advanced nuclear energy systems: heat transfer issues and

Post on 09-Nov-2021

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Advanced Nuclear Energy Systems:Heat Transfer Issues and Trends

Michael CorradiniWisconsin Institute of Nuclear Systems

Nuclear Engr. & Engr. PhysicsUniversity of Wisconsin - Madison

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

ENERGY SUSTAINABILITYConditions Needed for Energy Sustainability:

Economically feasible technologyMinimal by-product streamsAcceptable land usage“Unlimited” supply of energy resourceNeither the power source nor the technology to exploit it can be controlled by a few nations/regions

Nuclear energy systems meet these conditions and can be part of the solution for future energy growth (Electricity growth estimates range 1 - 4.5%/yr)

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Evolution of Nuclear Power Systems

1960 1970 1980 1990 2000 2010 2020 2030

Gen IV

Generation IVGeneration IV• Enhanced

Safety• More

economical• Minimized

Wastes• Proliferation

Resistance

• Enhanced Safety

• More economical

• Minimized Wastes

• Proliferation Resistance

Gen I

Generation IGeneration IEarly Prototype

Reactors

•Shippingport•Dresden,Fermi-I•Magnox

Gen II

Generation IIGeneration IICommercial Power

Reactors

•LWR: PWR/BWR•CANDU•VVER/RBMK

Gen III

Generation IIIGeneration IIIAdvanced

LWRs

•System 80+•ABWR

•AP1000•ESBWR

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Advanced Light Water Reactors: AP1000-Enhanced Passive Safety

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Advanced Light Water Reactors:ESBWR-Simplified Operation & Safety

Natural Circulationin the Vessel

Passive Safety Systems

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Advanced Light Water Reactors:Multiphase Heat Transfer Issues

Passive systems can simplify construction and operation but may complicate engr. analysesNatural-circulation multiphase flow in complex geometries (plant geom. dependent)Condensation heat transfer with non-condensible gases in reactor containmentMultiphase/multicomponent heat transfer in safety analyses beyond the ALWR design base

In-vessel lower head cooling & Ex-vessel debris coolabilityMultiphase/multicomponent direct-contact heat-exchange

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

BWR/6

ESBWR

ABWR

Steam g

A More Advanced LWRThe next logical step in path toward simplification ?

PWR

SCWRA boiling water reactor …without the boiling.

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

SUPERCRITICAL WATER REACTOR

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Heat Transfer in SCW Reactor:

500

600

700

800

900

1000

1100

1200

1300

1400

0 0.5 1 1.5 2 2.5 3Height of the core [m]

Tem

pera

ture

[K]

0

5000

10000

15000

20000

25000

30000

35000

40000

Line

ar h

eat g

ener

atio

n [W

/m]

Jackson: 1.53Jackson: 1.34Jackson: 1.23Bishop: 1.23Bishop: 1.34Bishop: 1.53Qlinear

P/D

Absence of boiling crisis (CHF), but with heat transfer degradation

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

SCW Flow Control and Instabilities

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30Power (kW)

G (k

g/m

2 s)

20

30

40

50

60

70

80

90

100

110

Tem

pera

ture

(o C)

Mass Velocity

Hot Side Temperature

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Nuclear Fuel RecycleSpent Fuel From

Commercial Plants

Direct Disposal Conventional

Reprocessing

PUREX

SpentFuel

Pu UraniumMOX

LWRs/ALWRs

U and PuActinidesFission Products

RepositoryRepository

Less U and PuActinides

Fission Products

Advanced, Proliferation-Resistant

Recycling AFCI

ADS Transmuter

Trace U and PuTrace ActinidesLess Fission Products

Repository

Gen IV Fast Reactors

Once ThroughFuel Cycle

European/JapaneseFuel Cycle Advanced Proliferation Resistant

Fuel Cycle

Gen IV Fuel Fabrication

LWRs/ALWRs

Advanced Separations

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Liquid-Metal-Cooled Fast Reactor (e.g. LFR)

Characteristics• Pb or Pb/Bi coolant• 550°C to 800°C outlet

temperature• 120–400 MWe

Key Benefit• Waste minimization and

efficient use of uranium resources

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Liquid Metal-Water Direct Contact HX

L

Lsub

Lsat

Lsup

Liquid Metal

SteamAdvantages:

- Vigorous interaction between the liquid metal and the water

- Excellent contact so smaller volume is required to transfer the same amount of energy.

- Potential replacement of IHX loop.

=> Need to determine the local heat transfer coefficient and flow stability for a range of flow rates and regimes.

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Void [cm]

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .60 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

0 .3 0

E x p t. P = 0 .1 M p a

α wat

er

D is ta n c e a b o v e in je c to r z [m ]

DCHT via Xray Imaging

0

1000

2000

3000

0 2.5 5 7.5 10 12.5 15Distance from the Injector [cm]

HTC(w/m2K)

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Very-High-Temperature Reactor (VHTR)

Characteristics• Helium coolant• 1000°C outlet temp.• 600 MWth• Water-cracking cycle

Key Benefit• Hydrogen production

by water-cracking

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

GAS-COOLED REACTOR

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Process Heat for Hydrogen Production

Nuclear HeatNuclear HeatHydrogenHydrogen OxygenOxygen

H2O22

1

900 C400 C

Rejected Heat 100 CRejected Heat 100 C

S (Sulfur)Circulation

SO2+H2O+O22

1H2SO4

SO2+

H2OH2O

H2

I2+ 2HI

H2SO4

SO2+H2OH2O

+

+ +

I (Iodine)Circulation

2H I

I2

I2

WaterWater

Nuclear HeatNuclear HeatHydrogenHydrogen OxygenOxygen

H2O22

1O22121

900 C400 C

Rejected Heat 100 CRejected Heat 100 C

S (Sulfur)Circulation

SO2+H2O+O22

1H2SO4

SO2+

H2OH2O

H2

I2+ 2HI

H2SO4

SO2+H2OH2O

+

+ +

I (Iodine)Circulation

2H I

I2

I2

WaterWater

L

Liquid Metal

Hydrogen

CxHy

Carbon Recycle

200 C 1000 C

Iodine/Sulfuric-AcidThermochemical

Process

LM Condensed Phase Reforming (pyrolysis)

Aqueous-phase Carbohydrate

Reforming (ACR)H2, CO2

CATALYST

AQUEOUS CARBOHYDRATE

Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer

Of Nucl ear Sys te

ms

Wis

consin Instit u

t e

Micro-Nuclear Power Applications (NAE-Blanchard)

Self-Reciprocating Cantilever Wireless Transmitter

Micro Thermoelectric or Thermionic Generator

N

P

Direct Conversion(Electricity from radiation used

to create ion-hole pair in PN Jnc)

top related