! Much work is needed towards mechanistic understanding

! Many new reactions to be discovered

! 4-years is a very short amount of time since breakthrough reactions

! Lots of scope for the design of new catalysts

top related